

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS P1

COMMON TEST

JUNE 2024

Stanmorephysics.com

MARKS: 100

TIME: 2 hours

This question paper consists of 6 pages including cover page

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Write neatly and legibly.

1.1 Solve for x:

1.1.1
$$x(1-2x) = 0$$
 (2)

$$1.1.2 2x^2 - 5x + 3 = 0 (3)$$

1.1.3
$$x(3x-5) = 7$$
 (correct to TWO decimal places) (4)

$$1.1.4 (1-x)(x+3) \le -5 (4)$$

1.1.5
$$\frac{x^2 + 7}{x^2 - 2x - 3} + \frac{2}{x + 1} = -\frac{1}{x - 3}$$
 (5)

1.2 Given that $x = 3 = 2\sqrt{x}$

1.2.1 Solve for
$$x$$
. (4)

1.2.2 Hence, if
$$\sqrt[3]{3t} - 2\sqrt{\sqrt[3]{3t}} = 3$$
, determine the value of t . (3)

1.3 Solve simultaneously for x and y:

$$3y = x+1$$
 and $(x-y)(5y-3x) = 0$ (5)

1.4 The roots of the equation $x^2 - 3x - k = 0$ are $x = \frac{3 \pm 3\sqrt{5}}{2}$. Determine the value of k. (4)

[34]

Copyright Reserved

2.1 Simplify the following fully, without using a calculator:

$$2.1.1 \qquad \frac{2^{4x+1} \cdot 9^x \cdot 6^{2x-1}}{2^{6x} \cdot 27^x \cdot 3^x} \tag{4}$$

$$2.1.2 \qquad \frac{3^{2021} - 3^{2017}}{60.\left(\sqrt[3]{3^{6048}}\right)} \tag{4}$$

2.2 Solve for x, without using a calculator:

$$2.2.1 m^{8x-4} = 1 (3)$$

$$2.2.2 4.3^{x} - 3^{x-2} + 3^{x} = \frac{44}{3} (4)$$

$$x^{x} = 2^{2048}$$
Stanmore physics.com [18]

The function g is defined as $g(x) = \left(\frac{1}{2}\right)^x - 4$

- 3.1 Write down the equation of asymptote of g. (1)
- 3.2 Calculate the y intercept of g. (2)
- 3.3 Calculate the x -intercept of g. (2)
- 3.4 Draw a neat sketch of g. Clearly show all the intercepts with the axes and the asymptote. (3)
- 3.5 Calculate the average gradient of g between x = 0 and y = 0. (2)
- 3.6 Write down the equation of k if it is given that k(x) = g(x) + 4. (1)
- 3.7 It is further given that $h(x) = 2^{x+3} 4$. Explain, in words, how graph g must be transformed to obtain graph h. (3)

QUESTION 4

The function $f(x) = \frac{a}{x+p} + 1$ has an axis of symmetry with an equation of x = 3 - y.

- 4.1 Write down the range of f. (1)
- 4.2 Determine the equation of the vertical asymptote of f. (2)
- 4.3 If f(0) = 2, calculate the value of a. (2)
- 4.4 Calculate the x-intercept of f. (3)
- Draw a neat sketch of f. Clearly show all intercepts with the axes and asymptotes. (3)
- 4.6 Write down the values of x for which $f(x) \le 0$. (2)
- 4.7 The straight line y = -2x + 5 passes through the point of intersection of the asymptotes and intersects f at P(1; 3) and Q. Write down the coordinates of Q. (2) [15]

The graphs of $h(x) = ax^2 + bx + c$ and p(x) = 8 - 2x are sketched below.

The x-intercepts of h are (-3; 0) and (1; 0) and the y-intercept of h is (0; 6). M is the turning point of h. D and E are the x- and y-intercepts of p respectively.

- 5.1 Write down the coordinates of D. (1)
- 5.2 Show that a = -2, b = -4 and c = 6. (4)
- 5.3 Calculate the coordinates of M, the turning point of h. (2)
- 5.4 Write down the range of h. (1)
- 5.5 Determine the values of x for which h(x).p(x) < 0. (3)
- 5.6 If h(x) = k, determine the value(s) of k for which:
 - 5.6.1 roots are non-real. (1)
 - 5.6.2 roots have the same sign. (2)
- 5.7 Calculate how graph p must be translated so that it becomes a tangent to graph h. (5) [19]

TOTAL: 100

Downloaded from Stanmorephysics.com FINAL

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

These marking guidelines consist of 10 pages.

