

KWAZULU-NATAL PROVINCE

EDUCATION

REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

MARKS: 150

This question paper consists of 11 pages, an information sheet and an answer book of 16 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 8 questions.
2. Answer ALL the questions in the ANSWER BOOK provided.
3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
7. An information sheet with formulae is included at the end of the question paper.
8. Write neatly and legibly.

QUESTION 1

In the diagram, DEFG is a parallelogram with vertices $\mathrm{D}(x ; 7), \mathrm{E}(-5 ; 0), \mathrm{F}(1 ;-8)$ and G . $\mathrm{GH} \perp \mathrm{EF}$, with H on EF , such that $\mathrm{EH}=\mathrm{HF}$. The angle of inclination of DG is β.
DE has a positive gradient. DG cuts the y-axis at $\mathrm{J}\left(0 ; \frac{5}{3}\right)$ and the x-axis at K .
The length of $\mathrm{DE}=5 \sqrt{2}$.

1.1 Calculate the gradient of EF.
1.2 Calculate the coordinates of H .
1.3 Determine the equation of GH in the form $y=m x+c$.

1.4 Calculate the size of β.
1.5 Calculate the size of OĴK.
1.6 Calculate the value of x.
1.7 Calculate the area of DEOJ.

QUESTION 2

In the diagram below, $\mathrm{P}(3 ;-2)$ is the centre of a circle that has the y-axis as tangent. A and B are the x-intercepts of circle P .

2.1 Determine
2.1.1 the radius of the circle
2.1.2 the equation of the circle
2.2 Calculate the distance AB .
2.3 Another circle has the equation $x^{2}+2 x+y^{2}-8 y-8=0$. Determine the radius and the coordinates of the centre of this circle.
2.4 Will the two circles intersect? Clearly motivate your answer by means of calculations.
2.5 The circle with centre P is reflected about the line $y=-1$. Write down the equations of the horizontal tangents to the new circle formed through this reflection.

QUESTION 3

DO NOT USE A CALCULATOR WHEN ANSWERING QUESTION 3.

3.1 In the diagram below, P is a point in the first quadrant such that $5 \cos \theta=3$.
$\mathrm{R}(k ; 6)$ is a point in the second quadrant such that $\mathrm{PO} \mathrm{R}=90^{\circ}$.

Determine the value of the following:

$$
\begin{equation*}
\text { 3.1.1 } \tan \theta \tag{3}
\end{equation*}
$$

3.1.2 $\sin 2 \theta$
3.1.3 k
3.2 Simplify fully: $\cos \left(385^{\circ}+\beta\right) \cdot \sin \left(35^{\circ}-\beta\right)+\sin \left(25^{\circ}+\beta\right) \cdot \sin \left(55^{\circ}+\beta\right)$
3.3 Given: $\sin 3 \theta=4 \sin \theta \cdot \cos ^{2} \theta-\sin \theta$.
3.3.1 Prove the given identity.
3.3.2 Hence, or otherwise, prove the following identity: $\frac{\sin 3 \theta+\sin \theta}{2+2 \cos 2 \theta}=\sin \theta$
3.3.3 Determine all the values of θ for which the identity in QUESTION 3.3.2 will be undefined.
3.4 Determine the minimum value of: $\cos 3 x-5$.

QUESTION 4

In the diagram below, RT represents the height of a vertical tower, with T the foot of the tower. A and B represent two points equidistant from T , and which lie in the same horizontal plane as T.

The height of the tower is h. The angle of depression of B from R is α.

4.1 Determine the size of AR B in terms of β.
4.2 Prove that $\mathrm{AB}=\frac{2 h \cdot \cos \beta}{\sin \alpha}$
4.3 Calculate the height of the tower, rounded off to the nearest unit, if $\mathrm{AB}=5,4$ units, $\alpha=51^{\circ}$ and $\beta=65^{\circ}$.

