

PROVINCIAL EXAMINATION JUNE 2023 GRADE 11

MATHEMATICS

PAPER 1

TIME:
2 hours
MARKS:
100
7 pages

Downloaded from Stanmore histacniaitc (PAPER 1)

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. Answer ALL the questions.
2. This question paper consists of 6 questions.
3. Present your answers according to the instructions of each question.
4. Clearly show ALL calculations, diagrams, graphs, et cetera, which were used in determining the answers.
5. Answers only will NOT necessarily be awarded full marks.
6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
7. If necessary, answers should be rounded-off to TWO decimal places, unless stated otherwise.
8. Diagrams are NOT necessarily drawn to scale.
9. Number the answers correctly according to the numbering system used in the question paper.
10. Write neatly and legibly.

Downloaded from Stanmore histheniRitc
 (PAPER 1)

QUESTION 1

1.1 If $x \in\{0 ; 1 ; 2 ; 3 ; 4 ; 5\}$, determine the values of x for which:
$\sqrt{\frac{16}{4-x}}$
1.1.1 is not defined.
1.1.2 is a natural number.
1.1.3 is an irrational number.
1.2 Solve for x :
1.2.1 $\quad 3 x^{2}-4 x=0$
1.2.2 $3 x-14=-6 x^{2}$
1.2.3 $(x+1)(x-3)>12$
1.2.4 $\sqrt{2-x}+2=x$
1.2.5 If $x-6=0$ is one of the solutions of the equation $x+\frac{40}{x}=16$, determine ONE value of y for which $2 y+3+\frac{40}{2 y+3}=16$.
1.3 Solve for x and y simultaneously:
$y-1=2 x$
$x^{2}+x y-3 x-y+2=0$
1.4 Show that the equation $x^{2}-p x-p^{2}=2$ has TWO real and unequal roots for all real values of p.
1.5 A farmer constructs a rectangular enclosure using 100 m of fencing. He uses one existing boundary wall as one side of the rectangular enclosure.
Calculate the dimensions of the rectangle to obtain the maximum enclosed area.

QUESTION 2

2.1 Simplify WITHOUT the use of a calculator:

$$
\begin{equation*}
\text { 2.1. } \cap \frac{3^{n+2} \cdot 9^{n+1}}{27^{n-1}} \tag{3}
\end{equation*}
$$

2.1.2 $\frac{x^{2}}{1+x}$ if $x=1+\sqrt{3}$
2.1.3 $\frac{\sqrt{a^{2}-b^{2}} \times(a+b)^{\frac{5}{2}}}{(a-b)^{\frac{1}{2}}}$ if $a \neq b$
2.2 Prove that: $\frac{2}{1+\sqrt{2}}-\frac{8}{\sqrt{8}}=-2$
2.3 Given: Isosceles $\Delta \mathrm{JKL}$ with $\mathrm{JK}=2+\sqrt{3}$ and $\mathrm{LK}=4$.

Calculate the area of $\Delta \mathrm{JKL}$ correct to ONE decimal place.

Downloaded from Stanmore hasifieniRfics

QUESTION 3

3.1 The FIRST three terms of a linear sequence are:
$x ; 4 x+5 ; 10 x-5$;
Determine the numerical value of x.
3.2 Consider the linear sequence:
$17 ; 14 ; 11 ; \ldots ;-106$
3.2.1 Determine n if the $n^{\text {th }}$ term is given as $T_{n}=-3 n+20$.
3.2.2 Which term is the FIRST negative term in the sequence?
3.2.3 Determine the value of the $20^{\text {th }}$ ODD term in the sequence.
3.3 Consider the pattern:
$3 ; a ; 10 ; b ; 21$
The pattern has a second difference of 1 .
Determine the values of a and b.

QUESTION 4

The diagram shows the graph of $f(x)=a x^{2}+b x+c$ with the following essential properties:

- $\quad \mathrm{A}(2 ; y)$ is the turning point of f.
- $\quad \mathrm{B}$ and $\mathrm{C}(-1 ; 0)$ are the x-intercepts of f.
- $\quad \mathrm{D}(6 ; 7)$ is a point on f.

