Downloaded from Stanmorephysics.com

PROVINCIAL EXAMINATION

JUNE 2023

GRADE 11

MATHEMATICS

PAPER 1

TIME: 2 hours

MARKS: 100

7 pages

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. Answer ALL the questions.
- 2. This question paper consists of 6 questions.
- 3. Present your answers according to the instructions of each question.
- 4. Clearly show ALL calculations, diagrams, graphs, et cetera, which were used in determining the answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, answers should be rounded-off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Number the answers correctly according to the numbering system used in the question paper.
- 10. Write neatly and legibly.

QUE	UESTION 1	
1.1	1 If $x \in \{0; 1; 2; 3; 4; 5\}$, determine the values of x for which:	
	$\sqrt{\frac{16}{4-x}}$	
	1.1.1 is not defined.	(2)
	1.1.2 is a natural number.	(2)
	1.1.3 is an irrational number.	(2)
1.2	2 Solve for <i>x</i> :	
	$1.2.1 3x^2 - 4x = 0$	(3)
	$1.2.2 3x - 14 = -6x^2$	(4)
	1.2.3 $(x+1)(x-3) > 12$	(4)
	1.2.4 $\sqrt{2-x} + 2 = x$	(4)
	1.2.5 If $x-6=0$ is one of the solutions of the equation $x + \frac{40}{x} = \frac{1}{2}$	16, determine ONE

value of y for which $2y + 3 + \frac{40}{2y + 3} = 16.$ (3)

1.3 Solve for x and y simultaneously:

$$y - 1 = 2x$$

$$x^{2} + xy - 3x - y + 2 = 0$$
(5)

1.4 Show that the equation $x^2 - px - p^2 = 2$ has TWO real and unequal roots for all real values of *p*.

 1.5 A farmer constructs a rectangular enclosure using 100 m of fencing. He uses one existing boundary wall as one side of the rectangular enclosure. Calculate the dimensions of the rectangle to obtain the maximum enclosed area.

[39]

(3)

GRADE 11

QUESTION 2

2.1 Simplify WITHOUT the use of a calculator:

Downloaded from Stanmorephysics com

$$2.1.1 \qquad 3^{n+2}.9^{n+1} \\ 27^{n-1} \tag{3}$$

(PAPER 1)

2.1.2
$$\frac{x^2}{1+x}$$
 if $x = 1 + \sqrt{3}$ (4)

2.1.3
$$\frac{\sqrt{a^2 - b^2} \times (a + b)^{\frac{5}{2}}}{(a - b)^{\frac{1}{2}}} \quad \text{if} \quad a \neq b$$
(4)

2.2 Prove that:
$$\frac{2}{1+\sqrt{2}} - \frac{8}{\sqrt{8}} = -2$$
 (4)

2.3 Given: Isosceles \triangle JKL with JK = 2 + $\sqrt{3}$ and LK = 4.

Calculate the area of Δ JKL correct to ONE decimal place.

GRADE 11

5

	<u> </u>			
Downloaded	trom	Stanmoren	nvs	ICS COM
Downloaded		e tarinor op	MA	THEMATICS
			(PAI	PER 1)

QUE	STION 3	
3.1	The FIRST three terms of a linear sequence are:	
	x; $4x + 5$; $10x - 5$;	
	Determine the numerical value of x .	(2)
3.2	Consider the linear sequence:	
	17; 14; 11;; –106	
	3.2.1 Determine <i>n</i> if the n^{th} term is given as $T_n = -3n + 20$.	(2)
	3.2.2 Which term is the FIRST negative term in the sequence?	(2)
	3.2.3 Determine the value of the 20^{th} ODD term in the sequence.	(3)
3.3	Consider the pattern:	
	3; <i>a</i> ; 10; <i>b</i> ; 21	
	The pattern has a second difference of 1. Determine the values of a and b .	(4) [13]

QUESTION 4

The diagram shows the graph of $f(x) = ax^2 + bx + c$ with the following essential properties:

- A(2; y) is the turning point of f.
- B and C(-1; 0) are the *x*-intercepts of *f*.
- D(6; 7) is a point on f.

