Province of the

EASTERN CAPE

O.R TAMBO INLAND DISTRICT

MARKS: 75
TIME: $1^{1 ⁄ 2} 2$ HOURS

This question paper consists of 7 pages.

INSTRUCTIONS AND INFORMATION

1. This question paper consists of THREE questions. Answer ALL questions.
2. Number the answers correctly according to the numbering system used in this question paper.
3. You may use an approved calculator (non-programmable and nongraphical), unless stated otherwise
4. Show ALL the calculations clearly.
5. Round off ALL final answers appropriately according to the context, unless stated otherwise
6. Indicate units of measurement, where applicable
7. Diagrams are NOT necessarily drawn to scale
8. Write neatly and legibly.

QUESTION 1

1.1 Mr. Mojos earns a living by removing the drums of garden refuse in the township where he lives. He dumps the garden refuse in big waste bin outside the township.

The drum is cylindrical and has a diameter of 60 cm and a height of $1,2 \mathrm{~m}$.
The waste bin is a rectangular prism, has a length of $12,5 \mathrm{~m}$, breath(width) of 5 m and its height is $2,4 \mathrm{~m}$.

You may use the formulae: Area (open) $=2 \pi r \times h$
Area $($ closed $)=2 \pi r^{2}+2 \pi r \times h$
Volume $=\pi \times r^{2} \times h$
Volume $=l \times b \times h$
Number of drums $=\frac{\text { Volume of the waste bin }}{\text { volume of the drum }}$

Use the information above to answer the questions that follow.
1.1.1 Define the term 'volume'.
1.1.2 Calculate the volume of the drum (in m^{3}) to one decimal place.
1.1.3 Calculate the volume of the waste bin (in m ${ }^{3}$).
1.1.4 Determine the number of drums that can be emptied into the bin to fill it up.
1.1.5 Mr. Mojos wants to paint the outside of the drums, excluding the bottom of the drum. (Remember that the drum is open at the top).
Calculate the area around the drum in m^{2}.
1.1.6 According to the information on the tin of paint, he can paint (coat) $\mathbf{1 , 5} \mathrm{m}^{2}$ with $\mathbf{1}$ litre of metal paint.

Calculate the number of litres of paint he will require to paint 80 drums with two (2) coats of paint.

Study the diagrams above and answer the questions below.
1.2.1 Define the term 'perimeter'.
1.2.2 Write down the length of section C of the flag.
1.2.3 Calculate the area (in cm^{2}) of section C of the flag. Give your answer to one decimal place.

You may use 1 inch $=2,54 \mathrm{~cm}$
1.2.4 Calculate the width of the front view of the wooden frame if the perimeter of the frame is $201,93 \mathrm{~cm}$.

You may use the following formula:

$$
\frac{\text { Perimeter }}{2}=\text { Length }+ \text { Width }
$$

QUESTION 2

The strip chart in the ANNEXURE below shows the distance between Cape Town and Springbok. Answer the questions below based on the map.

2.1 What is the distance between Cape Town and Springbok in metres?
2.2 Which national roads are shown on this map?
2.3 How many regional roads are on this map?
2.4 Give directions from Vanrhynsdorp to Ceres by mentioning the national roads and regional roads
2.5 What is the probability in two decimal places of choosing an even-numbered road from the regional roads
2.6 Sipho travelled from Malmesbury to Springbok. Prove if he was within the accepted speed limit if it took him 4 hours and 30 minutes to reach his destination.

You may use the following formula: \quad Speed $=\frac{\text { Distance }}{\text { Time }}$

NOTE: Accepted speed limit is $120 \mathrm{~km} / \mathrm{hr}$.

QUESTION 3

Use the map above to answer the questions that follow.
3.1.1 Mention the type of scale shown on this map.
3.1.2 Name any two towns on the N12 route.
3.1.3 Determine the general direction of Springbok from Rustenburg.
3.1.4 A family wants to travel from Polokwane to Durban. Describe any route they can follow to travel to Durban.
3.1.5 Determine the actual distance (in km) between Cape Town and Pretoria. Use the scale of 1:16 000000 .
3.1.6 Mr Matome decided to travel from Cape Town to Bloomfontein at distance of 986 km . The car he was driving has a consumption rate of 30 km per 2,5 litres.
Determine how many litres of fuel he will need for this journey.
3.1.7 Calculate the total fuel cost in rands for the journey if fuel cost is 1650 cents per litre.
3.2 A bag contains 24 similar balls. 8 of the balls are red, 3 are white, 3 are blue and the restare green. A ball is selected randomly from this bag, what is the probability that
3.2.1 the ball is a green ball.
3.2.2 the ball is a black ball.