QUESTIO

1.1.1	$x = 0$ or $x = \frac{1}{2}$	$\checkmark A x = 0 \checkmark A x = \frac{1}{2}$
		(2)
1.1.2	$2x^2 - 5x + 3 = 0$	
	(2x-3)(x-1) = 0	✓A correct factors
	$x = \frac{3}{2} \text{or} x = 1$	✓CA answer ✓CA answer (3)
1.1.3	x(3x-5)=7	,
	$3x^2 - 5x - 7 = 0$	✓A standard form
	$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-7)}}{2(3)}$	✓CA correct substitution
	Stahmorephysics.com $x = -0.91$ or $x = 2.57$	✓CA answer ✓CA answer (4)
1.1.4	$(1-x)(x+3) \le -5$,
	$x + 3 - x^2 - 3x + 5 \le 0$	
	$-x^2 - 2x + 8 \le 0$	
	$x^2 + 2x - 8 \ge 0$	
	$(x+4)(x-2) \ge 0$	✓A standard form
	$(x+4)(x-2) \ge 0$	
	OR + - +	
	-4 2 -4 2	✓CA critical values
	$x \le -4$ or $x \ge 2$	✓CA answer ✓CA answer
		(4)

GRADE 11 Marking Guideline

	Warking Guidenne	
1.1.5	$\begin{vmatrix} \frac{x^2+7}{x^2-2x-3} + \frac{2}{x+1} = -\frac{1}{x-3} \\ x^2+7 & 2 & 1 & 0 \end{vmatrix}$	
	$\frac{x^2+7}{(x-3)(x+1)} + \frac{2}{x+1} + \frac{1}{x-3} = 0$ LCD: $(x-3)(x+1)$	✓A correct factorisation
	$\frac{x^2 + 7 + 2(x - 3) + 1(x + 1)}{(x - 3)(x + 1)} = 0$	✓CA correct LCD
	$\frac{x^2 + 7 + 2x - 6 + x + 1}{(x - 3)(x + 1)} = 0$	✓CA standard form
	$x^2 + 3x + 2 = 0$	V CA standard form
	(x+1)(x+2) = 0	✓CA factors
	$x \neq -1$ or $x = -2$	✓CA answers with rejection (5)
· ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>

1.2.1	$x-3=2\sqrt{x}$	
	$(x-3)^2 = \left(2\sqrt{x}\right)^2$	
	$x^2 - 6x + 9 = 4x$	✓ A squaring both sides
	$x^2 - 10x + 9 = 0$	✓CA standard form
	(x-9)(x-1) = 0	✓CA factors
	$x = 9$ or $x \neq 1$	✓CA answers with rejection
	OR	(4)
	$x-3=2\sqrt{x}$	
	$x - 2\sqrt{x} - 3 = 0$	
	$\left(\sqrt{x}\right)^2 - 2\sqrt{x} - 3 = 0$	✓A standard form
	$\left(\sqrt{x}\right)^2 - 2\sqrt{x} - 3 = 0$ $\left(\sqrt{x} - 3\right)\left(\sqrt{x} + 1\right) = 0$	✓CA factors
	$\sqrt{x} = 3$ or $\sqrt{x} \neq -1$	✓CA both equations
	$\therefore x = 9$	✓CA answers with rejection (4)
1.2.2	$\sqrt[3]{3t} = 9$	$\sqrt{\text{CA }} \sqrt[3]{3t} = x \text{ from } 1.2.1$
	$\left(\sqrt[3]{3t}\right)^3 = 9^3$	
	$\frac{3t}{3} = \frac{729}{3}$	✓M cubing both sides
		/G.
	t = 243	✓CA answer (3)

Marking Guideline 3y = x + 1....(1) 1.3 (x-y)(5y-3x)=0....(2)

x = 3y - 1....(3)

[(3y-1)-y)(5y-3(3y-1)]=0(2y-1)(3-4y)=0

$$y = \frac{1}{2}$$
 or $y = \frac{3}{4}$

 $x = \frac{1}{2}$ or $x = \frac{5}{4}$

 \checkmark A rewriting in terms of x

 \checkmark CA subst. of (3) into (2)

✓CA simplification

 \checkmark CA both values of γ

 \checkmark CA both values of x

OR

3y = x + 1....(1)

(x-y)(5y-3x) = 0... (2)

from (2)

or $y = \frac{3}{5}x$(3) x = v

sub (3) into (1)

 $3x = x + 1 \qquad \text{or} \qquad 3\left(\frac{3}{5}x\right) = x + 1$

or $\frac{9}{5}x = x + 1$ 2x = 1

 $x = \frac{1}{2}$

sub x – values into (3)

