education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

This question paper consists of 9 pages and 3 DIAGRAM SHEETS.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 7 questions.
2. Answer ALL the questions.
3. Number the answers correctly according to the numbering system used in this question paper.
4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
5. Answers only will NOT necessarily be awarded full marks.
6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
8. Diagrams are NOT necessarily drawn to scale.
9. THREE DIAGRAM SHEETS for QUESTION 1, QUESTION 2, QUESTION 5.1, QUESTION 5.2, QUESTION 6.1, QUESTION 6.2 and QUESTION 7 are attached at the end of this question paper. Detach the DIAGRAM SHEETS and hand them in together with your ANSWER BOOK.
10. Write neatly and legibly.

QUESTION 1

In the diagram below, $\mathrm{D}(-10 ; 6), \mathrm{E}, \mathrm{F}$ and $\mathrm{G}(1 ; 9)$ are the vertices of a quadrilateral.
F is a point on the x-axis. The diagonals of the quadrilateral bisect each other at K . The equation of diagonal EG is $3 x-y+6=0$ and β is the angle of inclination of EG.

1.1 Calculate the size of β.
1.2 Calculate the coordinates of F if the equation of DF is $x+3 y=8$.
1.3 Calculate the coordinates of E.
1.4 Prove that DEFG is a rhombus.

QUESTION 2

In the diagram below, $\mathrm{A}(-2 ;-1), \mathrm{B}(-3 ; 4)$ and $\mathrm{C}(1 ; 5)$ are the vertices of a triangle. BC is produced to $\mathrm{D}(5 ; y)$, AC cuts the y-axis at F . E is a point on the x-axis such that CE is perpendicular to the x-axis.

2.1 Calculate the length of AC. Leave answer in simplified surd form.
2.2 Calculate the gradient of BC.
2.3 Calculate the value of y if B, C and D are collinear.

2.4 If H is a point such that $\mathrm{AH} \perp \mathrm{BC}$, determine the equation of AH .
2.5 Calculate the coordinates of G if CBAG, in that order, is a parallelogram.
2.6 Calculate the area of CEOF.

QUESTION 3

If $\cos 23^{\circ}=\sqrt{1-g^{2}}$, express each of the following in terms of g :

QUESTION 4

4.1 Simplify the following without using a calculator:
4.1.1 $\frac{\cos 390^{\circ}}{\cos \left(-30^{\circ}\right)}-\tan \left(360^{\circ}-x\right) \cdot \cos \left(180^{\circ}+x\right) \cdot \cos \left(x-90^{\circ}\right)$
4.1.2 $\frac{\sin 120^{\circ} \cdot \tan 330^{\circ}}{\cos 240^{\circ}}$
4.2 Prove the following identity: $\frac{\cos x \cdot \tan ^{2} x}{\frac{1}{\cos x}+1}+\cos x=1$
inmorephysics.com
4.3 Given the expression: $\frac{\cos 2 x \cdot \tan x}{\sin ^{2} x}$.

Determine the value(s) of x, in the interval $x \in\left[0^{\circ} ; 180^{\circ}\right]$, for which the expression will be undefined.
4.4 \quad Solve for α and β if:

$$
\begin{align*}
& \cos (\alpha+\beta)=-\frac{\sqrt{2}}{2} \quad \text { for } \quad(\alpha+\beta) \in\left[0^{\circ} ; 180^{\circ}\right] ; \text { and } \\
& \cos (\alpha-2 \beta)=\frac{1}{2} \quad \text { for } \quad(\alpha-2 \beta) \in\left[0^{\circ} ; 180^{\circ}\right] \tag{4}
\end{align*}
$$

GIVE REASONS FOR YOUR STATEMENTS IN QUESTION 5, QUESTION 6 AND QUESTION 7.

QUESTION 5

5.1 In the diagram, O is the centre of the circle. AB and AC are chords, and BO and CO have been drawn.

Use the diagram on the DIAGRAM SHEET to prove the theorem which states that the angle subtended by an arc or chord at the centre of the circle is equal to twice the angle subtended by the same arc or chord at the circumference, that is, prove that obtuse $\mathrm{BO} \mathrm{C}=2 \mathrm{BA} \mathrm{C}$.

