NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

TIME: 2 hours

This question paper consists of 6 pages including cover page

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 5 questions.
2. Answer ALL the questions.
3. Number the answers correctly according to the numbering system used in this question paper.
4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
5. Answers only will NOT necessarily be awarded full marks.
6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
8. Diagrams are NOT necessarily drawn to scale.
9. Write neatly and legibly.

QUESTION 1

1.1

Solve for x :
1.1.1 $x(1-2 x)=0$
1.1.2 $2 x^{2}-5 x+3=0$
1.1.3 $x(3 x-5)=7 \quad$ (correct to TWO decimal places)
1.1.4 $(1-x)(x+3) \leq-5$
1.1.5 $\quad \frac{x^{2}+7}{x^{2}-2 x-3}+\frac{2}{x+1}=-\frac{1}{x-3}$
1.2 Given that ${ }^{x}-3=2 \sqrt{x}$ m
1.2.1 Solve for x.
1.2.2 Hence, if $\sqrt[3]{3 t}-2 \sqrt{\sqrt[3]{3 t}}=3$, determine the value of t.
1.3 Solve simultaneously for x and y :

$$
\begin{equation*}
3 y=x+1 \quad \text { and } \quad(x-y)(5 y-3 x)=0 \tag{5}
\end{equation*}
$$

1.4 The roots of the equation $x^{2}-3 x-k=0$ are $x=\frac{3 \pm 3 \sqrt{5}}{2}$. Determine the value of k.

QUESTION 2

2.1 Simplify the following fully, without using a calculator:

$$
\begin{array}{ll}
2.1 .1 & \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{2^{6 x} \cdot 27^{x} \cdot 3^{x}} \\
2.1 .2 & \frac{3^{2021}-3^{2017}}{60 \cdot\left(\sqrt[3]{3^{6048}}\right)} \tag{4}
\end{array}
$$

2.2 Solve for x, without using a calculator:
2.2.1 $\quad m^{8 x-4}=1$
2.2.2 $\quad 4.3^{x}-3^{x-2}+3^{x}=\frac{44}{3}$

QUESTION 3

The function g is defined as $g(x)=\left(\frac{1}{2}\right)^{x}-4$
3.1 Write down the equation of asymptote of g.
3.2 Calculate the y-intercept of g.
3.3 Calculate the x-intercept of g.
3.4 Draw a neat sketch of g. Clearly show all the intercepts with the axes and the asymptote.
3.5 Calculate the average gradient of g between $x=0$ and $y=0$.
3.6 Write down the equation of k if it is given that $k(x)=g(x)+4$.
3.7 It is further given that $h(x)=2^{x+3}-4$. Explain, in words, how graph g must be transformed to obtain graph h.

QUESTION 4

The function $f(x)=\frac{a}{x+p}+1$ has an axis of symmetry with an equation of $x=3-y$.
4.1 Write down the range of f.
4.2 Determine the equation of the vertical asymptote of f.
4.3 If $f(0)=2$, calculate the value of a.
4.4 Calculate the x-intercept of f.
4.5 Draw a neat sketch of f. Clearly show all intercepts with the axes and asymptotes.
4.6 Write down the values of x for which $f(x) \leq 0$.
4.7 The straight line $y=-2 x+5$ passes through the point of intersection of the asymptotes and intersects f at $\mathrm{P}(1 ; 3)$ and Q . Write down the coordinates of Q .

QUESTION 5

The graphs of $h(x)=a x^{2}+b x+c$ and $p(x)=8-2 x$ are sketched below.
The x-intercepts of h are $(-3 ; 0)$ and $(1 ; 0)$ and the y-intercept of h is $(0 ; 6) . \mathrm{M}$ is the turning point of h. D and E are the x - and y-intercepts of p respectively.

5.1 Write down the coordinates of D.
5.2 Show that $a=-2, b=-4$ and $c=6$.
5.3 Calculate the coordinates of M, the turning point of h.
5.4 Write down the range of h.

5.5 Determine the values of x for which $h(x) \cdot p(x)<0$.

5.6 If $h(x)=k$, determine the value(s) of k for which:
5.6.1 roots are non-real.
5.6.2 roots have the same sign.
5.7 Calculate how graph p must be translated so that it becomes a tangent to graph h.

FINAL

KWAZULU-NATAL PROVINCE

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

These marking guidelines consist of $\mathbf{1 0}$ pages.