QUESTION 5

In the diagram, the graph of $g(x)=a \sin x$ is drawn for the interval $x \in\left[-180^{\circ} ; 180^{\circ}\right]$.
$\mathrm{A}\left(-90^{\circ} ;-2\right)$ are the coordinates of a turning point of the graph.

5.1 Write down the value of a.
5.2 On the grid provided in the ANSWER BOOK, draw the graph of $f(x)=2 \cos \left(x-30^{\circ}\right)$ for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$. Clearly indicate all intercepts with the axes, as well as the turning points and end points of the graph.
5.3 Write down:
5.3.1 the range of f

(2)
(2)
5.4 Determine algebraically the values of x if $f(x)=g(x)$, for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$.
5.5 Determine the value(s) of x, in the interval $x \in\left[-180^{\circ} ; 180^{\circ}\right]$, for which
5.5.1 $\quad g^{\prime}(x)=0$?
5.5.2 $f(x)>g(x) ?$

GIVE REASONS FOR YOUR STATEMENTS IN QUESTIONS 6, 7 AND 8.
QUESTION 6
6.1

SR is a diameter of the circle in the sketch below. Chord ST is produced to P .
PR is a tangent to the circle at R .
Chord SV produced meets PR at Q . TV and TR are drawn.

6.1.1 Write down the size of PRS. Provide a reason.
6.1.2 Calculate the size of:
(a) $\hat{\mathrm{P}}$
(b) \hat{V}_{1}

6.1.3 Prove that $\mathrm{P} \hat{\mathrm{Q}} \mathrm{S}=\mathrm{V} \hat{\mathrm{T}} \mathrm{S}$.
(4)
6.2 In the diagram below, the bigger circle has points $\mathrm{E}, \mathrm{O}, \mathrm{C}$ and D on its circumference. O is the centre of the smaller circle. C is a point of intersection between the two circles, and A and F are two more points on the circumference of the smaller circle.
ABCD and BOFE are straight lines.
$\hat{\mathrm{A}}=66^{\circ}$ and $\hat{\mathrm{E}}=42^{\circ}$.

Prove that $\mathrm{AB}=\mathrm{BC}$.

QUESTION 7

7.1 In the diagram, chords ST, SR and TR are drawn in the circle with centre O .

VSU is a tangent to the circle at S .

Use the diagram to prove the theorem which states that $V \hat{S} T=\hat{R}$.
7.2 LG is a tangent to circle EFGHP at G. Chord PH is produced to L. Chord HF cuts chord GP in M and chord EG in $\mathrm{K} . \mathrm{EG} \| \mathrm{PL}$ and $\mathrm{EF}=\mathrm{PH} . \hat{\mathrm{G}}_{4}=x$.

7.2.1 Write down, with reasons, THREE other angles, each equal to x.
7.2.2 Prove that $\triangle H M G||\mid \Delta E F G$.
7.2.3 Hence, or otherwise, prove that PH.HG = EG.HM.

QUESTION 8

no
In the diagram below, $\triangle \mathrm{ABC}$ is drawn with D on BC , and F and E on AC such that $\mathrm{AB} \| \mathrm{ED}$, $\mathrm{EB} \| \mathrm{FD}, \mathrm{AB} \perp \mathrm{BC}$ and $\mathrm{BE} \perp \mathrm{AC}$. $\mathrm{AC}=6,5$ units and $\mathrm{BC}=6$ units.

8.1 Determine the length of AB .
8.2 Prove that $\mathrm{CB}=\sqrt{\mathrm{CA} . \mathrm{CE}}$.
8.3 Hence, determine the length of CE, correct to one decimal place.
8.4 Write down the length of AE.
8.5 Determine the length of EF.