5.2 In the diagram below, DF is a diameter of the circle with centre O . Chord EG intersects DF at H such that $\mathrm{GH}=\mathrm{HE}$. Chords EF, GF and DE and radius OE are drawn. $\mathrm{EGF}=55^{\circ}$.

5.2.1 Write down the size of \hat{D}. Provide a reason.
5.2.2 Write down the size of $\hat{\mathrm{O}}_{2}$. Provide a reason.
5.2.3 Calculate, giving reasons, the size of $\hat{\mathrm{F}}_{2}$
5.2.4 Prove, with reasons, that DE is a tangent to the circle passing through E, F and H at E .

QUESTION 6

6.1 In the diagram below, CD is a diameter and PC is a tangent to the circle at C .

Chord DK is produced to P . PT intersects KC at $\mathrm{Q} . \mathrm{CDP}=40^{\circ}, \mathrm{DPT}=25^{\circ}$ and
TQिC $=65^{\circ}$.

Calculate, with reasons, the size of the following angles:
6.1.1 $\quad \hat{\mathrm{C}}_{2}$
6.1.2 $\hat{\mathrm{K}}_{1}$
6.1.3 $\hat{\mathrm{P}}_{1}$
6.1.4 Prove, with reasons, that $\mathrm{TC}=\mathrm{QC}$.
6.2 In the diagram below, O is the centre of circle PTR . N is a point on chord PR such that $\mathrm{ON} \perp \mathrm{PR}$. RS and PS are tangents to the circle at R and P respectively. $\mathrm{RS}=15$ units, $\mathrm{TS}=9$ units and $\mathrm{R} \hat{P} S=62^{\circ}$.

6.2.1 Calculate the size of NÔR .
6.2.2 Calculate the length of the radius of the circle.

QUESTION 7

In the diagram, O is the centre of the circle and PVR is a tangent to the circle at V .
T is a point on chord SU such that $\mathrm{ST}=\mathrm{TU}$. US extended meets PV at R . $\mathrm{OV}, \mathrm{OR}, \mathrm{OS}$ and OT are drawn.

7.1 Prove that VOTR is a cyclic quadrilateral.
7.2 Prove that $\mathrm{OR}^{2}=\mathrm{OV}^{2}+\mathrm{TR}^{2}-(\mathrm{RU}-\mathrm{TR})^{2}$.

TOTAL: 100 MARKS

NAME \& SURNAME:

DIAGRAM SHEET 1

QUESTION 1
$\mathrm{D}(-10 ; 6)$

QUESTION 2

NAME \& SURNAME: \square

DIAGRAM SHEET 2

QUESTION 5.1

QUESTION 5.2

NAME \& SURNAME: \square

DIAGRAM SHEET 3

QUESTION 6.1

QUESTION 6.2

QUESTION 7

FINAL

NATIONAL SENIOR CERTIIICATE

GRADE 11

MARKS: 100

These marking guidelines consist of $\mathbf{1 2}$ pages.

QUESTION 1

1.1	$\begin{aligned} & \text { Equation of EG: } \\ & 3 x-y+6=0 \\ & y=3 x+6 \\ & \therefore m_{E G}=3 \\ & \therefore \tan \beta=m_{\mathrm{EG}}=3 \\ & \beta=71,57^{\circ} \end{aligned}$	$\checkmark \mathbf{A} y=3 x+6$ $\checkmark \mathbf{C A} \tan \beta=m_{\mathrm{EG}}=3$ \checkmark CA answer
1.2	$\begin{aligned} & x+3(0)=8 \\ & x=8 \\ & \therefore F(8 ; 0) \end{aligned}$ Answer only: FULL MARKS	\checkmark A substitute $y=0$ $\checkmark \mathbf{A}$ answer in coordinate form
1.3		$\checkmark \mathbf{C A} \checkmark \mathbf{C A}$ co-ordinates of K $\checkmark \mathbf{C A} x$-value CA $\checkmark y$-value (4)
1.4	$\begin{align*} & 3 y=-x+8 \tag{4}\\ & y=-\frac{1}{3} x+\frac{8}{3} \\ & m_{D F} \times m_{G E}=-\frac{1}{3} \times 3 \\ & \quad=-1 \\ & \therefore \mathrm{DF} \perp \mathrm{GE} \tag{3} \end{align*}$	$\begin{aligned} & \checkmark \mathbf{A} m_{D F}=-\frac{1}{3} \\ & \checkmark \mathbf{A} m_{D F} \times m_{G E}=-1 \\ & \checkmark \mathbf{A} \text { conclusion } \end{aligned}$

