Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATIONREPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

MATHEMATICS PI

COMMON TEST

JUNE 2024norephysics.com

MARKS: 150

TIME: 3 hours

This question paper consists of 8 pages and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Write neatly and legibly.

QUESTION 1

1.1 Solve for x:

1.1.1
$$5x(2x+7)(8-x)=0$$
 (3)

$$1.1.2 x^2 + 13x + 12 = 0 (3)$$

$$1.1.3 5x^2 - 7x + 8 = 0 (2)$$

1.1.4
$$\sqrt{x-2} + 2 = x$$
 (5)

1.1.5
$$x(x-1) < 20$$
 (4)

1.1.6
$$2^{1-2x} + 7.2^{-1} - 4 = 0$$
 (5)

1.2 The roots of a quadratic equation are $x = \frac{5 \pm \sqrt{22 - 3m}}{2}$.

If m is an integer, determine the largest value of m for which these roots will be rational. (3)

1.3 Evaluate:
$$\frac{\sqrt{9^{2024}}}{\sqrt{9^{2023}} - \sqrt{9^{2025}}}$$
 (3)

1.4 Solve simultaneously for x and y:

$$3+y-2x=0$$
 and $4x^2+y^2-2xy-7=0$ (6)

QUESTION 2

Given the quadratic sequence: -5; 12; 27....

- 2.1 Determine the next two terms of the quadratic sequence. (2)
- 2.2 Determine the expression for the general term of the quadratic sequence. (4)
- 2.3 Which term(s) of the quadratic sequence has a value of 51? (3)

Calculate the value of
$$\sum_{n=3}^{10} T_n - \sum_{n=11}^{17} T_n$$
 (3)

[12]

[34]

QUESTION 3

- 3.1 Consider the arithmetic sequence: $-\frac{7}{2}$; -3; $-\frac{5}{2}$
 - 3.1.1 Determine the general term of the sequence. (2)
 - The sum of the first n terms of this sequence is 675. Calculate the value of n. (4)
 - 3.1.3 A new sequence is formed by squaring each term of the given arithmetic sequence. Determine which term of the new sequence will have the smallest value. (3)
- 3.2 The first 3 terms of an infinite geometric series are given:

$$(x+1)+2(x+1)^2+4(x+1)^3+....$$

- 3.2.1 For which values of x will the series converge? (3)
- 3.2.2 If $x = -\frac{3}{4}$, determine the numerical value of the first term. (1)
- 3.2.3 Write the series in sigma notation. (3)
- 3.2.4 Calculate the sum to infinity of the series. (2)

[18]

QUESTION 4

It is given that the asymptotes of $f(x) = \frac{6}{x+p} + q$ intersect at (4;3).

- 4.1 Write down the equation of f. (2)
- 4.2 Determine the intercepts of f with the axes. (3)
- Sketch the graph of f, clearly showing all the intercepts with the axes and any asymptotes. (3)
- 4.4 g is one of the axes of symmetry of f and it is a decreasing function. Determine the equation of g. (3)
- 4.5 $\left(-3;2\right)$ is a point on f. Determine the coordinates of the image of this point after reflection in g.

[13]

[14]

QUESTION 5

The graphs of $f(x) = (x-1)^2 - 9$ and $g(x) = -a^x$ are drawn below. The graph of g cuts f at points A and B. B is the turning point of f.

- 5.1 Write down the coordinates of B. (2)
- For which values of x are both graphs decreasing? (1)
- 5.3 Determine the coordinates of the x-intercepts of f. (3)
- 5.4 Show that a = 9. (1)
- 5.5 Determine the equation of g^{-1} in the form y = (2)
- Sketch the graph of g^{-1} , indicating any intercepts with the axes. (2)
- 5.7 For which values of x is $g^{-1}(x) > 2$? (3)

QUESTION 6

The graphs of $h(x) = ax^2 + bx + c$ and s(x) = mx + c are drawn below.

The x-intercepts of h are (-6; 0) and (2; 0).

