

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

MARKS:

100

TIME:

2 hours

This question paper consists of 8 pages and 4 DIAGRAM SHEETS.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. FOUR DIAGRAM SHEETS FOR QUESTION 1.1, QUESTION 1.2, QUESTION 3.2, QUESTION 4, QUESTION 5.1, QUESTION 5.2 AND QUESTION 6 are attached at the end of this QUESTION PAPER. Detach the DIAGRAM SHEETS and hand in together with your ANSWER BOOK.
- 9. Diagrams are NOT necessarily drawn to scale.
- 10. Write neatly and legibly.

QUESTION 1

1.1

In the diagram below, A(-6; 4), B, C(2; 0) and D(1; 8) are the vertices of parallelogram ABCD.

DC is extended to E, such that line BE will be parallel to the x-axis. F is a point on the x-axis. The diagonals of ABCD intersect at R.

 $\hat{DCF} = \alpha$ and $\hat{DCR} = \beta$.

- 1.1.1 Calculate the gradient of DC. (2)
- 1.1.2 Calculate the equation of DE in the form y = mx + c. (2)
- 1.1.3 Calculate the coordinates of R. (2)
- 1.1.4 Write down the coordinates of B. (2)
- 1.1.5 Calculate the length of BE. (4)
- 1.1.6 Prove that ABCD is a rhombus. (4)
- 1.1.7 Calculate the size of:
 - (a) angle α
 - (a) angle β
- 1.1.8 Calculate the area of ΔBEC . (3)

In the diagram below, E and H are points on the x-axis and F and G are points on the y-axis, such that EF || GH. The equation of EF is y = mx + 1,2 and FÊO = 16,70°.

- 1.2.1 Calculate the value of m. (1)
- 1.2.2 If EO = OG, calculate the coordinates of H. (5)

[30]

QUESTION 2

Given: $\sin 25^\circ = k$. Without using a calculator, determine each of the following in terms of k:

$$2.1.1 \cos 25^{\circ}$$
 (3)

- $\sin 205^{\circ}$ (2)
- 2.1.3 $\tan 385^{\circ}$ (2)
- 2.2 Prove the identity: $\frac{-\tan x}{\cos x} + \frac{1}{\sin x \cos^2 x} = \frac{1}{\sin x}$ (4)
- 2.3 Calculate the value of the following expression:

$$\frac{\sqrt{3}\sin x \sin^2 58^\circ - \sqrt{3}\sin^2 212^\circ .\cos(x+90^\circ)}{\tan 120^\circ .\sin x}$$
(7)

[18]

QUESTION 3

3.1 Determine the general solution of the following equation:

$$2\cos^2 x - 7\cos x - 2\sin^2 x = 0\tag{7}$$

3.2 The graphs of $f(x) = 2\sin x + 1$ and $g(x) = a\cos bx$ are sketched below for

$$x \in [-90^\circ; 270^\circ]$$
. Q $\left(-68,91^\circ; -\frac{\sqrt{3}}{2}\right)$ is a point of intersection of f and g .

- 3.2.1 Write down the values of a and b. (2)
- 3.2.2 Write down the amplitude of f. (1)
- 3.2.3 Write down the period of g. (1)
- 3.2.4 For which value(s) of x will $f(x) \ge g(x)$, in the interval $x \in [-90^\circ; 0^\circ]$? (2)
- 3.2.5 Graph h is formed by shifting graph f 90° to the left and reflecting it in the x-axis. Determine the equation of h. (2)
- 3.2.6 For which values of k will $2 \sin x = k$ have no real roots? (2)

[17]

[8]

Downloaded from Stanmore Physics.com

QUESTION 4

In the diagram below, O is the centre of the circle. Chord CD is parallel to diameter BE. A is a point on the circle, and AB, BC, AC, CE and AD are drawn. $\hat{C}_2 = 52^{\circ}$ and $\hat{E} = 20^{\circ}$.

Calculate, with reasons, the size of the following angles:

$$\hat{\mathbf{C}}_{1} \tag{3}$$

4.2
$$\hat{C}_3$$
 (1)

$$4.3 BÂD (2)$$

$$\hat{A}_2 \tag{2}$$

QUESTION 5

In the diagram below, FGH is a tangent to the circle with centre O at G. J and K are points on the circle.

Prove the theorem which states that $H\hat{G}K = \hat{J}$.

(5)

In the diagram below, O is the centre of circle PRS. WP and WR are tangents to the circle at P and R respectively. PO, OR, PR and OW are drawn. OW intersects PR at T. RW is extended to V. $V\hat{W}P = 134^{\circ}$.