$(x-a)^{2}+(y-b)^{2}=r^{2}$
In $\triangle \mathrm{ABC}: \quad \frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \\
& \text { area } \triangle \mathrm{ABC}=\frac{1}{2} a b \cdot \sin \mathrm{C}
\end{aligned}
$$

$\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta$
$\cos 2 \alpha=\left\{\begin{array}{l}\cos ^{2} \alpha-\sin ^{2} \alpha \\ 1-2 \sin ^{2} \alpha \\ 2 \cos ^{2} \alpha-1\end{array}\right.$
$\bar{x}=\frac{\sum x}{n}$
$\mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}$
$\hat{y}=a+b x$
$\sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta$
$\cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta$

$$
\sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha
$$

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})
$$

$$
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

KWAZULU-NATAL PROVINCE

EDUCATION

REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

These marking guidelines consist of 17 pages.

NOTE:

- If a candidate answered a QUESTION TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answer in order to solve a problem is unacceptable.

$\mathbb{I N} \cap$	GEOMETRY
S	A mark for a correct statement (A statement mark is independent of a reason.)
R	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)
S / R	Award a mark if the statement AND reason are both correct.

QUESTION 1

1.1	$\begin{aligned} m_{\mathrm{EF}} & =\frac{-8-0}{1-(-5)} \\ & =-\frac{4}{3} \end{aligned}$ Answer only: Full marks	A \checkmark substitution CA \checkmark answer (2)
1.2	$\begin{aligned} & \left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right) \\ = & \left(\frac{-5+1}{2} ; \frac{0+(-8)}{2}\right) \\ = & (-2 ;-4) \end{aligned}$ Answer only: Full marks	A $\checkmark x$-coordinate A $\checkmark y$-coordinate
1.3	$\begin{aligned} m_{G H} \times\left(-\frac{4}{3}\right) & =-1 \\ m_{\mathrm{GH}} & =\frac{3}{4} \end{aligned}$ Substitute $(-2 ;-4)$ and $m_{\text {GH }}=\frac{3}{4}$ into $y=m x+c$: If $m=-\frac{4}{3}$ is used: $\begin{aligned} -4 & =\frac{3}{4}(-2)+c \\ c & =-\frac{5}{2} \end{aligned}$ maximum 1 mark $y=\frac{3}{4} x-\frac{5}{2}$ s.com	CA \checkmark value of $m_{\text {GH }}$ CA \checkmark substitution of point and gradient CA \checkmark answer
1.4	$\begin{aligned} m_{\mathrm{DG}}=m_{\mathrm{EF}} & =-\frac{4}{3} \\ m_{\mathrm{DG}}=\tan \beta & =-\frac{4}{3} \\ \beta & =126,87^{\circ} \end{aligned}$	$\mathrm{CA} \checkmark$ value of m_{DG} CA $\checkmark \tan \beta=-\frac{4}{3}$ CA \checkmark answer (3)

1.5	$\begin{aligned} \mathrm{OJK} & =126,87^{\circ}-90^{\circ} \\ =36,87^{\circ} & \text { [exterior } \angle \text { of } \Delta \mathrm{OJK}] \\ & \text { If answer is a negative angle: } 0 / 2 \end{aligned}$	CA \checkmark method CA \checkmark answer
1.6	$\begin{aligned} \text { DE }=\sqrt{(x-(-5))^{2}+(7-0)^{2}} & =5 \sqrt{2} \\ (x-(-5))^{2}+(7-0)^{2} & =50 \\ x^{2}+10 x+24 & =0 \\ (x+6)(x+4) & =0 \\ x & =-6 \text { or } x=-4 \\ x & =-4 \text { only } \end{aligned}$	$\begin{aligned} & \text { A } \checkmark \text { substitution in distance } \\ & \text { formula and equating to } 5 \sqrt{2} \\ & \text { CA } \checkmark \text { squaring both sides } \\ & \text { CA } \checkmark \text { standard form } \\ & \text { CA } \checkmark \text { both } x \text {-values } \\ & \text { CA } \checkmark \text { selecting the } x \text {-value }> \\ & -5 \end{aligned}$
	OR	OR
	$\text { Equation of DG: } \quad y=-\frac{4}{3} x+\frac{5}{3}$	CA \checkmark equation of $D G$
	Substitute $y=7: \quad 7=-\frac{4}{3} x+\frac{5}{3}$	CA \checkmark substitute $y=7$
	$\frac{4}{3} x=-7+\frac{5}{3}$	
	$\frac{4}{3} x=\frac{-16}{3}$	CA \checkmark simplification
	$\therefore x=\frac{-16}{3} \times \frac{3}{4}$	
		CA $\checkmark \checkmark$ answer $x=-4$