(-4; 6) are the coordinates of one of the points of intersection between h and s.

6.1 Show that
$$a = -\frac{1}{2}$$
, $b = -2$ and $c = 6$. (4)

- 6.2 Determine the maximum value of h(x). (3)
- Determine the equation of s, if it is given that the gradient of s is equal to $-\frac{1}{2}$. (2)
- For which values of k will s(x)+k=h(x) have two real roots that are opposite in sign? (2)
- Describe the translation that h will undergo to become p, where $p(x) = -\frac{1}{2}(x+2)^2$. (2)

[13]

QUESTION 7

Given: $f(x) = 2x^2 + 4$ 7.1

> 7.1.1 Determine the derivative of f from first principles. (5)

> 7.1.2 A tangent to the graph of f has a gradient of -12. Determine the equation of the tangent. (4)

7.2 Determine the following:

7.2.1
$$f'(x)$$
 if $f(x) = \frac{2x^2 - 5x - 12}{x - 4}$

7.2.2 $D_x \left[\sqrt[5]{x^2} + x(x - 9) \right]$ (3)

7.2.2
$$D_x \left[\sqrt[5]{x^2} + x(x-9) \right]$$
 (4)

7.2.3
$$\frac{dy}{dx}$$
 if $y = \frac{x}{6} - \frac{6}{x}$ (3)

[19]

QUESTION 8

The diagram shows the graph of $f(x) = -x^3 + 10x^2 - 17x - 28$.

A, B and C are the x-intercepts of the graph, and D and E the turning points.

8.1 Calculate the coordinates of A, B and C. **(4)**

8.2 Calculate the coordinates of D and E. (4)

8.3 Determine the values of x for which

> 8.3.1 the graph is concave down. (3)

> f'(x) is increasing. 8.3.2 **(2)**

> > [13]

OUESTION 9

Given: A cubic function f with the following properties.

- The x-intercepts of the graph of f'(x) are -2 and 4.
- f''(x) > 0 for x > 1
- The graph of f has only one x-intercept.
- f(0) > 0

Use the given information to draw a sketch graph of f.

It is not necessary to indicate the values of the x- or y-intercepts of the graph, but only the x- coordinates of the turning points.

[5]

(5)

QUESTION 10

The managers of a zoo are planning to build a fence around a crocodile enclosure.

The sketch below shows the shape of the enclosure.

The length of the straight sections will be x meters each, and the radius of the semi-circular end sections r meters each, as shown in the sketch.

The total area of the enclosure will be 400 m².

10.1 Show that
$$x = \frac{400 - \pi r^2}{2r}$$

(2)

Show that the length of fencing required (L) can be expressed as $L(r) = \frac{400}{r} + \pi r$. (3)

Calculate the value of the radius that will ensure that the length of fencing required will be a minimum, so as to minimise the cost of building the fence. (4)

[9]

TOTAL: 150

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n$$

$$A = P(1 + ni)$$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)a$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d]$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; \quad r \neq 1$$

$$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics. comNAL

MATHEMATICS P1

COMMON TEST

JUNE 2024

MARKING GUIDELINES

Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

These marking guidelines consist of 13 pages.

QUESTION 1

1.1.1	$x = 0 \text{ or } -\frac{7}{2} \text{ or } 8$		✓ A answer ✓ A answer ✓ A answer (3)
1.1.2	(x+1)(x+12) = 0		✓ A factors
	x = -1 or $x = -12$		✓CA answer ✓CA answer (3)
1.1.3	$5x^{2} - 7x + 8 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{7 \pm \sqrt{(-7)^{2} - 4(5)(8)}}{2(5)}$ $7 + \sqrt{-111}$		✓ A substituting in formula
	$x = \frac{7 \pm \sqrt{-111}}{10}$ No real values of x	Accept: No solution	✓CA answer (2)
1.1.4	$\sqrt{x-2} + 2 = x$		\checkmark A isolating $\sqrt{x-2}$
	$(\sqrt{x-2})^2 = (x-2)^2$ $x-2 = x^2 - 4x + 4$		✓CA squaring both sides
	$x^2 - 5x + 6 = 0$		✓CA standard form
	(x-2)(x-3) = 0 x = 2 or x = 3	Answers only: 2 marks	✓CA answer ✓CA answer (5)
1.1.5	$x^2 - x - 20 < 0$		✓A standard form
	$(x+4)(x-5) < 0$ Stanm rephyscs.com $-4 < x < 5 \text{ OR } x \in (-4; 5)$	Penalty of 1 mark if one or both end points are included	✓CA critical values CA✓ CA✓ answer (4)

