Downloaded from Stanmorephysics.com

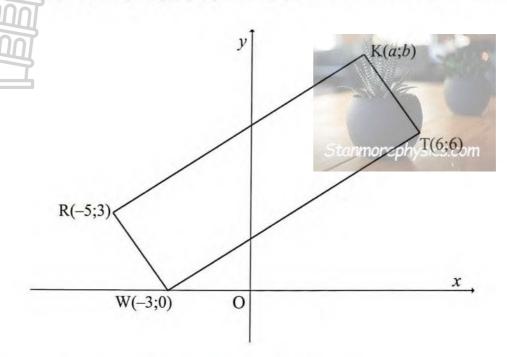
education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

MARKS: 50

TIME:1 Hour

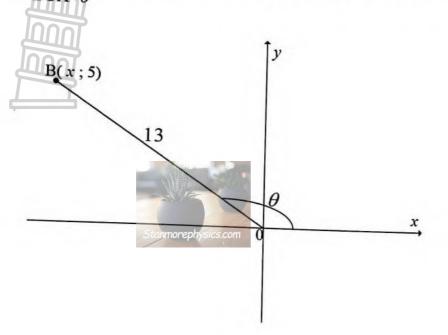

This question paper consists of 6 pages.

Copyright Reserved

Please turn over

QUESTION 1

In the diagram R(-5;3), W(-3;0), T(6;6) and K(a;b) are the vertices of quadrilateral RWTK.


1.1	Determine the coordinates of M the midpoint of line RT.	(3)
1.2	Calculate the gradient of the line WT.	(3)
1.3	Prove that RW is perpendicular to WT.	(3)
1.4	If RWTK is a parallelogram, determine the values of a and b .	(4)

[13]

4 NSC -Grade 10 **Downloaded from Stanmorephysics.com** QUESTION 2

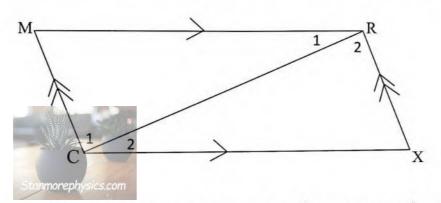
2.1 B (x;5) is a point that lies on the Cartesian plane. It is given that OB=13 units and BOX=0

Using the diagram and without the use of a calculator, determine:

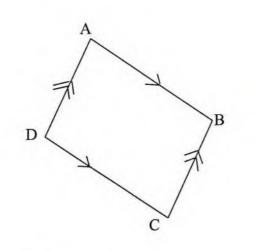
2.2

2.1.1	the value of x	(2)
2.1.2	$\cos heta$	(1)
2.1.3	$\frac{12\sin\theta}{\cos\theta}$	(2)
	that $x = 20^{\circ}$ and $y = 21^{\circ}$, calculate the value of the following of the to TWO decimal places).	
2.2.1	$\cos 2y$	(1)
2.2.2	$\sin(x+y)$	(2)
2.2.3	sec x	(2)
		[10]

5 NSC –Grade 10

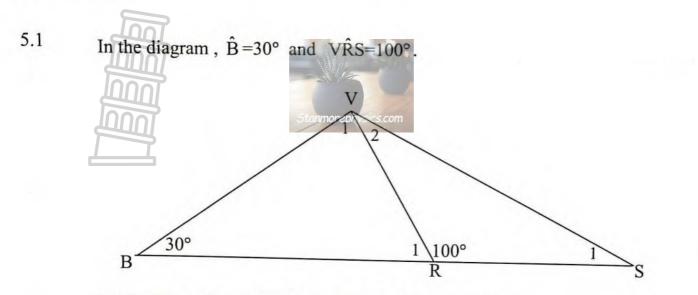

June 2024 Common Test

Downloaded from Stanmorephysics.com QUESTION 3


3.1 Without the use of a calculator, calculate the value of: $\sin^2 45^\circ - \cos 60^\circ + \tan 10^\circ \cot 10^\circ$ (4) 3.2 Solve for x, correct to ONE decimal place where $0^\circ \le x \le 90^\circ$, if : $\frac{1}{3 \sin x} = 2$ (3) [7]