4.1 Write down the coordinates of B.
4.2 Show that the equation of f can be written as:
$f(x)=x^{2}-4 x-5$

4.3 Determine the equation of a line $h(x)$ passing through point C which is perpendicular to the line passing through point B and the y-intercept of f.
4.4 For which values of x will $x . f(x) \geq 0$?

Downloaded from Stanmore hisificmithic
 GRADE 11

QUESTION 5

Given: $g(x)=\frac{6}{x+2}-1$ and $p(x)=\frac{6}{x-3}+2$.
5.1 Sketch the graph of g showing clearly the asymptotes and the intercepts with the axes.
5.2 Determine the equation h, the line of symmetry of g, that has an angle of inclination of 135° in the form $y=\ldots$
5.3 Determine value(s) of x for which $g(x)<h(x)$.
5.4 If the graph of g is shifted so that it coincides with the graph of p,
5.4.1 by how many units must the graph be shifted horizontally?
5.4.2 by how many units must the graph be shifted vertically?

QUESTION 6

6.1 Given: $h(x)=3.2^{x}-6$
6.1.1 Write down the equation of the asymptote of h.
6.1.2 Determine the x-intercept of h.
6.1.3 Determine the y-intercept of h.
6.1.4 Determine for which values of x will $h(x)>0$.
6.2 Draw a neat sketch of the graph of $g(x)=a \cdot b^{x}+q$ if:

- $a=1$
- $0<b<1$
- $q=-1$

PROVINCIAL EXAMINATION JUNE 2023
 GRADE 11
 MARKING GUIDELINES

10 pages

QUESTION 1

		$\checkmark \quad$ value of x \checkmark substitution $\checkmark \quad$ value of y	(3)
1.3	$\begin{align*} & y-1=2 x \\ & \therefore y=2 x+1 \ldots \ldots .(1) \tag{1}\\ & x^{2}+x y-3 x-y+2=0 \ldots \ldots .(2) \tag{2}\\ & \therefore x^{2}+x(2 x+1)-3 x-(2 x+1)+2=0 \\ & x^{2}+2 x^{2}+x-3 x-2 x-1+2=0 \\ & \therefore 3 x^{2}-4 x+1=0 \\ & (3 x-1)(x-1)=0 \\ & \therefore x=\frac{1}{3} \ldots \text { or } \ldots x=1 \\ & \therefore y=\frac{5}{3} \ldots \text { or } \ldots y=3 \end{align*}$	\checkmark expression for y \checkmark substitution \checkmark standard form $\checkmark \quad x$-values $\checkmark \quad y$-values	(5)
1.4	$\begin{aligned} & x^{2}-p x-p^{2}=2 \\ & \therefore x^{2}-p x-p^{2}-2=0 \\ & \Delta=b^{2}-4 a c \\ & \Delta=(-p)^{2}-4(1)\left(-p^{2}-2\right) \\ & \Delta=p^{2}+4 p^{2}+8 \\ & \Delta=5 p^{2}+8 \\ & \therefore p^{2} \geq 0 \cdots \cdots p \in \mathfrak{R} \\ & \therefore 5 p^{2} \geq 0 \cdots \cdots p \in \mathfrak{R} \\ & \therefore 5 p^{2}+8>0 \cdots \cdots p \in \mathfrak{R} \end{aligned}$	$\checkmark \quad$ substitute into Δ $\Delta=5 p^{2}+8$ $p^{2} \geq 0,5 p^{2} \geq 0$ and $5 p^{2}+8>0$	