1.1.6	$2^{1-2x} + 7 \cdot 2^{-x} - 4 = 0$	ZA 1:w:	
	$2.2^{-2x} + 7.2^{-x} - 4 = 0$	✓ A splitting exponents	
	$(2.2^{-x}-1)(2^{-x}+4)=0$	✓ A factor ✓ A factor	
	$2^{-x} = \frac{1}{2}$ or $2^{-x} = -4$		
	$2^{-x} = 2^{-1}$ no solution		
	x=1	✓ A answer	
		✓A no solution	5)
	OR	OR ("
	$2^{1-2x} + 7 \cdot 2^{-x} - 4 = 0$	✓A splitting exponents	
	$2.2^{-2x} + 7.2^{-x} - 4 = 0$	✓A factor ✓A factor	
	Let $2^{-x} = k$		
	(2k-1)(k+4) = 0		
	$k = \frac{1}{2}$ or $k = -4$		
		✓ A answer	
	$2^{-x} = 2^{-1}$ no solution $x = 1$	✓ A no solution	
	<i>x</i> – 1		5)
1.2	$22-3m \ge 0$	\checkmark A 22−3 <i>m</i> ≥0	
-	$22 \ge 3m$		
	$\frac{22}{3} \ge m$	\checkmark CA $\frac{22}{3} \ge m$	
- 0	m=7	✓CA $\frac{22}{3} \ge m$ ✓CA answer	
Sta	nmorephysics.com		3)
1.3	$\sqrt{9.9^{2023}}$		
1.3	$\sqrt{9^{2023}} - \sqrt{9^2 \cdot 9^{2023}}$		
	$-3\sqrt{9^{2023}}$	✓ A simplifying numerator	
	$=\frac{\sqrt{9^{2023}(1-9)}}{\sqrt{9^{2023}(1-9)}}$	✓ A simplifying denominator	
	3	4001	
	$=-\frac{5}{8}$	✓CA answer	2)
1.4	y = 2x - 3	\checkmark A making y the subject of the	3)
1.4	y - 2x - 3	formula	
	$4x^{2} + (2x-3)^{2} - 2x(2x-3) - 7 = 0$	✓CA substitution	
	$4x^2 + 4x^2 - 12x + 9 - 4x^2 + 6x - 7 = 0$		
	$4x^2 - 6x + 2 = 0$	✓CA standard form	
	$2x^2 - 3x + 1 = 0$		
	(2x-1)(x-1)=0	✓CA factors	
	$x = \frac{1}{2} \qquad \text{or} x = 1$	\checkmark CA x -values	
	$y = 2\left(\frac{1}{2}\right) - 3$ or $y = 2(1) - 3$		
	$y = -2 \qquad \qquad y = -1$	✓CA y -values	

Mathem **Stanmore Physics. com** GRADE 12

Common Test June 2024

Marking Guideline

OR $x = \frac{y+3}{2}$ $4\left(\frac{y+3}{2}\right)^{2} + y^{2} - 2y\left(\frac{y+3}{2}\right) - 7 = 0$ $y^{2} + 3y + 2 = 0$ $(y+1)(y+2) = 0$ $y = -2 \text{ or } x = 1 \text{ or } x = 0$	
--	--