1.7	Equation of DG: $\quad y=-\frac{4}{3} x+\frac{5}{3}$ For x-coordinate of $\mathrm{K}: 0=-\frac{4}{3} x+\frac{5}{3}$ $x=\frac{5}{4}=1,25$ Area of $\triangle \mathrm{DEK}=\frac{1}{2} \times$ base \times height $\begin{aligned} & =\frac{1}{2} \times\left(5+\frac{5}{4}\right) \times 7 \\ & =\frac{175}{8} \end{aligned}$ Area of $\triangle \mathrm{OJK}=\frac{1}{2} \times \frac{5}{4} \times \frac{5}{3}$ $=\frac{25}{24}$ Area of PEOJ $_{p}=\frac{175}{8}-\frac{25}{24}=\frac{125}{6}=20,83$ units 2 OR Equation of $\mathrm{DG}: \quad y=-\frac{4}{3} x+\frac{5}{3}$ For x-coordinate of $\mathrm{K}: 0=-\frac{4}{3} x+\frac{5}{3}$ $x=\frac{5}{4}=1,25$ $\begin{aligned} & \mathrm{DK}=\sqrt{[1,25-(-4)]^{2}+(0-7)^{2}}=\sqrt{\frac{1225}{16}}=8,75 \\ & \mathrm{EK}=1,25-(-5)=6,25 \end{aligned}$ Area of $\triangle \mathrm{DEK}=\frac{1}{2} \times \mathrm{DK} \times \mathrm{EK} \times \sin \mathrm{JKO}$ $\begin{aligned} & =\frac{1}{2} \times 8,75 \times 6,25 \times \sin 53,13^{\circ} \\ & =21,87 \end{aligned}$ Area of $\Delta \mathrm{OJK}=\frac{1}{2} \times \frac{5}{4} \times \frac{5}{3}$ $=\frac{25}{24}$ Area of DEOJ $=21,87-\frac{25}{24}=20,83$ units 2	$C A \checkmark$ equation of $D G$ CA \checkmark substitution of $y=0$ CA \checkmark value of x-coordinate of K CA \checkmark substitution to calculate area of $\triangle \mathrm{DEK}$ CA \checkmark substitution to calculate area of $\Delta \mathrm{OJK}$ CA \checkmark area of DEOJ OR CA \checkmark equation of $D G$ CA \checkmark substitution of $y=0$ CA \checkmark value of x-coordinate of K CA \checkmark substitution to calculate area of $\triangle D E K$ CA \checkmark substitution to calculate area of $\triangle \mathrm{OJK}$ CA \checkmark area of DEOJ
		[23]

QUESTION 2

2.3	$\begin{aligned} x^{2}+2 x+y^{2}-8 y-8 & =0 \\ x^{2}+2 x+1+y^{2}-8 y+16 & =8+1+16 \\ (x+1)^{2}+(y-4)^{2} & =5^{2} \\ \text { radius } & =5 \text { units } \\ \text { centre: } & (-1 ; 4) \end{aligned}$	A \checkmark completing the square $\mathrm{A} \checkmark(x+1)^{2}+(y-4)^{2}=5^{2}$ CA \checkmark radius CA \checkmark coordinates of centre (4)
2.4	Sum of radii $=3+5=8$ $\begin{aligned} \text { Distance between centres } & =\sqrt{(-1-3)^{2}+(4-(-2))^{2}} \\ & =\sqrt{52}=7,21 \mathrm{units} \end{aligned}$ \therefore Distance between centres $<$ Sum of radii \therefore The circles will intersect	CA \checkmark sum of radii $C A \checkmark$ substitution CA \checkmark distance between centres CA \checkmark distance between centres $<$ sum of radii $\mathrm{CA} \checkmark$ conclusion
		(5)
2.5	$\begin{align*} & y=3 \\ & y=-3 \tag{2} \end{align*}$	A \checkmark answer A \checkmark answer
		[17]

