

MARKS: 25

TIME: 30 minutes

This paper consists of 3 pages including the cover page

INSTRUCTIONS AND INFORMATION

- 1. Answer **ALL** the questions.
- 2. Answers only will NOT necessarily be awarded full marks.
- 3. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 4. Number your answers correctly according to the numbering system used in this question paper.

ver page

QUESDION loaded from Stanmorephysics.com 1.1 Given: $\cos 35^\circ = m$ Without using a calculator, determine the value of EACH of the following in terms of *m*: cos 215° 1.1.1 (2) sin 20° 1.1.2 (3) 1.2 Simplify the expression to a single trigonometric term: (5) $\tan(-x)$.cos x.sin $(x-180^{\circ})-1$ Determine the general solution of: $\cos 4x \cdot \cos x + \sin x \cdot \sin 4x = -0.7$ 1.3 (4) $\sin\frac{4x.\cos 2x - 2\cos 4x.\sin x.\cos x}{\cos^2 x - \sin^2 x} = \cos^2 x - \sin^2 x$ Prove the identity: 1.4 (4) $\tan 2x$

[18]

QUESTION 2

The graphs of the functions $f(x) = a \tan x$ and $g(x) = b \cos x$ for $0^\circ \le x \le 270^\circ$ are shown in the diagram below. The point $(225^\circ; 2)$ lies on f. The graphs intersect at points P and Q.

QUESCION oaded from Stanmorephysics.com

1.1	$\cos 215^{\circ}$	(modulation	
C	=-m	✓ answer	
112			(2)
	$= \cos 70^{\circ}$	✓ co-function	
ې م	$= \cos 2(35^{\circ})$	\checkmark double angle	
4	$= 2\cos^2 35^\circ - 1$	\checkmark answer in terms of <i>m</i>	(2)
	$= 2m^2 - 1$		(3)
	OR	(
	$=\sin(55^\circ-35^\circ)$	$\sim expansion$	
	$= \sin 55^{\circ} \cos 35^{\circ} - \cos 55^{\circ} \sin 35^{\circ}$	✓ $\cos 33 = \sqrt{1 - m}$ ✓ answer in terms of <i>m</i>	
	$= m.m - \sqrt{1 - m^2} \cdot \sqrt{1 - m^2}$		$\langle 0 \rangle$
	$= m^2 - \left(1 - m^2\right)$		(3)
	$= 2m^2 - 1$		
1.2	$\tan(-x).\cos x.\sin(x-180^\circ)-1$		
	$= -\tan x \cdot \cos x \cdot \sin(-(180^\circ - x)) - 1$	$\checkmark -\tan x$	
	$=\frac{-\sin x}{\cos x} \cdot \cos x \cdot (-\sin x) - 1$	$\sqrt{-\sin x}$ $\sqrt{-\cos x}$	
	$= \sin^2 x - 1$	$\checkmark \sin^2 x - 1$	
	$=-\cos^2 x$	✓ answer	(5)
1.3	$\cos 4x \cdot \cos x + \sin 4x \cdot \sin x = -0,7$		
	$\cos(4x - x) = -0,7$	\checkmark compound angle	
	$\operatorname{ref} \angle = 45,57^{\circ}$		
	$3x = 180^{\circ} - 45,57^{\circ} + k.360^{\circ} \text{ or } 3x = 180^{\circ} + 45,57^{\circ} + k.360^{\circ}$	$\checkmark 3x = 134,43^{\circ} \text{ or}$	
	$3x = 134,43^\circ + k.360^\circ$ or $3x = 225,57^\circ + k.360^\circ$	$\checkmark x = 44.81^{\circ} \text{ or } 75.19^{\circ}$	
	$x = 44.81^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$ $x = 75,19^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$	$\checkmark + k.120^\circ; \ k \in \mathbb{Z}$	
		Inn	(4)
QUESTION 2			
2.1	$f(225^{\circ}) = 2$	✓ substitution	
	$a \tan 225^\circ = 2$	$\sqrt{a} = 2$	
	<i>a</i> = 2	- u - 2	
	g(0) = 4		
	$b\cos 0^\circ = 4$	✓ substitution	
	<i>b</i> = 4	$\checkmark a = 2 b = 4$	

2.2 Do	$\frac{\text{Wnloaded from}(x) + t_2 - n_2 + n_2 + p_2 $	✓ -4 ✓ -2
2.3	Period $\frac{180^{\circ}}{\frac{1}{2}} = 360^{\circ}$	$\checkmark \frac{180^{\circ}}{\frac{1}{2}}$ $\checkmark 360^{\circ}$