- \checkmark A making x the subject of the formula
- ✓CA substitution
- ✓CA standard form
- ✓CA factors
- ✓CA y -values
- ✓ CA x-values

(6) [34]

QUESTION 2

2.1	-5; 12; 27; 40; 51	
	17; 15; 13; 11;	
	-2;-2;-2;	
	The next two terms are 40 and 51	✓A ✓A answer
	The heat two terms are 10 and 31	(2)
2.2	-5; 12; 27; 40; 51	(-)
	17:15:13:11:	
	-2;-2;-2;	
	2a = -2	
	a = -1	\checkmark A $a = -1$
	17 = 3a + b	I = I
	17 = 3a + b $17 = 3(-1) + b$	
	b = 20	✓CA value of b
	-5 = -1 + 20 + c	
	c = -24	\checkmark CA value of c
	$T_n = -n^2 + 20n - 24$	✓CA answer
2.2	2	(4)
2.3	$51 = -n^2 + 20n - 24$	\checkmark CA equating T_n to 51
	$n^2 - 20n + 75 = 0$	✓CA standard form
	(n-5)(n-15) = 0	
	n=5 or $n=15$	1
	$\therefore T_5$ and T_{15} If stopping at values of n ,	✓CA answers
	still award the last mark	
	10 17	
2.4	$\sum_{n=3}^{10} T_n - \sum_{n=11}^{17} T_n$	
	Some will	(0) (0)
	Using symmetry: $T_3 = T_{17}$; $T_4 = T_{16}$ $T_5 = T_{15}$; etc.	✓CA✓CA = terms, using symmetry
	$(T_3 - T_{17}) + (T_4 - T_{16}) + (T_5 - T_{15}) + (T_6 - T_{14}) +$	
	$(T_7 - T_{13}) + (T_8 - T_{12}) + (T_9 - T_{11}) + T_{10}$	✓CA answer
	=0+0+0+0+0+0+0+76	(3)
	= 76 Stanmorephysics.com	the state of the s
	OR	OR I
	10 T	10
	Listing all the terms from $\sum_{n=2}^{\infty} T_n$.	✓CA Listing all the terms from $\sum_{n=1}^{\infty} T_n$
	n=3 17	n=3
	Listing all the terms from $\sum_{n=1}^{17} T_n$	✓ CA Listing all the terms from $\sum_{n=1}^{17} T_n$
	n=11	n=11
	$\sum_{n=0}^{10} T_n - \sum_{n=0}^{17} T_n = 76$	✓CA answer
	$\sum_{n=3}^{n-1} 1_n - \sum_{n=11}^{n-1} 1_n - 10$	(3)
		[12]
		[12]

QUESTION 3

3.1.1	$-\frac{7}{2}; -3; -\frac{5}{2}; \dots$ $a = -\frac{7}{2}$ $d = \frac{1}{2}$ $T_n = a + (n-1)d$ $T_n = -\frac{7}{2} + (n-1)\frac{1}{2}$ $T_n = -\frac{7}{2} + \frac{1}{2}n - \frac{1}{2}$	\checkmark A value of d	
	1	✓CA answer	(2)
3.1.2	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$ $675 = \frac{n}{2} \left[2\left(\frac{-7}{2}\right) + (n-1)\frac{1}{2} \right]$ $1350 = n\left(-7 + (n-1)\frac{1}{2}\right)$	✓CA substitute into formula	
	$2700 = -14n + n^{2} - n$ $0 = n^{2} - 15n - 2700$	✓CA factors	
	(n-60)(n+45)=0		
	n = 60 or $n = -45\therefore n = 60 only$	✓CA values of <i>n</i> ✓CA answer	(4)
3.1.3	$T_n = \left(\frac{1}{2}n - 4\right)^2$	\checkmark CA squaring T_n	/
	$T_{n} = \frac{1}{4}n^{2} - 4n + 16$ $n = -\frac{b}{2a}$ $n = -\frac{-4}{2\left(\frac{1}{4}\right)}$ $n = 8$ The 8 th term is the smallest OR Smallest value of $\left(\frac{1}{2}n - 4\right)^{2} = 0$ $\frac{1}{2}n - 4 = 0$ $n = 8$ If stopping at values of n , still award the last mark	✓CA substituting in $n = -\frac{b}{2a}$ ✓CA answer OR ✓CA squaring T_n ✓CA equating T_n to 0	
	The 8 th term is the smallest	✓CA answer (3	3)