QUESTION 3

3.1.1	$\begin{aligned} & \cos \theta=\frac{3}{5} \\ & \left.y^{2}=5^{2}-3^{2} \quad \text { [Pythagoras }\right] \\ & y=4 \\ & \tan \theta=\frac{4}{3} \end{aligned}$		$\begin{aligned} & \text { A } \checkmark \cos \theta=\frac{3}{5} \\ & \text { A } \checkmark y=4 \\ & \text { CA } \checkmark \text { answer } \end{aligned}$	(3)
3.1.2	$\begin{aligned} \sin 2 \theta & =2 \sin \theta \cos \theta \\ & =2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right) \\ & =\frac{24}{25} \end{aligned}$		A \checkmark expansion CA \checkmark substitution CA \checkmark answer	

$$
\text { 3.1.3 } \begin{array}{rlr}
\mathrm{RO} & =\sqrt{k^{2}+6^{2}} & \text { [Pythagoras] } \\
\sin \left(90^{\circ}+\theta\right) & =\cos \theta & \\
\sqrt{\square-6} & =\frac{3}{5} & \\
\sqrt{k^{2}+6^{2}} & \\
\sqrt{k^{2}+6^{2}} & =10 & \\
k^{2}+6^{2} & =100 \\
k^{2} & =64 \\
k & =-8 \\
\text { OR } \quad & \\
\cos \left(90^{\circ}+\theta\right) & =-\sin \theta \\
k & & \\
\frac{k}{k^{2}+6^{2}} & & \\
\text { [Pythagoras] } \\
-4 \sqrt{k^{2}+6^{2}} & =-\frac{4}{5} & \\
16\left(36+k^{2}\right) & =25 k^{2} \\
576+16 k^{2} & =25 k^{2} \\
9 k^{2} & =576 \\
k^{2} & =64 \\
k & =-8
\end{array}
$$

$$
\begin{aligned}
& \mathrm{RO}=\sqrt{k^{2}+6^{2}} \quad \text { [Pythagoras] } \\
& \mathrm{RP}^{2}=\mathrm{OP}^{2}+\mathrm{OR}^{2} \quad \text { [Pythagoras in } \triangle \mathrm{POR} \text {] } \\
& (k-3)^{2}+(6-4)^{2}=5^{2}+\left(k^{2}+36\right) \\
& k^{2}-6 k+9+4=25+k^{2}+36 \\
& -6 k=48 \text { oreph sics.com } \\
& k=-8 \\
& m_{O P}=\frac{4}{3} \\
& m_{O R}=\frac{6-0}{k-0} \\
& m_{O P} \times m_{O R}=-1 \\
& {[\mathrm{OR} \perp \mathrm{OP}]} \\
& \therefore \frac{4}{3} \times-\frac{6}{k}=-1 \\
& k=-8
\end{aligned}
$$

$\mathrm{A} \checkmark \mathrm{RO}=\sqrt{k^{2}+6^{2}}$
A $\checkmark \sin \left(90^{\circ}+\theta\right)=\cos \theta$

CA \checkmark substitution

CA \checkmark simplification
CA \checkmark answer

OR
A $\checkmark \mathrm{RO}=\sqrt{k^{2}+6^{2}}$
A $\checkmark \cos \left(90^{\circ}+\theta\right)=-\sin \theta$
CA \checkmark substitution

CA \checkmark simplification

CA \checkmark answer

OR
$\mathrm{A} \checkmark \mathrm{RO}=\sqrt{k^{2}+6^{2}}$
A \checkmark Pythagoras in $\triangle \mathrm{POR}$
CA \checkmark substitution
CA \checkmark simplification
CA \checkmark answer
$\square \square$
OR
$\mathrm{A} \checkmark m$ of OP