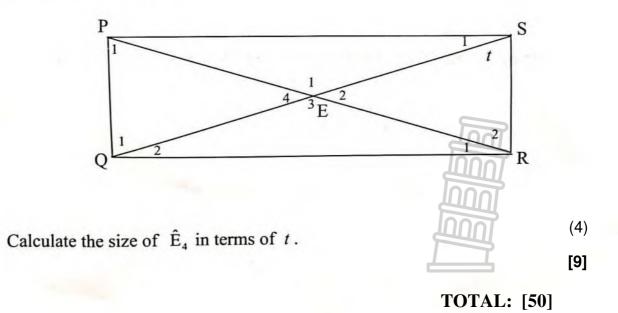
QUESTION 4

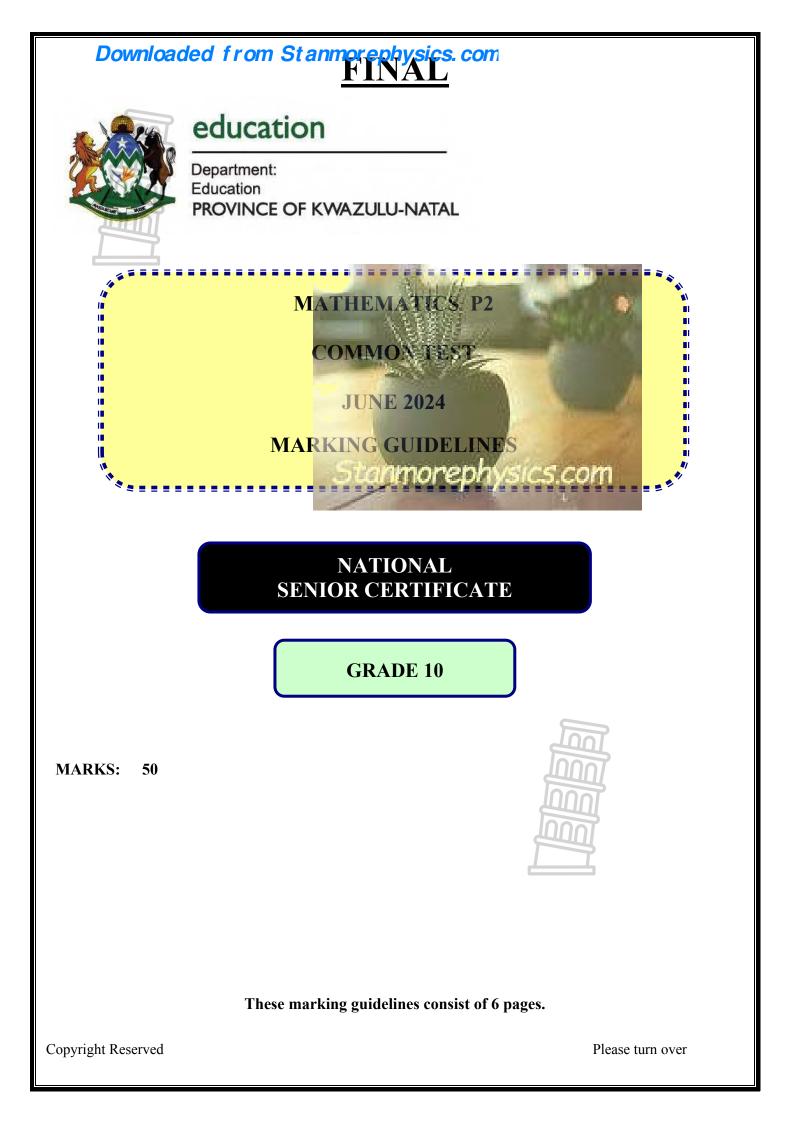
4.1 Use the diagram below to prove that the opposite sides of a parallelogram are equal (4)


4.2 In the diagram below ABCD is a parallelogram with $\hat{A} = 5x+5^{\circ}$ and $\hat{C} = 8x-16^{\circ}$.

4.2.1 Calculate the value of x.
4.2.2 Determine the size of B.

(.)


NSC –Grade 10 Downloaded from Stanmorephysics.com QUESTION 5



6

Determine ,with reasons the size of the following angles.

- 5.1.1 \hat{V}_1 (2) 5.1.2 \hat{S}_1 , if VR = RS. (2)
- 5.2 In the diagram below PQRS is a rectangle with E being the point of intersection of the diagonals. $\hat{QSR}=t$.