Mathem Downloaded from Stanmorephysics. com GRADE 12

Common Test June 2024

	Marking Guideline	
3.2.1	r = 2(x+1) $-1 < r < 1$ $-1 < 2(x+1) < 1$	$\checkmark A r = 2(x+1)$ $\checkmark A -1 < r < 1$
	$\frac{1}{2} < x + 1 < \frac{1}{2}$	
	$\frac{3eph < ic1}{2}com}$	✓CA answer (3)
3.2.2	$a = \frac{-3}{4} + 1$	
	$a = \frac{1}{4}$	✓A answer (1)
3.2.3	$r = \frac{1}{2}$	✓CA value of r .
	$a = \frac{1}{4}$ $T_n = ar^{n-1}$	
	$T_n = ar^{n-1}$	
	$T_n = \frac{1}{4} \left(\frac{1}{2}\right)^{n-1}$	✓CA expression of T_n
	$\sum_{n=1}^{\infty} \frac{1}{4} \left(\frac{1}{2}\right)^{n-1}$ Answer only: Full marks	✓CA answer (3)
3.2.4	$S_{\infty} = \frac{a}{1-r}$	
	$= \frac{\frac{1}{4}}{1 - \frac{1}{2}}$	✓CA substitute in S_{∞} formula
	$=\frac{1}{2}$	✓CA answer
		(2)

QUESTION

		T .
4.1	$f(x) = \frac{6}{x-4} + 3$	$\checkmark A \frac{6}{x-4}$ $\checkmark A +3$
		\checkmark A +3
		(2)
4.2	For x-intercept: $0 = \frac{6}{x-4} + 3$	✓ CA equating to zero
	$-3 = \frac{6}{x-4}$ $-3x+12 = 6$ $-3x = -6$ $x = 2$ For y-intercept: $y = \frac{6}{0-4} + 3$	✓ CA <i>x</i> -intercept
	$=\frac{3}{2}$	✓ CA y-intercept (3)
4.3	y = 3 $1,5$ 0 2 $x = 4$ $Stanmore physics.com$	✓A shape ✓A asymptotes ✓CA intercepts (3)
4.4	y = -x + c 3 = -4 + c c = 7 y = -x + 7 Answer only: Full marks	✓ A substituting $m = -1$ ✓ A substituting (4; 3) ✓ CA answer
4.7	(7.10)	(3)
4.5	(5;10)	✓CA ✓CA answer
		(2)
		[13]

QUESTION 5

DO NOT MARK OUESTIONS 5.5, 5.6 AND 5.7

5.1	OT MARK QUESTIONS 5.5, 5.6 AND 5.7. B(1;-9)	$A\checkmark x$ -coordinate $A\checkmark y$ -coordinate
5.1		$\begin{array}{c c} A & x & \text{coordinate} \\ \hline \end{array} $ (2)
5.2	x < 1	A✓ answer
		(1)
5.3	$\left(x-1\right)^2-9=0$	✓ A equating to zero
	$(x-1)^2 = 9$	
	$(x-1)^2 = 9$ $(x-1) = \pm 3$	✓ A taking square root on both
	$x = 1 \pm 3$	sides
	x = 4 or $x = -2$	
	(4;0) or $(-2;0)$	✓CA answers
	OR	
	$(x-1)^2 - 9 = 0$	(3)
	$x^2 - 2x + 1 - 9 = 0$	OR
	$\begin{vmatrix} x - 2x + 1 - 9 = 0 \\ x^2 - 2x - 8 = 0 \end{vmatrix}$	✓A equating to zero
	$\begin{cases} x - 2x - 6 = 0 \\ (x - 4)(x + 2) = 0 \end{cases}$	(4.6.4)
	x = 4 or x = -2	✓ A factors
	(4;0) or $(-2;0)$	(CA
		✓CA answer (3)
5.4	$y = -a^x$	
	$-9 = -a^{1}$	\checkmark A substituting (1;-9)
	a=9	(1)
5.5	$g: y = -9^x$	
	$g^{-1}: x = -9^y$	\checkmark A swapping x and y
	$-x=9^y$	
	$\therefore y = \log_9(-x)$	✓ A answer
5.6	<u> </u>	· A answer
3.0	y	min ul
		MONT
	g^{-1}	
	4	✓CA shape
	(-1;0) O x	Cri shape
		✓CA <i>x</i> -intercept
	Stanmoreph sics.com	