A $\checkmark m$ of OR
A \checkmark condition for gradients of \perp lines

CA \checkmark substitution
CA \checkmark answer

3.2	$\begin{align*} & \cos \left(385^{\circ}+\beta\right) \cdot \sin \left(35^{\circ}-\beta\right)+\sin \left(25^{\circ}+\beta\right) \cdot \sin \left(55^{\circ}+\beta\right) \\ & =\cos \left(25^{\circ}+\beta\right) \cdot \sin \left(35^{\circ}-\beta\right)+\sin \left(25^{\circ}+\beta\right) \cdot \cos \left[90^{\circ}-\left(55^{\circ}+\beta\right)\right] \\ & =\cos \left(25^{\circ}+\beta\right) \cdot \sin \left(35^{\circ}-\beta\right)+\sin \left(25^{\circ}+\beta\right) \cdot \cos \left(35^{\circ}-\beta\right) \\ & =\sin \left(25^{\circ}+\beta+35^{\circ}-\beta\right) \\ & =\sin 60^{\circ} \\ & =\frac{\sqrt{3}}{2} \tag{4}\\ & \text { OR } \\ & \cos \left(385^{\circ}+\beta\right) \cdot \sin \left(35^{\circ}-\beta\right)+\sin \left(25^{\circ}+\beta\right) \cdot \sin \left(55^{\circ}+\beta\right) \\ & =\cos \left(25^{\circ}+\beta\right) \cdot \cos \left[90^{\circ}-\left(35^{\circ}-\beta\right)\right]+\sin \left(25^{\circ}+\beta\right) \cdot \sin \left(55^{\circ}+\beta\right) \\ & =\cos \left(25^{\circ}+\beta\right) \cdot \cos \left(55^{\circ}+\beta\right)+\sin \left(25^{\circ}+\beta\right) \cdot \sin \left(55^{\circ}+\beta\right) \\ & =\cos \left[25^{\circ}+\beta-\left(55^{\circ}+\beta\right)\right] \\ & =\cos \left(-30^{\circ}\right) \\ & =\frac{\sqrt{3}}{2} \end{align*}$	$\mathrm{A} \checkmark \cos \left(25^{\circ}+\beta\right)$ $\mathrm{A} \checkmark \cos \left(35^{\circ}-\beta\right)$ A \checkmark applying compound angle identity A \checkmark answer OR $\mathrm{A} \checkmark \cos \left(25^{\circ}+\beta\right)$ $\mathrm{A} \checkmark \sin \left(55^{\circ}+\beta\right)$ A \checkmark applying compound angle identity A \checkmark answer
3.3.1	$\begin{align*} & \sin 3 \theta \\ & =\sin (2 \theta+\theta) \\ & =\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \\ & =2 \sin \theta \cos ^{2} \theta+\left(2 \cos ^{2} \theta-1\right) \sin \theta \\ & =2 \sin \theta \cos ^{2} \theta+2 \sin \theta \cos ^{2} \theta-\sin \theta \\ & =4 \sin \theta \cos ^{2} \theta-\sin \theta \tag{5} \end{align*}$ OR $\sin 3 \theta$ $=\sin (2 \theta+\theta)$ $=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta$ $=2 \sin \theta \cos ^{2} \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta$ $\begin{aligned} & =2 \sin \theta \cos ^{2} \theta+\sin \theta-2 \sin ^{3} \theta \\ & =2 \sin \theta \cos ^{2} \theta+\sin \theta-2 \sin \theta\left(1-\cos ^{2} \theta\right) \\ & =2 \sin \theta \cos ^{2} \theta+\sin \theta-2 \sin \theta+2 \sin \theta \cos ^{2} \theta \\ & =4 \sin \theta \cos ^{2} \theta-\sin \theta \end{aligned}$	A \checkmark replace 3θ by $(2 \theta+\theta)$ A \checkmark compound angle expansion A \checkmark sine double angle expansion A \checkmark cosine double angle expansion A \checkmark simplification OR A \checkmark replace 3θ by $(2 \theta+\theta)$ A \checkmark compound angle expansion A \checkmark sine double angle expansion A \checkmark cosine double angle expansion A \checkmark simplification