Downloaded from Stanmorepfysics.com

Province of the
EASTERN CAPE
EDUCATION

O.R TAMBO INLAND DISTRICT

QUESTION 1[32]				
Qns	Solution	Explanation	Marks	TL
1.1.1	Volume is the amount of space occupied by a threedimensional shape or object. $\checkmark \checkmark$	2M (Definition)	(2)	1
1.1.2	$\begin{aligned} \text { Volume } & =\pi \times r^{2} \times h \\ & =3,142 \times 0,3 \mathrm{~m} \times 0,3 \mathrm{~m} \times 1,2 \mathrm{~m} \checkmark \checkmark \checkmark \\ & =0,339336 \mathrm{~m}^{3} \checkmark \end{aligned}$	1M, C 1M, radius 1SF 1CA	(4)	2
1.1.3	$\begin{aligned} \text { Volume } & =1 \times \mathrm{b} \times \mathrm{h} \\ & =12,5 \mathrm{~m} \times 5 \mathrm{~m} \times 2,4 \mathrm{~m} \checkmark \checkmark \\ & =150 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & 1 \mathrm{SF} \\ & 1 \mathrm{SF} \\ & 1 \mathrm{CA} \end{aligned}$	(3)	2
1.1.4	$\begin{aligned} \text { Number of drums } & =\frac{150 \mathrm{~m}^{3}}{0,339336 \mathrm{~m}^{3}} \checkmark \\ & =442,03974282 \checkmark \\ & =442 \checkmark \end{aligned}$	$\begin{aligned} & 1 \mathrm{SF} \\ & 1 \mathrm{CA} \\ & 1 \mathrm{R},(\mathrm{CA}) \end{aligned}$	(3)	3
1.1.5	$\begin{aligned} \text { Area(open) } & =2 \times 3,142 \times 0,3 \mathrm{~m} \times 1,2 \mathrm{~m} \checkmark \checkmark \\ & =2,26 \mathrm{~m}^{2} \checkmark \end{aligned}$	$\begin{aligned} & 1 \mathrm{~F} \\ & 1 \mathrm{SF} \\ & 1 \mathrm{CA} \end{aligned}$	(3)	2
1.1.6	$\begin{aligned} & \text { The area of one drum }=2,26 \mathrm{~m}^{2} \\ & \text { Number of litres to paint one drum } \end{aligned}=\frac{2,26 \mathrm{~m}^{2}}{1,5 \mathrm{~m}^{2}} \downarrow ~=1,50666667 \checkmark \begin{aligned} &= \\ & \begin{aligned} \text { Two coats for one drum }=1,50666667 \times 2 \checkmark \end{aligned} \\ & \begin{aligned} \text { Number of litres paint } 80 \text { drums } & =3,013333 \times 80 \checkmark \\ & =241,066664 \\ & =242 \checkmark \end{aligned} \end{aligned}$	1M, (Division) 1A 1M, (Multiply b 1M, (×80) 1 CA	(5)	4
1.2.1	Perimeter is the distance around the edges of a 2dimensional shape. $\checkmark \checkmark$	2M, Definition	(2)	1
1.2.2	10,4 inches $\checkmark \checkmark$	2 RD	(2)	1

1.2.3	$\begin{aligned} \text { Area of } \mathrm{A} & =\text { length } \times \text { width } \\ =\square & =10,4 \text { inches } \times 18,796 \mathrm{~cm} \checkmark \\ = & =(10,4 \times 2,54) \times 18,796 \checkmark \\ & =496,515136 \mathrm{~cm}^{2} \checkmark \\ = & 496,5 \mathrm{~cm}^{2} \checkmark \end{aligned}$	1 RT 1C (Conversion) 1M (Multiplication) 1CA (Answer) 1 R (Rounding 1dp)	(5)	3
1.2.4	$\begin{aligned} & \frac{\text { Perimeter }}{2}=\text { Length }+ \text { Width } \\ & \frac{201,93 \mathrm{~cm}}{2}=66,04 \mathrm{~cm}+\text { Width } \\ & 100,965=66,04+\text { width } \\ & 100,965-66,04=\text { width } \checkmark \\ & \text { Width }=34,925 \mathrm{~cm} \checkmark \end{aligned}$	$\begin{aligned} & 1 \mathrm{SF} \\ & 1 \mathrm{~S} \\ & 1 \mathrm{CA} \end{aligned}$	(3)	2

QUESTION 2[19]

Quest.	Solution	Explanation	Mark	TL
2.1	$\begin{aligned} & 547 \times 1000 \checkmark \\ & 547000 \mathrm{~m} \checkmark \end{aligned}$	1 MA 1A(Answer)	(2)	1
2.2	$\begin{aligned} & \text { N7 } \checkmark \checkmark \\ & \text { N14 } \checkmark \checkmark \end{aligned}$	$\begin{aligned} & \text { 2A(Accuracy) } \\ & \text { 2A(Accuracy) } \end{aligned}$	(4)	1
2.3	$4 \checkmark \checkmark$	2A(Accuracy)	(2)	1
2.4	From Vanrhynsdorp move south on the N7 \checkmark Pass Clanwilliam and Citrusdal Turn left on R44 Pass Tulbagh and move forward till you reach Ceres viorephysics.com	3 A(Accuracy) giving clear directions to Ceres \square	(3)	3
2.5	Probability $=\frac{2}{5}=0,40 \checkmark$	1RM (numerator) 1RM(denominator) 1 CA	(3)	2
2.6	$\begin{aligned} & \text { Distance }=495 \mathrm{~km} \checkmark \\ & \text { Time }=4+30 \div 60=4,5 \text { hours } \end{aligned}$	1 A corr. Distance 1C convert to hours		4