Mathem **Downloaded from Stanmorephysics.com** GRADE 10

Marking Guideline

QUESTION	
$ \begin{array}{ c c c c c c c c } 1.1 & M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \\ & M\left(\frac{6 + (-5)}{2}; \frac{6 + 3}{2}\right) \\ & M\left(\frac{1}{2}; \frac{9}{2}\right) \end{array} $	 ✓A Formula ✓A Substitution ✓CA Answer (3)
1.2 $m_{WT} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{6 - 0}{6 - (-3)}$ $= \frac{2}{3}$	 ✓A Formula ✓A Substitution ✓CA Answer (3)
1.3 $m_{RW} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{3 - 0}{-5 - (-3)}$ $m_{WT} \times m_{RW} = \frac{2}{3} \times \frac{-3}{2} = -1$ $\therefore RW \text{ is perpendicular to WT}$	✓A substitution ✓A $\frac{-3}{2}$ ✓A $\frac{2}{3} \times \frac{-3}{2} = -1$ (3)
1.4 $x = \frac{x_1 + x_2}{2}$ $y = \frac{y_1 + y_2}{2}$ $\frac{1}{2} = \frac{a - 3}{2}$ $\frac{9}{2} = \frac{b + 0}{2}$ a = 4 $b = 9ORSliding methoda = 6 - 2$ $b = 6 + 3a = 4$ $b = 9$	$\checkmark CA \frac{1}{2} = \frac{a-3}{2}$ $\checkmark CA a = 4$ $\checkmark CA \frac{9}{2} = \frac{b+0}{2}$ $\checkmark CA b = 9$ ANSWER ONLY MAX: 2/4 (4)
	[13]

Mathem **Bownloaded from Stanmorephysics.com** GRADE 10

Marking Guideline

OUESTION 2	
QUESTION 2 2.1.1 $x^2 + y^2 = r^2$ $x^2 + 5^2 = 13^2$ $x = \pm 12$ $x = -12$	✓A substitution ✓CA $x = -12$ (CA provided x is negative) (2)
$\begin{array}{ c c c c c } 2.1.2 & \cos\theta \\ &= \frac{-12}{13} \end{array}$	\checkmark CA answer (1)
2.1.3 $12\left(\frac{\sin\theta}{\cos\theta}\right)$ $=12\left(\frac{\frac{5}{13}}{\frac{-12}{13}}\right)$ $=-5$	✓CA substitution✓CA answer (2)
2.2.1 $\cos 2(21^{\circ})$ = $\cos 42^{\circ}$ NOTE: Penalise only here for rounding = 0,74	\checkmark A answer (1)
2.2.2 $nsin(20^\circ + 21^\circ)m$ = sin 41° = 0,66 ANSWER ONLY: FULL MARKS	$\checkmark A (20^{\circ} + 21^{\circ})$ $\checkmark A answer \qquad \qquad$
2.2.3 $\sec(20^\circ)$ = $\frac{1}{\cos(20^\circ)}$ = 1,06 ANSWER ONLY: FULL MARKS	$ \begin{array}{c} \checkmark A \\ \hline 1 \\ \cos 20^{\circ} \\ \checkmark A \\ answer \end{array} $ (2)
	[10]

Mathem **Downloaded from Stanmorephysics.com** GRADE 10

Marking Guideline

QUES	TION 3	
3.1	$\left(\frac{1}{\sqrt{2}}\right)^2 - \frac{1}{2} + \tan 10^\circ \frac{1}{\tan 10^\circ}$	$\checkmark A \left(\frac{1}{\sqrt{2}}\right)^2 \operatorname{accept}\left(\frac{\sqrt{2}}{2}\right)^2$ $\checkmark A \frac{1}{2}$ $\checkmark A \frac{1}{2}$
	$=\frac{1}{2}-\frac{1}{2}+1$	$\checkmark A = \frac{1}{2}$
		$\checkmark A = \frac{1}{\tan 10^\circ}$
		\checkmark CA answer (4)
	$6\sin x = 1$	$\checkmark A \ 6 \sin x = 1$
3.2	. 1	\checkmark A simplification
	$\sin x = \frac{1}{6}$	
	$x = 9,6^{\circ}$	\checkmark CA answer
	NOTE: do not penalise for rounding	(3)
	1	[7]