QUESTION 4

4.1	$\begin{array}{ll} \hline \mathrm{R} \hat{A} B=\mathrm{R} \hat{\mathrm{~B}} \mathrm{~A}=\beta & {[\Delta \mathrm{RAT} \equiv \Delta \mathrm{RBT}]} \\ \therefore \mathrm{A} \hat{\mathrm{RB}}=180^{\circ}-(\mathrm{RAB}+\mathrm{R} \hat{\mathrm{BA}}) & {[\text { sum of } \angle \mathrm{s} \text { of } \triangle \mathrm{RAB}]} \\ \square \cap=180^{\circ}-2 \beta & \end{array}$	A \checkmark answer	
4.2	$\begin{aligned} \mathrm{R} \hat{\mathrm{BT}} & =\alpha \quad \text { [alt. } \angle \mathrm{s} ; \\| \text { lines }] \\ \frac{h}{\mathrm{BR}} & =\sin \alpha \\ \mathrm{BR} & =\frac{h}{\sin \alpha} \\ \frac{\mathrm{AB}}{\sin \mathrm{ARB}} & =\frac{\mathrm{BR}}{\sin \mathrm{RAB}} \\ \mathrm{AB} & =\frac{\mathrm{BR} \cdot \sin \mathrm{~A} \hat{\mathrm{R}}}{\sin \mathrm{RAB}} \\ & =\frac{h \sin \left(180^{\circ}-2 \beta\right)}{\sin \alpha \sin \beta} \\ & =\frac{h \sin 2 \beta}{\sin \alpha \sin \beta} \\ & =\frac{h(2 \sin \beta \cos \beta)}{\sin \alpha \sin \beta} \\ & =\frac{2 h \cos \beta}{\sin \alpha} \end{aligned}$	A $\checkmark \frac{h}{\mathrm{BR}}=\sin \alpha$ A \checkmark BR subject of formula A \checkmark applying sine rule $A \checkmark A B$ subject of formula $A \checkmark \sin 2 \beta$ $\mathrm{A} \checkmark 2 \sin \beta \cos \beta$	
	$\begin{aligned} & \text { OR } \quad \begin{aligned} \mathrm{RBT} & =\alpha \quad \text { alt. } \angle \mathrm{s} ; \\| \text { lines] } \\ \frac{h}{\mathrm{BR}} & =\sin \alpha \\ \mathrm{BR} & =\frac{h}{\sin \alpha} \\ \mathrm{AB}^{2} & =\mathrm{BR}^{2}+\mathrm{AR}^{2}-2 \mathrm{BR} \cdot \mathrm{AR} \cdot \cos \left(180^{\circ}-2 \beta\right) \\ & =2 \mathrm{BR}^{2}-2 \mathrm{BR}^{2} \cdot \cos \left(180^{\circ}-2 \beta\right) \\ & =2 \mathrm{BR}^{2}+2 \mathrm{BR}^{2} \cdot \cos 2 \beta \\ & =2 \mathrm{BR}^{2}(1+\cos 2 \beta) \\ & =2 \mathrm{BR}^{2}\left(1+2 \cos ^{2} \beta-1\right) \\ & =4 \mathrm{BR}^{2} \cos ^{2} \beta \end{aligned} \\ & \begin{aligned} \therefore \mathrm{AB} & =2 \mathrm{BR}^{2} \cos \beta \\ & =\frac{2 h \cos \beta}{\sin \alpha} \end{aligned} \end{aligned}$	OR $\mathrm{A} \checkmark \frac{h}{\mathrm{BR}}=\sin \alpha$ A \checkmark BR subject of formula A \checkmark applying cosine rule $\mathrm{A} \checkmark-\cos \left(180^{\circ}-2 \beta\right)=\cos 2 \beta$ $\mathrm{A} \checkmark \cos 2 \beta=2 \cos ^{2} \beta-1$ A \checkmark square root on LHS and RHS	
4.3	$\begin{aligned} 5,4 & =\frac{2 h \cos 65^{\circ}}{\sin 51^{\circ}} \\ h & =\frac{5,4 \times \sin 51^{\circ}}{2 \cos 65^{\circ}} \\ h & =5 \text { units }^{2} \end{aligned}$ Accept 4,96 units as answer	A \checkmark substitution A $\checkmark h$ subject of formula CA \checkmark answer	
		[10]	