5.2.1 Prove that PWRO is a cyclic quadrilateral.

5.2.2 Give a reason why $\hat{W}_1 = \hat{W}_2$. (2)

5.2.3 Calculate the size of \hat{S} . (4)

[14]

(3)

Copyright Reserved Please Turn Over

In the diagram, O is the centre of the circle and A, B, C and D are points on the circle such that AD = CD. The tangent to the circle at A meets CD produced at E. OD intersects AC at F.

Let $\hat{B} = x$

- 6.1 Give a reason why $\hat{A}_2 = x$. (1)
- 6.2 Prove that DA bisects EAF. (4)
- 6.3 Prove that EA is a tangent to the circle that passes through A, O and F. (4)
- 6.4 Prove that AF = FC. (4)

[13]

TOTAL: 100 NAME & SURNAME:

DIAGRAM SHEET 1

QUESTION 1.2

NAME & SURNAME:

DIAGRAM SHEET 2

QUESTION 3.2

QUESTION 4

NAME & SURNAME:

DIAGRAM SHEET 3

QUESTION 5.1

QUESTION 5.2

NAME	&	SURNAM	F.
TAL PIATE	-	DUINITHI	

DIAGRAM SHEET 4

QUESTION 6

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

This marking guideline consists of 9 pages.

Copyright Reserved Please turn over

QUESTION 1

	- Inal	<u> </u>	
1.1.1	$m_{DC} = \frac{y_2 - y_1}{x_2 - x_1}$		
	$\frac{8-0}{1-2}$	✓ substitution	
	1-2	✓ answer	
			(2)
1.1.2	$y = mx + c$ $y - y_1 = m(x - x_1)$ Substitute m and C(2; 0):		
	0 = -8(2) + c OR $y - 0 = -8(x - 2)$	✓ substitution	
	c = 16, y = -8x + 16 $y = -8x + 16$ OR	✓ answer	(2)
	Substitute m and $D(1; 8)$:	OR	
	8 = -8(1) + c OR $y - 8 = -8(x - 1)$	✓ substitution	
	c = 16 $y - 8 = -8x + 8y = -8x + 16$ $y = -8x + 16$	✓ answer	
	y = 6x + 10		(2)
1.1.3	R is the midpoint of AC [diagonals of a parm bisect] -(-6+2-4+0)		(=)
	$R\left(\frac{-6+2}{2};\frac{4+0}{2}\right)$		
	$= R\left(-2;2\right)$	√ -2 √ 2	(2)
1.1.4	B(-5;-4)	√ -5 √ -4	(2)
1.1.5	Substitute $y = -4$ in $y = -8x + 16$:	\checkmark At E, $y = -4$	(2)
1.1.5	-4 = -8x + 16 [BE to x-axis]		
	8x = 20	✓ substitution of $y = -4$ into	
		equation of DE	
	$x = \frac{5}{2}$	\checkmark x-value of E	
	Length of BE = $\frac{5}{2}$ - $\left(-5\right)$		
	-		
	$=\frac{15}{2}=7\frac{1}{2}$	✓ answer	(4)

Copyright Reserved Please turn over

	Marking Guideline	
1.1.6	$m_{AC} = \frac{0-4}{2-(-6)} = -\frac{1}{2}$	\checkmark calculating m_{AC}
	$m_{BD} = \frac{8 - (-4)}{1 - (-5)} = 2$	\checkmark calculating m_{BD}
	$m_{AC} \times m_{BD} = -\frac{1}{2} \times 2 = -1$ $\therefore AC \perp BD$ [product of gradients = 1]	✓ lines perpendicular
	∴ ABCD is a rhombus [parm with ⊥ diagonals]	✓ reason (4)
	OR	OR
	AD = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	AD = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(1 - (-6))^2 + (8 - 4)^2}$	✓ substitution in distance formula for AD or CD
	$= \sqrt{7^2 + 4^2}$ $= \sqrt{65}$	✓ length of AD
	$CD = \sqrt{(1-2)^2 + (8-0)^2}$	
	$=\sqrt{\left(-1\right)^2+8^2}$ $=\sqrt{65}$	✓ length of CD
	$= \sqrt{65}$ $\therefore AD = CD$	· length of CD
	:. ABCD is a rhombus [parm with 2 adjacent sides =] (similarly for any other two adjacent sides of ABCD)	✓ reason (4)
1.1.7 (a)	$\tan \alpha = m_{DC} = -8$	$\checkmark \tan \alpha = m_{DC}$
	reference ∠: 82,87°	
	$\alpha = 180^{\circ} - 02,07^{\circ} - 77,15^{\circ}$	✓ 97,13° (2)
1.1.7(b)	$\tan A\hat{C}F = m_{AC} = -\frac{1}{2}$	$\checkmark \tan A\hat{C}F = m_{AC} = -\frac{1}{2}$
	$\therefore \alpha + \beta = 180^{\circ} - 20, 57^{\circ}$	المال
	=153,43°	\checkmark size of $\alpha + \beta$
	$\therefore \beta = 153,43^{\circ} - 71,13^{\circ}$	Inni
	$=56,30^{\circ}$	✓ answer (3)
1.1.8	Height of $\triangle CEB = 4$ units	✓ height = 4 units
	Area of $\triangle CEB = \frac{1}{2} \times base \times height$	
	$= \frac{1}{2} \times \frac{15}{2} \times 4$	✓ substitution in area formula
	=15 units ²	✓ answer
		(3)