Mathem Stanmorephysics. com GRADE 12

Common Test June 2024

Marking Guideline

		5
5.7	$y = \log_9(-x)$	
	$y = \log_9(-x)$ $2 = \log_9(-x)$	\checkmark CA $2 = \log_9(-x)$
	$-x=9^2$	
	x = -81	\checkmark CA value of x
	$\therefore x < -81$	✓CA answer
	ADDUT.	[7]

QUESTION 6

6.1	y = a(x+6)(x-2)	$A \checkmark y = a(x+6)(x-2)$
	Substitute $(-4; 6)$: $6 = a(-4+6)(-4-2)$	$A\checkmark$ substitute $(-4;6)$
	6 = -12a	$A \checkmark 6 = -12a$
	$a = -\frac{1}{2}$	
	$\therefore y = -\frac{1}{2}(x+6)(x-2)$	A \checkmark substitute back $a = -\frac{1}{2}$
	$y = -\frac{1}{2}x^2 - 2x + 6$	
	$\therefore b = -2 \text{ and } c = 6$	(4)
6.2	$x = -\frac{b}{2a}$ OR	
	$=-\frac{\left(-2\right)}{2\left(-\frac{1}{2}\right)}$ $x = \frac{-6+2}{2}$	A ✓ substitution
	$=-2 \qquad =-2$	$A\checkmark x$ -value of TP
	Maximum value = $h(-2) = -\frac{1}{2}(-2)^2 - 2(-2) + 6 = 8$	CA✓ answer (3)
6.3	$y = -\frac{1}{2}x + c$	
	Substitute $(-4; 6)$: $6 = -\frac{1}{2}(-4) + c$	✓ A substitution
	c = 4	Inni
	$\therefore y = -\frac{1}{2}x + 4$ OR $s(x) = -\frac{1}{2}x + 4$	✓CA answer
	Z Z	(2)
6.4	k < 2	✓✓CA CA answer (2)
6.5	Translated downwards by 8 units	✓✓CA CA answer
		(2)
		[13]