OR

 \checkmark A solving for *y* ito *x* in (2)

✓CA subst. both into eq. (1)

✓CA simplification

 \checkmark CA both values of x

 \checkmark CA both values of y

(5)

(5)

GRADE 11 Marking Guideline

	Marking Guideline	
1.4	$x = \frac{3 \pm 3\sqrt{5}}{2}$ $x = \frac{3 \pm \sqrt{45}}{2}$ $\Delta = 45$	✓A rewriting Δ as $\sqrt{45}$
	and $x^{2}-3x-k=0$ $\Delta = b^{2}-4ac$ $\Delta = (-3)^{2}-4(1)(-k)$	\checkmark A substitution into Δ
	$\Delta = 9 + 4k$ $\therefore 9 + 4k = 45$	√CA equating two Δs
	$\frac{4k}{4} = \frac{45 - 9}{4}$ $k = 9$ OR	✓CA answer OR
	$(2x-3+3\sqrt{5})(2x-3-3\sqrt{5}) = 0$ $(2x-3)^2 - (3\sqrt{5})^2 = 0$ $4x^2 - 12x + 9 - 9(5) = 0$	✓A rewriting roots as factors of equation
	$4x^{2}-12x-36=0$ $x^{2}-3x-9=0$ $\therefore k = 9 \text{ or ephysics. com}$	✓A standard form ✓CA ÷ equation by 4 ✓CA answer (4)
		[34]

QUESTION 2

	ALL III	
2.1.1	$\frac{2^{4x+1}.9^{x}.6^{2x-1}}{}$	
	$2^{6x}.27^{x}.3^{x}$	
	$-2^{4x+1} \cdot (3^2)^x \cdot (3 \times 2)^{2x-1}$	✓ A rewriting with prime bases
	$= \frac{2^{4x+1} \cdot (3^2)^x \cdot (3 \times 2)^{2x-1}}{2^{6x} \cdot (3^3)^x \cdot 3^x}$	
	$=\frac{2^{4x+1} \cdot 3^{2x} \cdot 3^{2x-1} \cdot 2^{2x-1}}{2^{6x} \cdot 3^{3x} \cdot 3^x}$	✓CA separate prime bases
	$=2^{4x+1+2x-1-6x}.3^{2x+2x-1-3x-x}$	(0) 100
	$=2^{\circ}.3^{-1}$	✓CA simplifying: exponential laws
	$=1\times\frac{1}{3}$	
	$=\frac{1}{3}$	(CA
	_ 3	✓CA answer (4)
	$3^{2021} - 3^{2017}$	(1)
2.1.2	$\frac{3-3}{60.(\sqrt[3]{3^{6048}})}$	
		✓ A common factor in numerator 3 ²⁰¹⁷
	$=\frac{3^{2017}(3^4-1)}{60.3^{2016}}$	\checkmark A common factor in numerator \checkmark A 3^{2016} in denominator
	60.3 ²⁰¹⁶	
	$=\frac{3^{2017-2016}(80)}{60}$	✓A 80 in numerator
	60 = 4	✓CA answer
	_ -	(4)
2.2.1	$m^{8x-4}=1$	
	$m^{8x-4} = m^0$	\checkmark A m^0
	8x - 4 = 0	✓CA equating exponents
	$x=\frac{1}{2}$	✓CA answer
	2	(3)
		10000
	OR	OR S
		TOUT
	$m^{8x-4} = 1$	Inni
	$\frac{m^{8x}}{m^4} = 1$	
	$m^{8x} = m^4$	$\checkmark A m^{8x} = m^4$
	8x = 4	✓CA equating exponents
	$r = \frac{1}{r}$	✓CA answer
	$x = \frac{1}{2}$	(3)