1.2.1	$m = \tan 16,70^{\circ}$ = 0,3		✓ answer (1)
1.2.2	Equation of EF: $y = 0.3x + 1.2$ For x-intercept, substitute $y = 0$: $0 = 0.3x + 1.2$ x = -4, and therefore: EO = 4 united G(0; -4) $m_{GH} = 0.3 = \frac{0 - (-4)}{x_H - 0}$ $0.3 = \frac{4}{x_H}$ OR $x_H = \frac{4}{0.3} = 13.33$ H(13.33; 0)	Equation of GH: y = 0.3x - 4 For x-intercept of GH, substitute $y = 0$: 0 = 0.3x - 4 x = 13.33 \therefore H(13.33; 0)	✓ substitution of m and y into equation of line ✓ EO = 4 units or $x = -4$ at E ✓ G(0; -4) ✓ $0.3 = \frac{0 - (-4)}{x_H - 0}$ OR subst. $y = 0$ in equation of GH.
			(5) [30]

QUESTION 2

	Marking Guidelin	16
2.1.2	sin 205° — - sın 20°	✓ -sin 25°
	k	✓ answer
	Linni	(2)
2.1.3	tan 385° — tan (300° + 23°)	
	$= \tan 25^\circ$	✓ tan 25°
	k	
	$=\frac{1}{\sqrt{1-k^2}}$	✓ answer (2)
2.2	$LHS = \frac{-\tan x}{1} + \frac{1}{1}$	(-)
2.2	$\cos x \sin x \cos^2 x$	
	$= -\frac{\sin x}{\cos x} \times \frac{1}{\cos x} + \frac{1}{\sin x \cos^2 x}$	$\sqrt{-\frac{\sin x}{x}}$
		cos x
	$= \frac{-\sin x}{\cos^2 x} + \frac{1}{\sin x \cos^2 x}$	$\sqrt{\frac{-\sin x}{\cos^2 x}}$
		$\cos x$
	$=\frac{-\sin^2 x + 1}{\sin x \cos^2 x}$	✓ adding two fractions
	$=\frac{\cos^2 x}{\sin x \cos^2 x}$	$\checkmark 1 - \sin^2 x = \cos^2 x$
	1	
	$=\frac{1}{\sin x}$	(4)
	= RHS	
2.3	$\sqrt{3}\sin x \sin^2 58^\circ - \sqrt{3}\sin^2 212^\circ \cdot \cos(x + 70^\circ)$	
	tan 120°. siii x	√-sin 32°
	$\sqrt{3}\sin x \sin^2 58^\circ - \sqrt{3}(-\sin x)$	$\sqrt{-\sin 32}$
	$=$ $-\tan 60^{\circ}$. $\tan x$	✓ -tan 60°
	$-\frac{\sqrt{3}\sin x \sin^2 58^\circ + \sqrt{3}\sin^2 32^\circ \cdot \sin x}{2}$	$\sqrt{\tan 60^\circ - \sqrt{3}}$
	$=\frac{-\sqrt{3}.\sin x}$	v tan 00 = \(\gamma 5\)
	$\int_{-\infty}^{\infty} \sin x \left(\sin^2 58^\circ + \sin^2 58^\circ \right)$	✓ factorisation
	$=\frac{\sqrt{3}.\sin x}{\sqrt{3}}$	
	$= -\left(\sin^2 58^\circ + \sin^2 52^\circ\right)$	ALL LANGE TO THE PARTY OF THE P
	$=-\left(\sin^2 58^\circ + \cos 50^\circ\right)$	$\sqrt{\sin 58^{\circ} - \cos 32^{\circ}}$
		✓ answer
	=-1	(7)
	•	[18]