QUESTION 1

1.1.1	$\begin{equation*} x=0 \text { or } x=\frac{1}{2} \tag{2} \end{equation*}$	$\checkmark \mathrm{A} \quad x=0 \quad \checkmark \mathrm{~A} \quad x=\frac{1}{2}$
1.1.2	$\begin{aligned} 2 x^{2}-5 x+3 & =0 \\ (2 x-3)(x-1) & =0 \\ x=\frac{3}{2} \quad \text { or } \quad x & =1 \end{aligned}$	\checkmark A correct factors $\checkmark \mathrm{CA}$ answer $\checkmark \mathrm{CA}$ answer
	$\begin{aligned} & x(3 x-5)=7 \\ & 3 x^{2}-5 x-7=0 \\ & x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(-7)}}{2(3)} \\ & x=-0,91 \text { or } \quad x=2,57 \end{aligned}$	\checkmark A standard form \checkmark CA correct substitution \checkmark CA answer $\checkmark \mathrm{CA}$ answer (4)
1.1.4	$\begin{aligned} & (1-x)(x+3) \leq-5 \\ & x+3-x^{2}-3 x+5 \leq 0 \\ & -x^{2}-2 x+8 \leq 0 \\ & x^{2}+2 x-8 \geq 0 \\ & (x+4)(x-2) \geq 0 \end{aligned}$ $x \leq-4 \text { or } x \geq 2$	\checkmark A standard form \checkmark CA critical values $\checkmark \mathrm{CA}$ answer $\checkmark \mathrm{CA}$ answer

1.1 .5	$\frac{x^{2}+7}{x^{2}-2 x-3}+\frac{2}{x+1}=-\frac{1}{x-3}$ $\frac{x^{2}+7}{(x-3)(x+1)}+\frac{2}{x+1}+\frac{1}{x-3}=0$ LCD: $(x-3)(x+1)$
$\frac{x^{2}+7+2(x-3)+1(x+1)}{(x-3)(x+1)}=0$	
$\frac{\frac{x^{2}+7+2 x-6+x+1}{(x-3)(x+1)}=0}{x^{2}+3 x+2=0}$	
$(x+1)(x+2)=0$	
$x \neq-1 \quad$ or $\quad x=-2$	

\checkmark A correct factorisation
\checkmark CA correct LCD
\checkmark CA standard form
\checkmark CA factors
\checkmark CA answers with rejection

$1.2 .1$	$\begin{aligned} & x-3=2 \sqrt{x} \\ & (x-3)^{2}=(2 \sqrt{x})^{2} \\ & x^{2}-6 x+9=4 x \\ & x^{2}-10 x+9=0 \\ & (x-9)(x-1)=0 \\ & x=9 \quad \text { or } \quad x \neq 1 \\ & x-3=2 \sqrt{x} \\ & x-2 \sqrt{x}-3=0 \\ & (\sqrt{x})^{2}-2 \sqrt{x}-3=0 \\ & (\sqrt{x}-3)(\sqrt{x}+1)=0 \\ & \sqrt{x}=3 \quad \text { or } \quad \sqrt{x} \neq-1 \\ & \therefore x=9 \end{aligned}$	\checkmark A squaring both sides \checkmark CA standard form \checkmark CA factors \checkmark CA answers with rejection (4) \checkmark A standard form \checkmark CA factors \checkmark CA both equations $\checkmark \mathrm{CA}$ answers with rejection (4)
1.2.2	$\begin{aligned} \sqrt[3]{3 t} & =9 \\ (\sqrt[3]{3 t})^{3} & =9^{3} \\ \frac{3 t}{3} & =\frac{729}{3} \\ t & =243 \end{aligned}$	$\checkmark \mathrm{CA} \sqrt[3]{3 t}=x$ from 1.2.1 $\checkmark \mathrm{M}$ cubing both sides \checkmark CA answer