QUESTION 4

4.1	In $\triangle MRC$ and $\triangle XCR$	
	$\hat{R}_1 = \hat{C}_2$ Alt \angle s. MR//CX. $\hat{C}_1 = \hat{R}_2$ Alt \angle s. MC//RX.CR = CRCommon side. $\Delta MRC \equiv \Delta XCR$ (AAS)MR=XCMC=XRRC=CRNOTE: Penalise ONCE if parallel lines are not stated	✓A S/R ✓A S/R ✓A Δ <i>MRC</i> = Δ <i>XCR</i> (AAS) ✓A conclusion (4)
	i ten i chanse once il paranei nnes al c'not stateu	
4.2.1	$8x - 16^\circ = 5x + 5^\circ \text{opp} \angle \text{s of parm}$ $3x = 21^\circ$ $x = 7^\circ$	✓ A S/R ✓ A $3x = 21^{\circ}$ ✓ CA x-value (CA provided x is positive) (3)
4.2.2	$\hat{D} = \hat{B}$ opp \angle s of parm	✓A S/R
	$\hat{B} + \hat{D} + \hat{A} + \hat{C} = 360^{\circ}$ Sum \angle s of quad	\checkmark A S/R
	$2\hat{B} + 80^\circ = 360^\circ$	✓CA S
	$2\hat{B} = 280^{\circ}$	
	$\hat{B} = 140^{\circ}$	✓CA answer

Copyright Reserved

Please turn over

Mathem **Downloaded from Stanmorephysics.com** GRADE 10

Marking GuidelineOR
 $\hat{C} = 8(7^{\circ}) - 16^{\circ}$
 $\hat{C} = 40^{\circ}$
 $\hat{B} + \hat{C} = 180^{\circ}$ $\checkmark CA = 40^{\circ}$
 $\checkmark S \checkmark R$
 $\checkmark CA = 180^{\circ} - 40^{\circ}$
 $\hat{B} = 140^{\circ}$ $\hat{B} = 180^{\circ} - 40^{\circ}$
 $\hat{B} = 140^{\circ}$ (4)

QUESTION 5

5.1.1	$\hat{V}_1 + 30^\circ = 100^\circ$ Ext \angle of Δ	✓A S/R	
	$\hat{V_1} = 70^{\circ}$	✓A answer	(2)
	OR		
	$\hat{\mathbf{R}}_1 = 80^\circ$ $\angle s$ on a str. line	✓A S/R	
	$\hat{V}_1 = 70^\circ$ sum of Δ	✓A answer	
5.1.2	$\hat{S}_1 = \hat{V}_2$ \angle s opp = sides	✓A S/R	
	$\hat{S}_1 + \hat{V}_2 + V\hat{R}S = 180^\circ$ Sum \angle s Δ	✓A S	
St	$2\hat{S}_{1} + 100^{\circ} = 180^{\circ}$ $2\hat{S}_{0} = 80^{\circ}$, sics.com $\hat{S}_{1} = 40^{\circ}$ OR	✓ A answer	(3)
	$\hat{R}_1 + V\hat{R}S = 180^\circ$ \angle s on a str line		(3)
	$\hat{R}_1 = 80^\circ$	$\checkmark A \hat{R}_1 = 80$	
	$\hat{S}_1 = \hat{V}_2$ \angle s opp = sides		
	$\hat{S}_1 + \hat{V}_2 = \hat{R}_1$ Ext \angle of Δ $2\hat{S}_1 = 80^{\circ}$	✓A S/R	
	$\hat{S}_1 = 40^\circ$	✓A answer	

Please turn over

Mathem **Downloaded from Stanmorephysics.com**

5.2

	Marking Guideline			
$ES = ER$ $\hat{R}_2 = t$	diagonals of rectangle \angle s opp =sides	✓A	S/R	

$\hat{R}_2 = t$	\angle s opp =sides			
$\hat{E}_2 + \hat{R}_2 + E\hat{S}R = 180^{\circ}$	Sum \angle of Δ			
$\begin{split} \hat{E}_{2} + t + t &= 180^{\circ} \\ \hat{E}_{2} &= 180^{\circ} - 2t \\ \hat{E}_{4} &= \hat{E}_{2} \\ \hat{E}_{4} &= 180^{\circ} - 2t \end{split}$	Vert opp ∠s	$\begin{array}{c} \checkmark \mathbf{A} \\ \checkmark \mathbf{A} \\ \checkmark \mathbf{A} \\ \checkmark \mathbf{A} \end{array}$	\hat{E}_2 S/R answer	(4)
OR				(4)
$ \begin{array}{l} \hat{Q}_{1} = t \\ \hat{P}_{1} = t \\ \hat{E}_{4} + \hat{Q}_{1} + \hat{P}_{1} = 180^{\circ} \\ \hat{E}_{4} = 180^{\circ} - 2t \end{array} $	Alt ∠s PS∥QR ∠s opp = sides Sum ∠s Δ	✓A ✓A ✓A	S/R S/R S answer	
				[9]

TOTAL: 50