QUESTION 7

Penalise once only for incorrect notation in Question 7.1.1

7.1.1	$f(x) = 2x^2 + 4$	
	$f(x+h) = 2(x+h)^2 + 4 = 2x^2 + 4xh + 2h^2 + 4$	\checkmark A value of $f(x+h)$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 + 4 - 2x^2 - 4}{h}$	✓CA substitution into formula
	$f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2}{h}$	✓CA simplifying
	$f'(x) = \lim_{h \to 0} \frac{h(4x + 2h)}{h}$	✓CA factors
	$f'(x) = \lim_{h \to 0} (4x + 2h) \text{ ephysics.com}$	
	f'(x) = 4x	✓CA answer (5)
7.1.2	$f'(x) = m_{\text{tangent}}$	
	$\therefore 4x = -12$	\checkmark CA $4x = -12$
	x = -3 $y = 2(-3)^{2} + 4 = 22$	
	y - 2(-3) + 4 - 22 The tangent is at $(-3; 22)$	✓CA coordinates of contact point
	y = -12x + c	or conditions of conduct point
	22 = -12(-3) + c	✓CA substitution of point and
	c = -14	gradient
	y = -12x - 14	✓CA answer (4)
7.2.1	$f(x) = \frac{2x^2 - 5x - 12}{x - 4}$	
	$=\frac{(2x+3)(x-4)}{x-4}$	✓ A factors
	=2x+3	✓CA answer ✓CA answer
	f'(x) = 2	(3)
7.2.2	$D_{x}\left[x^{\frac{2}{5}}+x^{2}-9x\right]$	$\checkmark A x^{\frac{2}{5}}$
	$=\frac{2}{5}x^{\frac{-3}{5}} + 2x - 9$	$\checkmark \text{CA} \frac{2}{5} x^{\frac{-3}{5}} \checkmark \text{A} +2x \checkmark \text{A} -9$
		(4)
7.2.3	6 x	
	$=\frac{x}{6}-6x^{-1}$	\checkmark A $-6x^{-1}$
	$= \frac{x}{6} - 6x^{-1}$ $\frac{dy}{dx} = \frac{1}{6} + 6x^{-2}$	$\checkmark A -6x^{-1}$ $\checkmark A \frac{1}{6} \checkmark CA +6x^{-2}$ (3)
		[19]

QUESTION 8

8.1	For <i>x</i> -intercepts:		
0.1	-		
	$-x^3 + 10x^2 - 17x - 28 = 0$		
	$\therefore x^3 - 10x^2 + 17x + 28 = 0$		\checkmark A $(x+1)$
	$(x+1)(x^2-11x+28) = 0$		\checkmark CA trinomial
	(x+1)(x-4)(x-7) = 0		✓ CA factors
	$\therefore x = -1 \text{ or } x = 4$	or $x = 7$	Critaciois
	A(-1;0); B(4;0); C(7;0)	A navyar anly	✓CA answer
		Answer only: 3 marks	(4)
		3 marks	
8.2	For the turning points:		
	$f'(x) = -3x^2 + 20x - 17 = 0$		\checkmark A $f'(x) = -3x^2 + 20x - 17$
			\checkmark CA $f'(x) = 0$
	$3x^2 - 20x + 17 = 0$		
	(3x-17)(x-1)=0		
	$x = \frac{17}{3}$ or $x = \frac{17}{3}$	1	
	$y = \frac{400}{27}$ or $y = \frac{400}{27}$	= -36	
	_,		✓CA coordinates of D
	$D(1; -36); E(\frac{17}{3}; \frac{400}{27})$		✓ CA coordinates of D ✓ CA coordinates of E
		(3 21)	(4)
8.3.1	x-coordinate of At poir	nt of inflection:	
	point of inflection $f''(x)$	=-6x+20=0	CA mathed to coloulate a value
	$=\frac{1+\frac{17}{3}}{2}$ OR	$\therefore 6x = 20$	✓ CA method to calculate <i>x</i> -value of point of inflection
	$=\frac{3}{2}$ OR	10	or point of inflection
	17	$x = \frac{10}{3}$	
	$1 + \frac{17}{3}$		✓CA <i>x</i> -value
	$=\frac{3}{2}$		✓ CA x-value
	$=\frac{10}{10}$		THIN!
	$=\frac{3}{3}$		Jana
	Therefore: The graph is concave down for	$r > \frac{10}{1}$	✓CA answer
	Therefore. The graph is concave down it	3	(3)
8.3.2	$x < \frac{10}{}$		✓✓ CA CA answer
0.5.2	$\frac{3}{3}$		(2)
			[13]
L			[/]