Copyright Reserved

2.2.2	$4.3^{x} - 3^{x-2} + 3^{x} = \frac{44}{3}$ $4.3^{x} - 3^{x} \cdot 3^{-2} + 3^{x} = \frac{44}{3}$ $3^{x} (4 - 3^{-2} + 1) = \frac{44}{3}$ $3^{x} \left(\frac{44}{9}\right) = \frac{44}{3}$ $3^{x} = \frac{44}{3} \times \frac{9}{44}$ $3^{x} = 3^{1}$ $x = 1$	✓A common factor of 3^x ✓A factor of $\frac{44}{9}$ ✓CA simplification ✓CA answer (4)
2.2.3	$x^{x} = 2^{2(1024)}$ $x^{x} = 4^{2(512)}$	✓A rewriting the exp. as 2(1024)
	$x^x = 16^{(512)}$	✓ A rewriting as 16 ⁽⁵¹²⁾
	$x^{x} = 16^{2(256)}$ $x^{x} = 256^{256}$	Stanmorephysics.com
	$\therefore x = 256$	✓A answer (3)
	OR	
	$x^{x} = 2^{2048}$ $x^{x} = 2^{1024} \cdot 2^{1024}$ $x^{x} = (2.2)^{1024}$	\checkmark A rewriting the RHS as $2^{1024}.2^{1024}$
	$x^{x} = 4^{1024}$ $x^{x} = 4^{512} \cdot 4^{512}$ $x^{x} = 16^{256} \cdot 16^{256}$ $x^{x} = (16.16)^{256}$	✓ A rewriting as 16 ²⁵⁶ .16 ²⁵⁶
	$x^{x} = (16.16)^{3x}$ $x^{x} = 256^{256}$ $x = 256$	✓A answer (3)
		[18]

QUESTION 3

	STION 5	
3.1	y = -4	\checkmark A answer (1)
3.2	$g(x) = \left(\frac{1}{2}\right)^x - 4$	
	$g(0) = \left(\frac{1}{2}\right)^0 - 4$	\checkmark A $g(0)$ OR substitute $x = 0$
	g(0) = 1 - 4	
	y = -3	\checkmark CA value of y (2)
3.3	$g(x) = \left(\frac{1}{2}\right)^x - 4$	
	$0 = \left(\frac{1}{2}\right)^x - 4$	\checkmark A $g(x) = 0$
	$4 = 2^{-x}$	
	$2^2 = 2^{-x}$	\checkmark CA value of x (2)
3.4.	x = -2	\checkmark CA value of x (2)
3.4.		
	g	✓A shape
	(-2;0) x	✓CA intercepts
	y = -4 (0;-3)	✓A asymptote (3)
3.5	$m = \frac{y_2 - y_1}{x_2 - x_1}$	
	$m = \frac{(0) - (-3)}{(-2) - (0)}$	\checkmark CA substitution of x- and y- intercepts from 3.2 and 3.3
		111111
	$m = -\frac{3}{2}$	✓CA answer
		(2)
3.6	$k(x) = \left(\frac{1}{2}\right)^x$	✓A answer (1)
3.7	reflection about y-axis and then translation/shift of 3 units to the left OR	✓A reflection about y -axis ✓A translation of 3 units ✓A left (3)
	translation/shift of 3 units	OR A translation of 3 units
	to the right	✓ A translation of 3 units ✓ A right
	and then reflection about y-axis	\checkmark A reflection about y-axis (3)
		[14]

QUESTION 4

4.1	$y \in \mathbb{R}, y \neq 1$ or $y \in (-\infty; 1) \cup (1; \infty)$	✓A answer (1)
4.1	x = 3 - y	(1)
	x = 3 - 1	✓ A substitution
	x=2	✓ A substitution ✓ A answer
	000	(2)
4.3	$f(x) = \frac{a}{1} + 1$	
1.5	x+p	
	$f(x) = \frac{a}{x+p} + 1$ $f(x) = \frac{a}{x-2} + 1$	
	$2 = \frac{a}{0-2} + 1$	✓ A substitution of a point (0; 2)
	$2-1=\frac{a}{-2}$	
	a = -2	✓CA answer
	_2	(2)
4.4	$f(x) = \frac{-2}{x-2} + 1$	
	$\begin{bmatrix} & & -2 \\ -2 & +1 \end{bmatrix}$	
	$0 = \frac{-2}{x-2} + 1$	$\checkmark A f(x) = 0$
	$-1 = \frac{-2}{x-2}$	
	-1(x-2) = -2 -x+2=-2	✓CA simplification
	-x+2=-2 $-x=-4$	
	-x = -4 $x = 4$	✓CA answer
	x — 4	(3)
4.5		
	Stanmore physics.com	\checkmark CA shape based on a in 4.3
	Cean No. 15 System. Com	THIN
		✓CA vertical asymptote from 4.2 but horizontal asymptote of
	y = 1	y = 1 must be accurate
		\checkmark CA <i>x</i> -intercept from 4.4 but <i>y</i> -
		intercept must be accurate
		(given in 4.3)
	$\downarrow f$	(3)
4.6	$2 < x \le 4$ OR $x \in (2;4]$	✓✓CA answer
4.7	Q(3;-1)	
寸. /		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		[15]