QUESTION 2

2.1	$\begin{array}{\|c\|} \hline 2.1 .1 \\ \square \\ \square \\ \square \\ \hline \end{array}$	$\begin{aligned} & \frac{\frac{3^{n+2} \cdot 9^{n+1}}{27^{n-1}}}{\frac{3^{n+2} \cdot 3^{2 n+2}}{3^{3 n-3}}} \\ & \frac{3^{3 n+4}}{3^{3 n-3}} \\ & 3^{3 n+4-3 n+3} \\ & 3^{7} \end{aligned}$	$\checkmark \quad 3^{2 n+2}$ and $3^{3 n-3}$ $\checkmark \quad 3^{3 n+4-3 n+3}$ $\checkmark \quad$ answer	(3)
	2.1.2	$\begin{aligned} & \frac{x^{2}}{1+x} \\ & =\frac{(1+\sqrt{3})^{2}}{1+1+\sqrt{3}} \\ & =\frac{1+2 \sqrt{3}+3}{2+\sqrt{3}} \\ & =\frac{4+2 \sqrt{3}}{2+\sqrt{3}} \\ & =\frac{2(2+\sqrt{3})^{2}}{2+\sqrt{3}} \\ & =2 \end{aligned}$	$\checkmark \quad$ substitution \checkmark simplification \checkmark factorisation \checkmark answer	(4)
	2.1.3	$\begin{aligned} & \frac{\sqrt{\left(a^{2}-b^{2}\right)} \times(a+b)^{\frac{5}{2}}}{(a-b)^{\frac{1}{2}}} \\ & =\frac{\sqrt{(a-b)(a+b)} \times(a+b)^{\frac{5}{2}}}{(a-b)^{\frac{1}{2}}} \\ & =\frac{(a-b)^{\frac{1}{2}}(a+b)^{\frac{1}{2}} \times(a+b)^{\frac{5}{2}}}{(a-b)^{\frac{1}{2}}} \\ & (a+b)^{\frac{1}{2}} \times(a+b)^{\frac{5}{2}} \\ & (a+b)^{3} \\ & a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \end{aligned}$	factorisation simplification simplification answer	(4)

QUESTION 3

3.1	$\begin{aligned} & T_{2}-T_{1}=T_{3}-T_{2} \\ & 4 x+5-x=10 x-5-(4 x+5) \\ & 3 x+5=10 x-5-4 x-5 \\ & 3 x+5=6 x-10 \\ & \therefore 3 x=15 \\ & \therefore x=5 \end{aligned}$			\checkmark method \checkmark answer	(2)
3.2	3.2.1 $-3 n+20=-106$ $3 n=126$ $\therefore n=42$			equating answer	(2)
	3.2.2	$\begin{aligned} & -3 n+20<0 \\ & 20<3 n \\ & \therefore \frac{20}{3}<n \\ & \therefore n=7 \end{aligned}$		$\checkmark \quad T_{n}<0$	(2)
	3.2.3	Odd valued terms: 17; 11; 5; General term: $T_{n}=-6$ $\begin{aligned} & T_{n}=-6(20)+23 \\ & \therefore T_{n}=-97 \end{aligned}$		\checkmark sequence $\checkmark \quad T_{n}$ \checkmark answer	(3)
3.3	$\begin{aligned} & 3 ; a ; 10 ; b ; 21 \\ & a-3 ; 10-a ; b-10 ; 21-b \quad 1^{s t} \text { difference } \\ & 2^{n d} \text { differences: } \\ & 10-a-a+3=1 \\ & -2 a+13=1 \\ & -2 a=-12 \\ & \therefore a=6 \\ & \text { and } \\ & 21-b-b+10=1 \\ & -2 b+31=1 \\ & -2 b=-30 \\ & \therefore b=15 \end{aligned}$			$1^{\text {st }}$ differences equating $2^{\text {nd }}$ difference in terms of a, then b. \square value of a value of b	(4)
					[13]

QUESTION 4

4.4	$-1 \leq x \leq 0$ $x \geq 5$ OR $x \in[-1 ; 0]$ or $[5 ; \infty]$ NOTE: Deduct 1 mark if brackets are incorrect in the alternative solution.	all critical values (independent) answers all critical values (independent) answers	(2)
[10]			

QUESTION 5

QUESTION 6