Marking Guideline

	\therefore DEFG is a rhombus (diagonals bisect at right angle)		
	OR DEFG is a parallelogram (diagonals bisect each other) $\left.\begin{array}{l} \mathrm{DG} \end{array}=\sqrt{(-10-1)^{2}+(6-9)^{2}}\right)=\sqrt{130} \mathrm{DE}=\sqrt{[-10-(-3)]^{2}+[6-(-3)]^{2}}$	$\checkmark \mathbf{A D G}=\sqrt{130}$ $\checkmark \mathbf{C A D E}=\sqrt{130}$ \checkmark A conclusion	(3)
[12]			

QUESTION 2

2.1	$\begin{align*} \mathrm{AC} & =\sqrt{(1-(-2))^{2}+(5-(-1))^{2}} \\ & =\sqrt{9+36} \\ & =3 \sqrt{5} \tag{2} \end{align*}$	Penalise if answer is not simplified	$\checkmark \mathbf{A}$ substitution in correct formula $\checkmark \mathbf{C A} \text { answer }$
2.2	$\begin{align*} m_{B C} & =\frac{5-4}{1-(-3)} \\ & =\frac{1}{4} \tag{2} \end{align*}$		$\checkmark \mathbf{A}$ substitution in correct formula $\checkmark \mathbf{C A} \text { answer }$
2.3	$\begin{aligned} m_{C D} & =m_{B C} \\ \frac{y-5}{5-1} & =\frac{1}{4} \\ y & =6 \end{aligned}$ OR $\begin{aligned} m_{\mathrm{BD}} & =m_{\mathrm{BC}} \\ \frac{y-4}{5-(-3)} & =\frac{1}{4} \\ \frac{y-4}{8} & =\frac{2}{8} \\ y & =6 \end{aligned}$		\checkmark CA $m_{\text {CD }}$ \checkmark CA equating gradients \checkmark CA answer \checkmark CA m_{BD} \checkmark CA equating gradients \checkmark CA answer

Marking Guideline

GRADE 11
Marking Guideline

QUESTION 3

3.2	$\begin{aligned} \tan 113^{\circ} & =\tan \left(180^{\circ}-67^{\circ}\right) \\ & =-\tan 67^{\circ} \\ \square \cap & =-\frac{\sqrt{1-g^{2}}}{g} \end{aligned}$	$\checkmark \mathbf{A}-\tan 67^{\circ}$ \checkmark CA answer
	$\begin{aligned} \sin \left(-653^{\circ}\right) & =\sin 67 \\ & =\sqrt{1-g^{2}} \end{aligned}$	$\checkmark \mathbf{A} \sin \left(-653^{\circ}\right)=\sin 67^{\circ}$ \checkmark CA answer
[7]		

QUESTION 4

4.1.1	$\begin{aligned} & \frac{\cos 390^{\circ}}{\cos \left(-30^{\circ}\right)}-\tan \left(360^{\circ}-x\right) \cdot \cos \left(180^{\circ}+x\right) \cdot \cos \left(x-90^{\circ}\right) \\ & =\frac{\cos 30^{\circ}}{\cos 30^{\circ}}-(-\tan x)(-\cos x)(\sin x) \\ & =1-\left(-\frac{\sin x}{\cos x}\right)(-\cos x)(\sin x) \\ & =1-\sin ^{2} x \\ & =\cos ^{2} x \end{aligned}$	$\begin{aligned} & \checkmark \mathbf{A} \cos 390^{\circ}=\cos 30^{\circ} \\ & \checkmark \mathbf{A} \cos \left(-30^{\circ}\right)=\cos 30^{\circ} \\ & \checkmark \mathbf{A} \tan \left(360^{\circ}-x\right)=-\tan x \\ & \checkmark \mathbf{A} \cos \left(180^{\circ}+x\right)=-\cos x \\ & \checkmark \mathbf{A} \cos \left(x \neq 90^{\circ}\right)=\sin x \\ & \checkmark \mathbf{A}-\tan x=\left(-\frac{\sin x}{\cos x}\right) \\ & \checkmark \mathbf{C A} \text { simplification } \\ & \checkmark \mathbf{C A} \text { answer } \end{aligned}$
4.1.2	$\begin{align*} \frac{\sin 120^{\circ} \cdot \tan 330^{\circ}}{\cos 240^{\circ}} & =\frac{\sin 60^{\circ} \cdot\left(-\tan 30^{\circ}\right)}{-\cos 60^{\circ}} \\ & =\frac{\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}}}{\frac{1}{2}} \\ & =1 \tag{4} \end{align*}$	$\begin{aligned} & \checkmark \mathbf{A} \sin 60^{\circ} \text { and }-\tan 30^{\circ} \\ & \checkmark \mathbf{A}-\cos 60^{\circ} \end{aligned}$ \checkmark A substitution of special angles \checkmark CA answer