QUESTION 5

5.1	D(4; 0)	✓A answer
5.2	$h(x) = a(x - x_1)(x - x_2)$	✓ A defining equation (1)
	h(x) = a(x - (-3))(x - (1))	\checkmark A substituting <i>x</i> -intercepts
	6 = a(0+3)(0-1)	✓A substituting (0;6)
	6 = a(-3)	
	$\frac{6}{-3} = a$	
	-2 = a	
	h(x) = -2(x+3)(x-1)	
	$h(x) = -2(x^2 + 2x - 3)$	✓A simplification
	$h(x) = -2x^2 - 4x + 6$	(4)
<i>5</i> 2	a = -2, $b = -4$, $c = 6$	
5.3	$h(x) = -2x^2 - 4x + 6$	
	$x = -\frac{b}{2a}$	
	-4	
	$x = \frac{-4}{2(-2)}$	
	x = -1	\checkmark A x -value
	$h(-1) = -2(-1)^2 - 4(-1) + 6$	
	y = 8	\checkmark CA y –value
	M(-1; 8)	(2)
	OR	OR
	$x_{\rm M} = \frac{-3+1}{2}$	
	$x_{\rm M} = \frac{-3+1}{2}$ $x_{\rm M} = -1$	\sqrt{A} x-value
	$h(-1) = -2(-1)^2 - 4(-1) + 6$	V A X-Value
	y = 8	\checkmark CA y —value
	M(-1; 8)	$\sqrt{CA} y = \text{value}$ (2)
5.4		10001
3.4	$y \in \mathbb{R}$, $y \le 8$	\checkmark CA answer (using $x_{\rm M}$ in 5.3)
	OR	OR STATE OF THE PROPERTY OF TH
	$y \in (-\infty; 8]$	(CA anguage (using a in 5.2)
	$y \in (-\infty, \delta]$	\checkmark CA answer (using $x_{\rm M}$ in 5.3) (1)
5.5	x < -3 or $1 < x < 4$	$\checkmark A x < -3 \qquad \checkmark A \checkmark CA 1 < x < 4$
	NOTE:	OR
	OR CA is only on 4 i.e. x_D in 5.1	
	$x \in (-\infty; -3) \cup (1; 4)$	$\checkmark x \in (-\infty; -3) \checkmark A \checkmark CA x \in (1; 4)$
		(3)

TOTAL:100

Marking Guideline

	Marking Guideline	
5.6.1	k > 8	\checkmark CA answer (using x_M in 5.3)
	OR	
	$k \in (8; \infty)$	\checkmark CA answer (using $x_{\rm M}$ in 5.3)
5.6.2	$6 < k \le 8$	✓ A✓CA answer
	NOTE:]
	CA is only on 8 i.e. $x_{\rm M}$ in 5.3	
	$k \in (6; 8]$	
5.7	If graph p is to now become a tangent, then this implies	(2)
	that the NEW y – intercept is unknown $h(x) = p(x)$	
	$-2x^2 - 4x + 6 = -2x + k$	✓A equating equations
	$-2x^2 - 2x + 6 - k = 0$	
	$2x^2 + 2x - 6 + k = 0$	✓CA standard form
	$\Delta = 0$ Stanmorephysics.com $b^2 - 4ac = 0$	
	$ (2)^2 - 4(2)(-6+k) = 0 $	\checkmark CA equating Δ = 0
	4-8(-6+k)=0	1
	4+48-8k=0 NOTE: Correct answer only:	
	$32 = 8\kappa$ award only 1 mark	
	$k = \frac{52}{8} = \frac{13}{2} = 6\frac{1}{2} = 6.5$	\checkmark CA value of k
	Graph p must shift/be translated 1,5 units downwards	✓CA answer
	OR	(5)
	h(x) = p(x) + k	
	$-2x^2 - 4x + 6 = -2x + 8 + k$	✓A equating equations
	$-2x^2 - 2x - 2 - k = 0$ $2x^2 + 2x + 2 + k = 0$	✓CA standard form
	$\Delta = 0$	V CA Standard Ioini
	$b^2 - 4ac = 0$	Innai
	$(2)^2 - 4(2)(2+k) = 0$	\checkmark CA equating Δ = 0
	4-8(k+2)=0 4-8(k+2) NOTE:	
	Correct answer only.	
	$\frac{1}{2} = k + 2$ award only 1 mark	
	$k = -\frac{3}{2} = -1\frac{1}{2} = -1,5$	\checkmark CA value of k
	Graph p must shift/be translated 1,5 units downwards	✓CA answer
		(5)
		[19]