- 4.1 Write down the coordinates of B.
- 4.2 Show that the equation of f can be written as:

$$f(x) = x^2 - 4x - 5$$

- 4.3 Determine the equation of a line h(x) passing through point C which is perpendicular to the line passing through point B and the *y*-intercept of *f*. (3)
- 4.4 For which values of x will $x.f(x) \ge 0$?

(2)

(3)

(2) [**10**]

GRADE 11

7

Downloaded from Stanmorep MATHEMATICS (PAPER 1)

QUE	STION 5	
Given	n: $g(x) = \frac{6}{x+2} - 1$ and $p(x) = \frac{6}{x-3} + 2$.	
5.1	Sketch the graph of g showing clearly the asymptotes and the intercepts with the axes.	(3)
5.2	Determine the equation h , the line of symmetry of g , that has an angle of inclination of 135° in the form $y =$	(3)
5.3	Determine value(s) of x for which $g(x) < h(x)$.	(1)
5.4	If the graph of g is shifted so that it coincides with the graph of p ,	
	5.4.1 by how many units must the graph be shifted horizontally?	(1)
	5.4.2 by how many units must the graph be shifted vertically?	(1) [9]
QUE	STION 6	
6.1	Given: $h(x) = 3.2^x - 6$	
	6.1.1 Write down the equation of the asymptote of h .	(1)
	6.1.2 Determine the x-intercept of h .	(2)
	6.1.3 Determine the <i>y</i> -intercept of h .	(1)
	6.1.4 Determine for which values of x will $h(x) > 0$.	(1)
6.2	Draw a neat sketch of the graph of $g(x) = a.b^x + q$ if: • $a = 1$ • $0 < b < 1$ • $q = -1$ TOTAL:	(3) [8] 100

Downloaded from Stanmorephysics.com

PROVINCIAL EXAMINATION JUNE 2023 GRADE 11 MARKING GUIDELINES

MATHEMATICS (PAPER 1)

10 pages

QUI	ESTIO			
1.1	1.1.1	$x \in \{4; 5\}$	✓ answer✓ answer	(2)
	1.1.2	$x \in \{0; 3\}$	✓ answer ✓ answer	(2)
	1.1.3	$x \in \{1 ; 2\}$	✓ answer✓ answer	(2)
1.2	1.2.1	$3x^{2} - 4x = 0$ $\therefore x(3x - 4) = 0$ $x = 0 \cdots or \cdots x = \frac{4}{3}$	✓ factors ✓ ✓ answers	
		3 NOTE: Any other valid method.		(3)
	1.2.2	$\therefore 6x^2 + 3x - 14 = 0$	✓ standard form	
		$\therefore x = \frac{-(3) \pm \sqrt{(3)^2 - 4(6)(-14)}}{2(6)}$	✓ substitution	
		$\therefore x = 1,29 \text{ or } x = -1,79$	✓✓ answers	(4)
	1.2.3	(x+1)(x-3) > 12 $x^{2} - 2x - 3 > 12$ $x^{2} - 2x - 15 > 0$ (x-5)(x+3) > 0 $\therefore x > 5 \cdots or \cdots x < -3$	 ✓ standard form ✓ factors ✓ ✓ answers 	(4)
	1.2.4	$\sqrt{2-x} + 2 = x$ $\sqrt{2-x} = x - 2$ $(\sqrt{2-x})^2 = (x-2)^2$ $2 - x = x^2 - 4x + 4$	 ✓ squaring both sides 	
		$0 = x^{2} - 3x + 2$ 0 = (x - 2)(x - 1) $\therefore x = 2 \dots or \dots x = 1(NA)$	 ✓ standard form ✓ factors ✓ answers with rejection 	(4)