Marking Guideline

4.2		\checkmark A quotient identity \checkmark A denominator as a single fraction \checkmark A square identity \checkmark A factorisation \checkmark A simplification \checkmark A quotient identity \checkmark A denominator as a single fraction \checkmark A writing as a single fraction \checkmark A simplification \checkmark A square identity
4.3	$\begin{aligned} & x=0^{\circ} \\ & x=90^{\circ} \\ & x=180^{\circ} \end{aligned}$	$\begin{aligned} & \checkmark \mathbf{A} x=0 \\ & \checkmark \mathbf{A} x=90^{\circ} \\ & \checkmark \mathbf{A} x=180^{\circ} \end{aligned}$

GEOMETRY • MEETKUNDE

S	A mark for a correct statement (A statement mark is independent of a reason)
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
Award a mark if statement AND reason are both correct	
	Ken 'n punt toe as die bewering EN rede beide korrek is

QUESTION 5

5.1	Construction: Draw AO extended to D Proof: $\begin{aligned} & \hat{B A O}=\hat{A B O}=x \\ & \hat{B O D}=2 x \end{aligned}$ Similarly: CÔD $=2 y$ $\begin{aligned} \text { BÔC } & =2 x+2 y \\ \text { morep} & 2(x+y) m \\ & =2 \hat{\mathrm{~A}} \end{aligned}$	$\begin{aligned} & {[\angle ’ \text { s opp. }=\text { sides }]} \\ & {[\text { ext. } \angle \text { of } \Delta]} \\ & {[\text { ext. } \angle \text { of } \Delta]} \end{aligned}$	\checkmark A construction \checkmark A S/R \checkmark A S/R \checkmark A S \checkmark A $2(x+y)$ (5)
5.2.1	$\hat{\mathrm{D}}=\hat{\mathrm{G}}=55^{\circ}$	[\angle 's in the same segment]	\checkmark ASA ${ }^{\text {d }}$
5.2.2	$\begin{align*} & \hat{\mathrm{O}}_{2}=2\left(55^{\circ}\right)=110^{\circ} \\ & \hat{\mathrm{D}}=\mathrm{DE} \mathrm{O}=55^{\circ} \\ & \therefore \hat{\mathrm{O}}_{2}=110^{\circ} \tag{2}\\ & \hat{\mathrm{D}}=\mathrm{DE} O=55^{\circ} \\ & \therefore \hat{\mathrm{O}}_{1}=70^{\circ} \\ & \therefore \hat{\mathrm{O}}_{2}=180^{\circ}-70^{\circ}=110^{\circ} \end{align*}$	```[\(\angle\) at centre \(=2 \times \angle\) at circumference] [\(\angle\) 's opp = sides] [ext \(\angle\) of \(\Delta\)] [\(\angle\) 's opp = sides] [sum of \(\angle \mathrm{s}\) in \(\Delta\)] [sum of \(\angle\) 's on a st line]```	$\begin{aligned} & \checkmark \text { AS } \checkmark \text { AR } \\ & \text { OR } \\ & \checkmark \text { A S/R } \\ & \checkmark \text { A S/R } \\ & \checkmark \text { AS/R } \end{aligned}$
5.2.3	$\begin{aligned} & \hat{\mathrm{F}}_{2}+\hat{\mathrm{E}}_{3}+\hat{\mathrm{O}}_{2}=180^{\circ} \\ & \hat{\mathrm{F}}_{2}=\hat{\mathrm{E}}_{3} \\ & \therefore \hat{\mathrm{~F}}_{2}=35^{\circ} \\ & \quad \text { OR } \\ & \mathrm{DEF}=90^{\circ} \\ & \hat{\mathrm{D}}+\mathrm{DEF}+\hat{\mathrm{F}}_{2}=180^{\circ} \\ & \therefore \hat{\mathrm{F}}_{2}=35^{\circ} \end{aligned}$	[sum of $\angle \mathrm{s}$ in Δ] [$\angle \mathrm{s}$ opp equal sides] [\angle in semi-circle] [sum of $\angle \mathrm{s}$ in Δ]	A S/R \checkmark A S/R (2) \checkmark A S/R \checkmark A S/R