Marking Guideline

QUESTION 2

2.1.1	$\begin{aligned} & \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{2^{6 x} \cdot 27^{x} \cdot 3^{x}} \\ & =\frac{2^{4 x+1} \cdot\left(3^{2}\right)^{x} \cdot(3 \times 2)^{2 x-1}}{2^{6 x} \cdot\left(3^{3}\right)^{x} \cdot 3^{x}} \\ & =\frac{2^{4 x+1} \cdot 3^{2 x} \cdot 3^{2 x-1} \cdot 2^{2 x-1}}{2^{6 x} \cdot 3^{3 x} \cdot 3^{x}} \\ & =2^{4 x+1+2 x-1-6 x \cdot 3^{2 x+2 x-1-3 x-x}} \\ & =2^{0} \cdot 3^{-1} \\ & =1 \times \frac{1}{3} \\ & =\frac{1}{3} \end{aligned}$	\checkmark A rewriting with prime bases \checkmark CA separate prime bases \checkmark CA simplifying: exponential laws \checkmark CA answer
2.1.2	$\begin{aligned} & \frac{3^{2021}-3^{2017}}{60 \cdot\left(\sqrt[3]{3^{6048}}\right)} \\ & =\frac{3^{2017}\left(3^{4}-1\right)}{60.3^{2016}} \\ & =\frac{3^{2017-2016}(80)}{60} \\ & =4 \end{aligned}$	\checkmark A common factor in numerator 3^{2017} \checkmark A 3^{2016} in denominator \checkmark A 80 in numerator \checkmark CA answer (4)
2.2.1	$\begin{aligned} m^{8 x-4} & =1 \\ m^{8 x-4} & =m^{0} \\ 8 x-4 & =0 \\ x & =\frac{1}{2} \end{aligned}$ OR $\begin{align*} m^{8 x-4} & =1 \\ \frac{m^{8 x}}{m^{4}} & =1 \\ m^{8 x} & =m^{4} \\ 8 x & =4 \\ x & =\frac{1}{2} \tag{3} \end{align*}$	$\checkmark \mathrm{A} \quad m^{0}$ $\checkmark \mathrm{CA}$ equating exponents \checkmark CA answer \qquad OR $\checkmark \mathrm{A} \quad m^{8 x}=m^{4}$ \checkmark CA equating exponents \checkmark CA answer

2.2.2	$\begin{aligned} 4.3^{x}-3^{x-2}+3^{x} & =\frac{44}{3} \\ 4.3^{x}-3^{x} \cdot 3^{-2}+3^{x} & =\frac{44}{3} \\ 3^{x}\left(4-3^{-2}+1\right) & =\frac{44}{3} \\ 3^{x}\left(\frac{44}{9}\right) & =\frac{44}{3} \\ 3^{x} & =\frac{44}{3} \times \frac{9}{44} \\ 3^{x} & =3^{1} \\ x & =1 \end{aligned}$	\checkmark A common factor of 3^{x} \checkmark A factor of $\frac{44}{9}$ \checkmark CA simplification \checkmark CA answer
2.2.3	$\begin{aligned} & x^{x}=2^{2048} \\ & x^{x}=2^{2(1024)} \\ & x^{x}=4^{2(512)} \\ & x^{x}=16^{(512)} \\ & x^{x}=16^{2(256)} \\ & x^{x}=256^{256} \\ & \therefore x=256 \end{aligned}$ OR $\begin{aligned} & x^{x}=2^{2048} \\ & x^{x}=2^{1024} \cdot 2^{1024} \\ & x^{x}=(2.2)^{1024} \\ & x^{x}=4^{1024} \\ & x^{x}=4^{512} .4^{512} \\ & x^{x}=16^{256} \cdot 16^{256} \\ & x^{x}=(16.16)^{256} \\ & x^{x}=256^{256} \\ & \therefore x=256 \end{aligned}$	\checkmark A rewriting the exp. as 2(1024) $\checkmark \mathrm{A}$ rewriting as $16^{(512)}$ Starmorephysics.com \checkmark A answer $\checkmark \mathrm{A}$ rewriting the RHS as $2^{1024} .2^{1024}$ \checkmark A rewriting as $16^{256} \cdot 16^{256}$ \checkmark A answer
		[18]

QUESTION 3

3.1	$y=-4 \cap 1$	\checkmark A answer	(1)
3.2	$\begin{aligned} & g(x)=\left(\frac{1}{2}\right)^{x}-4 \\ & \square \cap(0)=\left(\frac{1}{2}\right)^{0}-4 \\ & g(0)=1-4 \\ & y=-3 \end{aligned}$	\checkmark A $g(0)$ OR substitute $x=0$ \checkmark CA value of y	(2)
3.3	$\begin{aligned} g(x) & =\left(\frac{1}{2}\right)^{x}-4 \\ 0 & =\left(\frac{1}{2}\right)^{x}-4 \\ 4 & =2^{-x} \\ 2^{2} & =2^{-x} \\ x & =-2 \end{aligned}$	$\checkmark \mathrm{A} \quad g(x)=0$ \checkmark CA value of x	(2)
3.4.		\checkmark A shape \checkmark CA intercepts \checkmark A asymptote	(3)
3.5	$\begin{aligned} & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & m=\frac{(0)-(-3)}{(-2)-(0)} \\ & m=-\frac{3}{2} \end{aligned}$	\checkmark CA substitution of x - and y from 3.2 and 3.3 \checkmark CA answer	epts
3.6	$k(x)=\left(\frac{1}{2}\right)^{x}$	\checkmark A answer	(1)
3.7	reflection about y-axis and then translation/shift of 3 units to the left OR translation/shift of 3 units to the right and then reflection about y-axis	\checkmark A reflection about y-axis \checkmark A translation of 3 units \checkmark A left OR \checkmark A translation of 3 units \checkmark A right \checkmark A reflection about y-axis	(3) (3)
			[14]