	1.2.5 $x-6=0$ $\therefore x = 6$ $\therefore x = 2y+3$ 6 = 2y+3	* *	value of <i>x</i> substitution	
	2y = 3 $\therefore y = \frac{3}{2}$	✓	value of y	(3)
1.3	y - 1 = 2x $\therefore y = 2x + 1 \dots (1)$ $x^2 + xy - 3x - y + 2 = 0 \dots (2)$	~	expression for y	
	$\therefore x^{2} + x(2x + 1) - 3x - (2x + 1) + 2 = 0$ $x^{2} + 2x^{2} + x - 3x - 2x - 1 + 2 = 0$	~	substitution	
	$\therefore 3x^2 - 4x + 1 = 0$ (3x - 1)(x - 1) = 0	~	standard form	
	(3x - 1)(x - 1) = 0 $\therefore x = \frac{1}{3} \dots or \dots x = 1$	~	<i>x</i> -values	
	$\therefore y = \frac{5}{3} \dots or \dots y = 3$	~	<i>y</i> -values	(5)
1.4	$x^{2} - px - p^{2} = 2$ $\therefore x^{2} - px - p^{2} - 2 = 0$ $\Delta = b^{2} - 4ac$			
	$\Delta = b^{2} - 4ac$ $\Delta = (-p)^{2} - 4(1)(-p^{2} - 2)$ $\Delta = p^{2} + 4p^{2} + 8$	~	substitute into Δ	
	$\Delta = 5p^{2} + 8$ $\therefore p^{2} \ge 0 \dots p \in \Re$ $\therefore 5p^{2} \ge 0 \dots p \in \Re$	×	$\Delta = 5p^2 + 8$	
	$\therefore 5p^2 + 8 > 0 \cdots p \in \Re$ $\therefore \text{ roots are real and unequal.}$	V	$p^2 \ge 0$, $5p^2 \ge 0$ and $5p^2 + 8 > 0$	(3)

(PAPER 1)

QUI	QUESTION 2					
2.1	2.1.1	$\frac{3^{n+2} \cdot 9^{n+1}}{27^{n-1}}$ $\frac{3^{n+2} \cdot 3^{2n+2}}{3^{3n-3}}$ $\frac{3^{3n+4}}{3^{3n-3}}$	~	3^{2n+2} and 3^{3n-3}		
		$3^{3n+4-3n+3}$ 3^{7}	~ ~	$3^{3n+4-3n+3}$ answer	(3)	
		<u> </u>			(3)	
	2.1.2	$\frac{x^2}{1+x}$				
		$=\frac{(1+\sqrt{3})^2}{1+1+\sqrt{3}}$	~	substitution		
		$=\frac{1+2\sqrt{3}+3}{2+\sqrt{3}}$	~	simplification		
		$=\frac{4+2\sqrt{3}}{2+\sqrt{3}}$				
		$=\frac{2(2+\sqrt{3})^2}{2+\sqrt{3}}$	~	factorisation		
		= 2	✓	answer	(4)	
	2.1.3	$\frac{\sqrt{(a^2 - b^2)} \times (a + b)^{\frac{5}{2}}}{(a - b)^{\frac{1}{2}}}$ = $\frac{\sqrt{(a - b)(a + b)} \times (a + b)^{\frac{5}{2}}}{(a - b)^{\frac{1}{2}}}$ = $\frac{(a - b)^{\frac{1}{2}}(a + b)^{\frac{1}{2}} \times (a + b)^{\frac{5}{2}}}{(a - b)^{\frac{1}{2}}}$ $(a + b)^{\frac{1}{2}} \times (a + b)^{\frac{5}{2}}$ $(a + b)^{3}$	~ ~ ~	factorisation simplification		
		$a^3 + 3a^2b + 3ab^2 + b^3$	✓	answer	(4)	