Copyright Reserved Please turn over

QUESTION 3

9.1	2 2 2 2 2	
3.1	$2\cos^2 x - 7\cos x - 2\sin^2 x = 0$	
	$2\cos^2 x - 7\cos x - 2(1-\cos^2 x) = 0$	\checkmark using $\sin^2 x = 1 - \cos^2 x$
	$2\cos^2 x - 7\cos x - 2 + 2\cos^2 x = 0$	
	$4\cos^2 x - 7\cos x - 2 = 0$	✓ standard form
	$(4\cos x + 1)(\cos x - 2) = 0$	✓ factors
	$4\cos x = -1 \qquad \text{or} \qquad \cos x = 2$	$\sqrt{\cos x} = 2$: no solution
	$\cos x = -\frac{1}{4}$ no solution	$\checkmark \cos x = -\frac{1}{4}$
	Ref ∠: 75,52°	4
	Quadrant 2: $x = 180^{\circ} - 1000^{\circ} + 6000^{\circ}$	
	$x = 104,48^{\circ} + \kappa.300^{\circ}, \ \kappa \in \mathbb{Z}$	$\checkmark x = 104,48^{\circ} + \text{n.300}^{\circ}, \ \kappa \in \mathbb{Z}$
	or	
	Quadrant 3: $x = 180^{\circ} + 13,32^{\circ} + \kappa.300^{\circ}$	$\checkmark x = 255,52^{\circ} + \kappa.300^{\circ}, \kappa \in \mathbb{Z}$
	$x = 255,52^{\circ} + \kappa.500^{\circ}, \kappa \in \mathbb{Z}$	$(k \in \mathbb{Z} : \text{ should be written at least})$
		once.) (7)
3.2.1	a=1	\checkmark value of a
	b=3	\checkmark value of b
2 2 2	amalituda — 2	(2)
3.2.2	amplitude = 2	✓ answer (1)
3.2.3	period = 120°	√ answer
3.2.3	period – 120	(1)
3.2.4	$x \in [-68,91^{\circ}, -30^{\circ}]$ OR $-68,91^{\circ} \le x \ge -30^{\circ}$	✓ ✓ answer
		(2)
3.2.5	$h(x) = -2\sin(x+90^\circ) - 1$	$\sqrt{-2\sin(x+90^\circ)}$
		✓ -1 (2)
	OR	OR
	$h(x) = -2\cos x - 1$	$\sqrt{-2\cos x}$
	2	✓ –1 (2)
3.2.6	$2\sin x = k$ $2\sin x + 1 = k + 1$	THIN
	f(x) = k+1 will have no real roots if	
	f(x) > 3 or $f(x) < -1$	
	k+1>3 or $k+1<-1k>2$ or $k<-2$	$\sqrt{k} > 2$
	k > 2 or $k < -2$	$\begin{array}{c} \checkmark k > 2 \\ \checkmark k < -2 \end{array}$
		(2)
		[17]

GRADE 11 Marking Guideline

QUESTION 4

4.1	BĈE = 90°	[∠ in a semicircle]	✓ S ✓ R	
	$\hat{C}_1 = 90^{\circ} - 32^{\circ}$ $= 38^{\circ}$		√ answer	
	=38°		(3)	
4.2	$\hat{C}_3 = 20^{\circ}$	[alternate ∠s; BE CD]	√S/R	
			(1)	
4.3	$\hat{BCD} = 90^{\circ} + 20^{\circ} - 110^{\circ}$			
	$\hat{BAD} = 180^{\circ} - \hat{DCD}$	[opp. \angle s of cyclic quad.]	✓ R	
	$=180^{\circ}-110^{\circ}-70^{\circ}$		✓ answer	
			(2)	
4.4	$\hat{A}_3 = \hat{E}_1 = 20^{\circ}$ $\therefore \hat{A}_2 = 70^{\circ} - 20^{\circ} - 30^{\circ}$	$[\angle s \text{ in the same segment}]$	✓ S/R	
	$\therefore \hat{A}_{\circ} = 70^{\circ} - 40^{\circ} - 20^{\circ}$		✓ answer	
			(2)	
			[8]	