GRADE 11
Marking Guideline

5.2 .4	$\hat{\mathrm{H}}_{3}=\hat{\mathrm{H}}_{2}=90^{\circ}$	[line from centre to midpt of chord]	$\checkmark \mathbf{A ~ S / R}$
	$\therefore \hat{\mathrm{E}}_{1}=35^{\circ}$	[sum of $\angle \mathrm{s}$ in Δ OR ext \angle of Δ]	\checkmark A S/R
	$\therefore \hat{\mathrm{E}}_{1}=\hat{\mathrm{F}}_{2}$		
	$\therefore \mathrm{DE}$ is a tangent	[converse tan chord theorem]	\checkmark AR

QUESTION 6

6.1.1	$\hat{\mathrm{C}}_{2}=40^{\circ}$	[tan-chord theorem]	\checkmark A S \checkmark AR	
6.1.2	$\hat{\mathrm{K}}_{1}=90^{\circ}$	[\angle in a semi-circle]	\checkmark A S \checkmark AR	(2)
6.1.3	$\begin{aligned} \hat{\mathrm{P}}_{1} & =65^{\circ}-40^{\circ} \\ & =25^{\circ} \end{aligned}$	$[$ exterior \angle of a Δ]	\checkmark A S/R \checkmark A answer	
6.1.4	$\begin{aligned} & \hat{\mathrm{T}}_{1}=\hat{\mathrm{D}}+\mathrm{DPT} \\ &=40^{\circ}+25^{\circ} \\ &=65^{\circ} \\ & \therefore \mathrm{TC}=\mathrm{QC} \\ & \hat{\mathrm{C}}_{1}=50^{\circ} \\ & \hat{\mathrm{T}}_{1}=65^{\circ} \\ & \therefore \hat{\mathrm{T}}_{1}=\mathrm{TQ} \mathrm{C}=65^{\circ} \\ & \therefore \mathrm{TC}=\mathrm{QC} \end{aligned}$	[exterior \angle of a Δ] [sides opp. $=\angle$'s] OR [radius \perp to tangent] [sum of \angle 's in a Δ] [sides opp. $=\angle$'s]	\checkmark A S/R \checkmark AR \checkmark AR	(2)
6.2.1	$\begin{aligned} & \begin{array}{l} \mathrm{SP}=\mathrm{SR} \\ \mathrm{~S} \hat{R} P=\mathrm{SPR}=62^{\circ} \\ \mathrm{O} \hat{R} S=90^{\circ} \\ \therefore \mathrm{OR} \mathrm{~N}=28^{\circ} \\ \mathrm{NO} \mathrm{O}=90^{\circ}-28^{\circ} \\ \mathrm{NO} \mathrm{R}=62^{\circ} \end{array} \end{aligned}$	[tans from same point] [\angle 's opp. = sides] $[\tan \perp \mathrm{rad}]$ [sum of \angle 's of Δ]	\checkmark A S/R \checkmark A S/R $\checkmark \checkmark$ A S/R \checkmark AS \checkmark A answer	