GRADE 12 Marking Guideline

QUESTION 9

QUESTION 10

10.1	Total area = $2\left(\frac{1}{2}\pi r^2\right) + (x \times 2r)$	✓ A formula for area
	$400 = \pi r^2 + 2xr$	✓ A equating to 400
	$2xr = 400 - \pi r^2$	
	$x = \frac{400 - \pi r^2}{2r}$	(2)
10.2	Length = $2(\pi r) + 2x$	✓ A formula for perimeter
	$L(r) = 2(\pi r) + 2\left(\frac{400 - \pi r^2}{2r}\right)$	✓ A substitution
	$=2\pi r + \frac{400 - \pi r^2}{r}$	
	$=\frac{2\pi r^2 + 400 - \pi r^2}{r}$	✓ A simplification
	$=\frac{400}{r}+\pi r$	(3)
	r	(3)

		,
10.3	$L(r) = 400r^{-1} + \pi r$	✓ A derivative
	$L(r) = 400r^{-1} + \pi r$ $\frac{dL}{dr} = -400r^{-2} + \pi$ For a minimum: $\frac{dL}{dr} = -400r^{-2} + \pi = 0$ $\frac{1}{r^{2}} = \frac{\pi}{r^{2}}$	✓CA equating to zero
	$\frac{1}{r^2} = \frac{1}{400}$ $r^2 = \frac{400}{\pi}$ $r = \sqrt{\frac{400}{\pi}}$	✓CA r^2 subject of formula
	$\begin{array}{c} \sqrt{\pi} \\ = 11,28m \end{array}$	✓CA answer (4)
		[9]

TOTAL: 143

ADDENDUM TO THE PROVINCIAL COMMON TEST FOR GRADE 12 MATHEMATICS PAPER 1 JUNE 2024

- 1. This question paper will be marked out of 143, instead of 150.
- 2. The following sub-questions are outside of the scope of CAPS for Gr. 12 Mathematics and are therefore nullified:

No.	Sub-question number	Marks
1.	5.5	2
2.	5.6	2
3.	5.7	3
	TOTAL	7

- 3. Each learner's total mark for this question paper should then be converted to a mark out of 150, and this converted mark should then be recorded on SA-SAMS.
- 4. For this purpose a conversion table is attached.

MRIKato to	04/06/2024
U	
N.R Mthembu: Provincial Coordinator	Date

Downloaded from Stanmorephysics.com

CONVERSION TABLE FOR KZN JUNE 2024 MATHEMATICS PAPER 1							
Mark Obtained out of 143	Mark to enter on SASAMS out of 150	Mark Obtained out of 143	Mark to enter on SASAMS out of 150	Mark Obtained out of 143	Mark to enter on SASAMS out of 150		
11000	<u> </u>	49	51	97	102		
2	2	50	52	98	103		
3	3	51	53	99	104		
40001	4	52	55	100	105		
5	5	53	56	101	106		
6	6	54	57	102	107		
7	7	55	58	103	108		
8	8	56	59	104	109		
9	9	57	60	105	110		
10	10	58	61	106	111		
11	12	59	62	107	112		
12	13	60	63	108	113		
13	14	61	64	109	114		
14	15	62	65	110	115		
15	16	63	66	111	116		
16	17	64	67	112	117		
17	18	65	68	113	119		
18	19	66	69	114	120		
19	20	67	70	115	121		
20	21	68	71	116	122		
21	22	69	72	117	123		
22	23	70	73	118	124		
23	24	71	74	119	125		
24	25	72	76	120	126		
25	26	73	77	121	127		
26	27	73	78	121	127		
				123	129		
27	28	75 76	79				
28	29	76	80	124	130		
29	30	77	81	125	131		
30	31	78	82	126	132		
31	33	79	83	127	133		
32	34	80	84	128	134		
33	35	81	85	129	135		
34	36	82	86	130	136		
35	37	83	87	131	137		
36	38	84	88	132	138		
37	39	85	89	133	140		
38	40	86	90	134	141		
39	41	87	91	135	142		
40	42	88	92	136	143		
41	43	89	93	137	144		
42	44	90	94	138	145		
43	45	91	95	139	146		
44	46	92	97	140	147		
45	47	93	98	141	148		
46	48	94	99	142	149		
47	49	95	100	143	150		
48	50	96	101				