QUESTION 5

Copyright Reserved

5.2.1	$\hat{WPO} = 90^{\circ}$	[tangent ⊥ to radius]	(0.75)	
0.2.1	$\hat{WRO} = 90^{\circ}$	[tangent \perp to radius]	✓ S/R (one mark for either of the	
			two statements with reason)	
	$\therefore \hat{WPO} + \hat{WRO} = 180^{\circ}$		✓ S	
	∴ PWRO is a cyclic quad			
	[converse: opp. \angle s of a	cyclic quad.]	✓ R	
			(3	3)
5.2.2	PO = OR [radii]		✓ S/R	
	$\hat{W}_1 = \hat{W}_2$ [subtended]	by = chords in cyclic quad PWRO]	✓ R	- \
	OR		(2	2)
	In \triangle WPO and \triangle WRO:		OR	
	1. WPO = WRO	[proved above]		
	2. WP = WR	[two tangents from same point]		
	3. $PO = RO$ $\therefore \Delta WPO \equiv \Delta WRO$	[radii]	✓ congruent ∆s	
		[s;∠;s]	✓ reason for congruency	
	$\therefore \hat{\mathbf{W}}_{1} = \hat{\mathbf{W}}_{2}$	$[\equiv \Delta s]$	(2	2)
	OR		OR	
	$\therefore \Delta WPO \equiv \Delta WRO$	[s;s;s]	✓ congruent ∆s	
	$\therefore \hat{\mathbf{W}}_1 = \hat{\mathbf{W}}_2$	$[\equiv \Delta s]$	✓ reason for congruency	
	OR		(2	2)
	$\therefore \Delta WPO \equiv \Delta WRO$	[90°, nyp;s]	OR	
	$\therefore \hat{\mathbf{W}}_{_{1}} = \hat{\mathbf{W}}_{_{2}}$	$[\equiv \Delta s]$	\checkmark congruent \triangle s	
	,1 ,,2	[]	✓ reason for congruency (2))
5.2.3	$\hat{POR} = \hat{PWV} = 134^{\circ}$	[t / -61;1]	√ S √R	2)
3.2.3		[ext. ∠ of cyclic quad.]	V S V K	
	$\hat{S} = \frac{1}{2} P \hat{O} R$	$[\angle$ at centre = $2 \times \angle$ at circum.]	✓ R	
	_		✓ answer	
	= 67° OR		(4	4)
			OR S	
	$\hat{W}_2 = \frac{180^{\circ} - 134^{\circ}}{2}$	[\angle s on a straight line; $\hat{W}_1 = \hat{W}_2$]	<u> </u>	
	<u> </u>		$\checkmark \hat{W}_2 = 23^\circ$	
	= 23°	f C /a C AODO I	10001	
	$\hat{O}_1 = 180^\circ - (30^\circ + 23^\circ)$	[sum of \angle s of \triangle QRO]	and the second s	
	= 67°		TOUT	
	Similarly: $\hat{O}_2 = 67^\circ$			
	$\therefore \hat{POR} = 134^{\circ}$		$\checkmark P\hat{O}R = 134^{\circ}$	
	$\hat{S} = \frac{1}{2} \hat{POR}$	$[\angle$ at centre = $2 \times \angle$ at circumf.]	✓ R	
	_		✓ answer	
	= 67°		v answer (4	4)
			[14	
			Į.	<u>- 1</u>

Copyright Reserved

QUESTION 6

6.1	∠ s in the same segment	√R	(1)
6.2	$\hat{A}_2 = \hat{C}_2 = x$ [\(\neq \text{s opp.} = \text{sides}\) OR		(1)
	[= chords subtend = /s]	✓ S ✓ R	
	$\hat{A}_1 = \hat{C}_2 = x$ [tan-chord-theorem]	✓ S ✓ R ✓ S ✓ R	
	∴DA bisects AÊF		(4)
6.3	$\hat{AOD} = 2 \times \hat{C}_2$ [\angle at centre = 2 \times \angle at circum.]	
	=2x	✓ S	
	$\therefore \hat{EAF} = \hat{AOD} \qquad [both = 2x]$	✓ S	
	∴ EA is a tangent to the circle through A, O and F [converse tan-chord-theorem]	✓ reason	(4)
6.4	$\hat{A}_3 = 90^\circ - 2\lambda$ [tangent \perp to radius]	✓ S ✓ R	· · · · · · · · · · · · · · · · · · ·
	$\hat{A}_3 = 90^\circ - 2x \qquad [tangent \perp to radius]$ $\hat{AFO} = 180^\circ - (20^\circ - 2x + 2x) [sum of \angle s in a triangle]$		
	= 90°	$\checkmark \text{ AFO} = 90^{\circ}$	
	$\therefore AF = FC \qquad [line from centre \perp to chord]$	✓ R	(4)
			(4)
			[13]

TOTAL: 100