GRADE 11
Marking Guideline

$\overline{6.2 .2}$	In $\triangle \mathrm{ORS}$: let $\mathrm{OT}=r$ $\begin{aligned} & \therefore \mathrm{OT}=\mathrm{OR}=r \\ & \mathrm{OS}=\mathrm{OT}+9=r+9 \\ & \mathrm{OS}^{2}=\mathrm{OR}^{2}+\mathrm{RS}^{2} \\ & \left((r+9)^{2}=r^{2}+15^{2}\right. \\ & r^{2}+18 r+81=r^{2}+225 \\ & 18 r=144 \\ & \quad r=8 \text { units } \\ & \therefore \text { radius }=8 \text { units } \end{aligned}$ $\mathrm{NR} S=N \hat{P} R=62^{\circ}$ $\text { In } \Delta \mathrm{NRS}: \cos 62^{\circ}=\frac{N R}{15}$ $\therefore \mathrm{NR}=15 \cdot \cos 62^{\circ}$ $\mathrm{N} \hat{R} O=90^{\circ}-62^{\circ}=28^{\circ}$ In $\triangle \mathrm{ONR}: \cos 28^{\circ}=\frac{\mathrm{NR}}{\mathrm{OR}}$ $\begin{aligned} & \therefore \mathrm{OR}=\frac{15 \cdot \cos 62^{\circ}}{\cos 28^{\circ}} \\ & \therefore \mathrm{OR}=7.98 \text { units } \end{aligned}$	radii Pythagoras OR \angle 's opp = sides radius \perp to tangent	\checkmark A LHS \checkmark A RHS \checkmark A simplification \checkmark A answer (4) OR \checkmark A S/R \checkmark ANR \checkmark A OR \checkmark A Answer
			[17]

QUESTION 7

7.1	$\begin{aligned} & \mathrm{PVO}=90^{\circ} \\ & \mathrm{OTR}=90^{\circ} \end{aligned}$ \therefore VOTR is a cyclic quadrilateral OR $\begin{aligned} & \mathrm{OV} \mathrm{R}=90^{\circ} \\ & \mathrm{O} \hat{T} R=90^{\circ} \\ & \therefore \mathrm{O} \hat{\mathrm{~V} R}+\mathrm{O} \hat{T} \mathrm{R}=180^{\circ} \end{aligned}$ \therefore VOTR is a cyclic quadrilateral	[rad $\perp \tan]$ [line from centre to midpoint of a chord] [conv. ext. \angle of a cyclic quad.] [conv. opp. \langle 's suppl] OR $[\mathrm{rad} \perp \mathrm{tan}]$ [line from centre to midpoint of a chord] [conv. opp. L's of cyclic quad.]	$\begin{align*} & \checkmark \mathbf{A ~ S / R} \\ & \checkmark \mathbf{A ~ S / R} \\ & \tag{3}\\ & \checkmark \checkmark \text { AR (Any) } \\ & \\ & \checkmark \text { A S/R } \\ & \checkmark \text { A S/R } \\ & \checkmark \text { A R } \end{align*}$
7.2	In \triangle ROT: $\mathrm{OR}^{2}=\mathrm{TR}^{2}+\mathrm{OT}^{2}$ In \triangle SOT: $\begin{aligned} & \mathrm{OT}^{2}=\mathrm{OS}^{2}-\mathrm{ST}^{2} \\ & \therefore \mathrm{OR}^{2}=\mathrm{TR}^{2}+\mathrm{OS}^{2}-\mathrm{ST}^{2} \\ & \text { but } \mathrm{OS}=\mathrm{OV} \\ & \text { and } \mathrm{ST}=\mathrm{TU} \\ & \therefore \mathrm{OR}^{2}=\mathrm{TR}^{2}+\mathrm{OV}^{2}-\mathrm{TU}^{2} \end{aligned}$ also: TU $=$ RU -TR $\therefore \mathrm{OR}^{2}=\mathrm{TR}^{2}+\mathrm{OV}^{2}-(\mathrm{RU}-\mathrm{TR})^{2}$	[Pythagoras] [Pythagoras] [radii] [given]	\checkmark A S \checkmark AS \checkmark A substitution for OT^{2} $\checkmark \checkmark$ A A substitution for OS and ST $\begin{equation*} \checkmark \mathbf{A} T U=R U-T R \tag{6} \end{equation*}$
			[9]

TOTAL: 100