	$\begin{aligned} & \text { Speed }=\frac{495 \mathrm{~km}}{4,5 \mathrm{hrs}} \mathrm{~V} \\ & \cap \cap=110 \mathrm{~km} / \mathrm{hr} \checkmark \\ & \cap \cap \square \end{aligned}$ He is within the accepted speed limit \checkmark	1SF 1CA speed 1 O (Opinion)	(5)	
QUESTION 3[24]				
Quest.	Solution	Explanation	Mark	TL
3.1.1	Bar scale $\sqrt{ } \checkmark$	2A (Accuracy)	(2)	1
3.1.2	Johannesburg Kimberley \checkmark Beaufort West \checkmark Oudtshoorn (Any two)	2A (Accuracy)	(2)	1
3.1.3	South West OR SW $\checkmark \checkmark$	2A (Accuracy)	(2)	2
3.1.4	Use N1 and the turn to N11 and finally N3. $\checkmark \checkmark \checkmark$ OR Use N1 then turn to N11 and finally turn to N 2 . $\checkmark \checkmark \checkmark$ OR Use N1 then to (N 5 or N 11) and then turn to N 3 . $\checkmark \checkmark \checkmark$	3A (Accuracy)	(3)	3
3,1.5	Distance from Cape to Pretoria $=10,4 \mathrm{~cm} \checkmark$ OR between ($10,2 \mathrm{~cm}$ to $10,6 \mathrm{~cm}$) $\text { Scale = 1:16000 } 000$ Then $10,4 \mathrm{~cm}: x$ $\begin{aligned} \text { Actual distance } & =10,4 \mathrm{~cm} \times 16000000 \checkmark \\ & =166400000 \\ & =166400000 \div 100000 \mathrm{~km} \checkmark \\ & =1664 \mathrm{~km} \checkmark \end{aligned}$ OR	1M/A (from the map) 1 MCA 1 C (cm to km) 1A (Accuracy)	(4)	4

	If $10,2 \mathrm{~cm}$; then actual distance $=1632 \mathrm{~km}$ If $10,6 \mathrm{~cm}$; then actual distance $=1696 \mathrm{~km}$			
3.1.6	Distance $=986 \mathrm{~km}$ $\begin{aligned} \text { No. of litres } & =\frac{986 \mathrm{~km} \times 2,5 \mathrm{l}}{30 \mathrm{~km}} \checkmark \checkmark \\ & =82,17 \text { litres } \checkmark \end{aligned}$	$\begin{aligned} & 1 \mathrm{M}(\times \text { by } 2,5 \mathrm{l}) \\ & 1 \mathrm{M}(\div 30 \mathrm{~km}) \end{aligned}$ $1 \mathrm{CA}$	(3)	3
3.1.7	$\begin{aligned} \text { Fuel cost } & =82,17 \times 1650 \text { cent } \sqrt{ } \\ & =135580,5 \text { cents } \\ & =135580,5 \div 100 \checkmark \\ & =R 1355,81 \checkmark \end{aligned}$	1 M ($\times 1650$ cents) 1C (Cent to rand) 1CA (Answer)	(3)	3
3.2.1	Green balls $=24-(8+3+3)=10 \checkmark$ Prob. $=\frac{10}{24}=\frac{5 \checkmark}{12 \checkmark}$	1M 1M (numerator) 1M (denominator)	(3)	2
3.2.2	Prob. $\frac{0}{24}=0 \checkmark$	1M (numerator) 1M (denominator) OR 2 AO (only answer)	(2)	2
		TOTAL:		75

TAXONOMY LEVELS					
GRADE 11					
MATHEMATICAL LITERACY					
PAPER 2 TERM 2 - 2022					
MARKS: 50					
QUESTION	KNOWLEDGE	ROUTINE PROCEDURES	COMPLEX PROCEDURES	PROBLEM SOLVING	TOTAL
$\begin{gathered} \hline \text { DESIRED } \\ \% \end{gathered}$	30\%	30\%	20\%	20\%	100\%
1.1.1	2				2
1.1.2		4			2
1.1.3		3			2
1.1.4			3		2
1.1.5		3			3
1.1.6				5	2
1.2.1	2				2
1.2.2			5		2
1.2.3		3			3
1.2.4	2				2
2.1	2				2
2.2	4				4
2.3	2				2
2.4	3				3
2.5		3			3
2.6				5	5
3.1.1	2				2
3.1.2	2				2
3.1.3	2				2
3.1.4			3		3
3.1.5				4	4
3.1.6			3	\cap	3
3.1.7			3		3
3.2.1		3		-	3
3.2.2		2			2
Total	23	21	17	14	75
Actual \%	30	28	23	19	100
Desired \%	30\%	30\%	20\%	20\%	100