QUESTION 4

4.1	$y \in \mathbb{R}, y \neq 1 \quad$ or $\quad y \in(-\infty ; 1) \cup(1 ; \infty)$	\checkmark A answer (1)
4.2	$\begin{aligned} & x=3-y \\ & x=3-1 \\ & x=2 \end{aligned}$	\checkmark A substitution \checkmark A answer
4.3	$\begin{aligned} f(x) & =\frac{a}{x+p}+1 \\ f(x) & =\frac{a}{x-2}+1 \\ 2 & =\frac{a}{0-2}+1 \\ 2-1 & =\frac{a}{-2} \\ a & =-2 \end{aligned}$	\checkmark A substitution of a point $(0 ; 2)$ \checkmark CA answer
		(2)
4.4	$\begin{aligned} f(x) & =\frac{-2}{x-2}+1 \\ 0 & =\frac{-2}{x-2}+1 \\ -1 & =\frac{-2}{x-2} \\ -1(x-2) & =-2 \\ -x+2 & =-2 \\ -x & =-4 \\ x & =4 \end{aligned}$	$\checkmark \mathrm{A} \quad f(x)=0$ \checkmark CA simplification \checkmark CA answer
4.5		\checkmark CA shape based on a in 4.3 \square \checkmark CA vertical asymptote from 4.2 but horizontal asymptote of $y=1$ must be accurate \checkmark CA x-intercept from 4.4 but y intercept must be accurate (given in 4.3)
4.6	$2<x \leq 4 \quad$ OR $\quad x \in(2 ; 4]$	$\checkmark \checkmark$ CA answer
4.7		

Marking Guideline

QUESTION 5

5.1	$\mathrm{D}(4 ; 0)$	\checkmark A answer
5.2	$\begin{aligned} & h(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right) \\ & h(x)=a(x-(-3))(x-(1)) \\ & 6=a(0+3)(0-1) \\ & 6=a(-3) \\ & \frac{6}{-3}=a \\ & -2=a \\ & h(x)=-2(x+3)(x-1) \\ & h(x)=-2\left(x^{2}+2 x-3\right) \\ & h(x)=-2 x^{2}-4 x+6 \\ & a=-2, b=-4, c=6 \end{aligned}$	\checkmark A defining equation \checkmark A substituting x-intercepts \checkmark A substituting $(0 ; 6)$ \checkmark A simplification
5.3	$\begin{align*} & h(x)=-2 x^{2}-4 x+6 \\ & x=-\frac{b}{2 a} \\ & x=\frac{-4}{2(-2)} \\ & x=-1 \\ & h(-1)=-2(-1)^{2}-4(-1)+6 \\ & y=8 \\ & \mathrm{M}(-1 ; 8) \tag{2}\\ & x_{\mathrm{M}}=\frac{-3+1}{2} \\ & x_{\mathrm{M}}=-1 \\ & h(-1)=-2(-1)^{2}-4(-1)+6 \\ & y=8 \\ & \mathrm{M}(-1 ; 8) \end{align*}$	\checkmark A x-value \checkmark CA y-value OR \checkmark A x-value \checkmark CA y-value
5.4	$y \in \mathbb{R}, y \leq 8$ OR $y \in(-\infty ; 8]$	\checkmark CA answer (using x_{M} in 5.3) OR \checkmark CA answer (using x_{M} in 5.3)
5.5	$x<-3 \text { or } 1<x<4$ NOTE: OR CA is only on 4 i.e. $x_{\text {D }}$ in 5.1 $\begin{equation*} x \in(-\infty ;-3) \cup(1 ; 4) \tag{3} \end{equation*}$	$\checkmark \mathrm{A} \quad x<-3 \quad \checkmark \mathrm{~A} \checkmark \mathrm{CA} \quad 1<x<4$ OR $\checkmark x \in(-\infty ;-3) \checkmark \mathrm{A} \checkmark \mathrm{CA} x \in(1 ; 4)$