2.2	$RTP: \frac{2}{1+\sqrt{2}} - \frac{8}{\sqrt{8}} = -2$		
	$\frac{2}{1+\sqrt{2}} - \frac{8}{\sqrt{8}}$		
1	$=\frac{2}{1+\sqrt{2}}-\frac{8}{2\sqrt{2}}$	\checkmark $2\sqrt{2}$	
	$=\frac{2(2\sqrt{2})-8(1+\sqrt{2})}{2\sqrt{2}(1+\sqrt{2})}$	\checkmark $2\sqrt{2}(1+\sqrt{2})$	
	$=\frac{4\sqrt{2}-8-8\sqrt{2}}{2\sqrt{2}+2\sqrt{4}}$		
	$=\frac{4\sqrt{2}-8-8\sqrt{2}}{2\sqrt{2}+4}$		
	$=\frac{-4\sqrt{2}-8}{2\sqrt{2}+4}$	✓ simplification	
	$=\frac{-4\sqrt{2}+2}{2\sqrt{2}+2}$	✓ factorisation	
	= -2		(4)
2.3	L M K 4 K		
	MK = LM = 2	✓ MK=2	
	$JM^2 = (2 + \sqrt{3})^2 - 2^2$ pythag	✓ substitution	
	$JM^2 = 4 + 4\sqrt{3} + 3 - 4$	✓ simplification	
	$JM^2 = 4\sqrt{3} + 3$		
	$JM = \sqrt{4\sqrt{3} + 3}$	✓ JM	
	$A = \frac{1}{2}(4)\sqrt{4\sqrt{3}+3}$	\checkmark substitution into area formula	
	$A = 6,3 units^2$	✓ answer	(6)
			[21]

QUI	ESTIO	N 3			
3.1	4x + 3 $3x + 3$ $3x + 3$	$T_{1} = T_{3} - T_{2}$ 5 - x = 10x - 5 - (4x + 5) 5 = 10x - 5 - 4x - 5 5 = 6x - 10	*	method	
	$\therefore 3x =$ $\therefore x =$		✓	answer	(2)
3.2	3.2.1	-3n + 20 = -106 3n = 126 $\therefore n = 42$	✓ ✓	equating answer	(2)
	3.2.2	$-3n + 20 < 0$ $20 < 3n$ $\therefore \frac{20}{3} < n$	~	<i>T_n</i> < 0	
		$\therefore n = 7$	✓	answer	(2)
	3.2.3	17; 11; 5; General term: $T_n = -6n + 23$ $T_n = -6(20) + 23$	*	T_n	
		$\therefore T_n = -97$	✓	answer	(3)
3.3	a – 3;	10; b; 21 $10-a; b-10; 21-b$ 1^{st} difference fferences:	•	1 st differences	
			✓ ✓	equating 2^{nd} difference in terms of <i>a</i> , then <i>b</i> .	
	and	0	v	value of <i>a</i>	
	21-b	b - b + 10 = 1 + 31 = 1 = -30			
	∴ <i>b</i> =		✓	value of b	(4) [13]

$ \begin{array}{ c c c c c } 4.4 & -1 \leq x \leq 0 \\ x \geq 5 \\ \end{array} $	 ✓ all critical values (independent) ✓ answers 	
OR		
$x \in [-1; 0]$ or $[5; \infty]$ NOTE: Deduct 1 mark if brackets are incorrect in the	 ✓ all critical values (independent) 	
alternative solution.	✓ answers	(2)
		[10]

QUESTION 5

5.1	g	1	✓ ✓ ✓	asymptotes intercepts shape	
		the asymptotes but does not sketch the graph, award 2 marks.			(3)
5.2	tan 13	$5^{\circ} = -1$	✓	m = -1	
	$v-v_1$	$=m(x-x_1)$			
	y - (-	1) = -1(x - (-2))	~	subs. point (2;-1)	
	y + 1 =	= -x - 2			
	y = -x	- 3	\checkmark	answer	(3)
				10001	
5.3	x < -2	2	\checkmark	answer	(1)
5.4	5.4.1	5 units right	✓	answer	
		NOTE : Accept an answer of 5 units.			(1)
	5.4.2	3 units up	~	answer	
		NOTE: Accept an answer of 3 units.			(1)
					[9]

QUESTION 6 6.1.1 6.1 y = -6 \checkmark answer (1) 6.1.2 $h(x) = 3.2^x - 6$ $0 = 3.2^{x} - 6$ equate to 0 \checkmark $6 = 3.2^{x}$ $2 = 2^{x}$ \checkmark answer x = 1(2) 6.1.3 $h(x) = 3.2^{x} - 6$ $y = 3.2^{\circ} - 6$ y = -3 \checkmark answer (1) 6.1.4 x > 1 \checkmark (1) answer 6.2 v x-intercept \checkmark x, 0 asymptote \checkmark shape \checkmark -1 (3) [8] LOn TOTAL: 100 0001