QUESTION 5

5.1	$a=2$	A \checkmark answer	(1)
5.2		$\begin{aligned} & \mathrm{A} \checkmark \text { shape } \\ & \mathrm{A} \checkmark \text { turning points } \\ & \mathrm{A} \checkmark x \text {-intercepts } \\ & \mathrm{A} \checkmark y \text {-intercept } \end{aligned}$	(4)
5.3.1	$y \in[-2 ; 2] \quad \text { OR } \quad-2 \leq y \leq 2 \begin{array}{\|l\|} \hline \begin{array}{l} \text { Penalty of 1 mark if one or } \\ \text { both end points are excluded } \end{array} \\ \hline \end{array}$	A \checkmark A \checkmark answer	(2)
5.3.2	$\begin{aligned} \text { period } & =\frac{360^{\circ}}{3} \\ & =120^{\circ} \end{aligned}$ Answer only: Full marks	$\begin{aligned} & \text { A } \checkmark \frac{360^{\circ}}{3} \\ & \text { A } \checkmark \text { answer } \end{aligned}$	(2)
5.4	$\begin{aligned} 2 \sin x & =2 \cos \left(x-30^{\circ}\right) & & \\ \sin x & =\cos \left(x-30^{\circ}\right) & & \\ \sin x & =\sin \left[90^{\circ}-\left(x-30^{\circ}\right)\right] & & \\ \sin x & =\sin \left(-x+120^{\circ}\right) & & \\ x & =-x+120^{\circ}+k .360^{\circ} & \text { or } & x=180^{\circ}-\left(-x+120^{\circ}\right)+k .360^{\circ}, \\ k & \in Z & & \\ 2 x & =120^{\circ}+k .360^{\circ} & & x=300^{\circ}+x+k .360^{\circ} \\ x & =60^{\circ}+k .180^{\circ} & & \text { no solution } \end{aligned}$ In the interval $x \in\left[-180^{\circ} ; 180^{\circ}\right]$: $x=60^{\circ} \text { or } x=-120^{\circ}$	A \checkmark equating A \checkmark co-function $\mathrm{A} \checkmark$ both solutions $\begin{aligned} & \text { CA } \checkmark x=60^{\circ} \\ & \text { CA } \checkmark x=-120^{\circ} \end{aligned}$	(5)

QUESTION 6

\begin{tabular}{|c|c|c|c|}
\hline 6.1.1 \& \(\mathrm{PRS}=90^{\circ} \quad[\) tangent \(\perp\) diameter] \& \(\mathrm{S} \checkmark \mathrm{R} \checkmark\) \& \\
\hline \[
\begin{aligned}
\& 6.1 .2 \\
\& \text { (a) }
\end{aligned}
\] \& \begin{tabular}{l}
\[
\begin{array}{rlr}
\mathrm{PSRR} \& =\hat{\mathrm{R}}_{\mathrm{D}} \& \text { [tan-chord-theorem] } \\
\& =48^{\circ} \& \\
\begin{aligned}
\therefore \hat{\mathrm{P}} \& =180^{\circ}-(\mathrm{PSR}+\mathrm{PRS}) \\
\& =180^{\circ}-\left(48^{\circ}+90^{\circ}\right) \\
\& =42^{\circ}
\end{aligned} \& \text { [sum of } \angle \mathrm{s} \text { of } \triangle \mathrm{PSR}]
\end{array}
\] \\
OR
\[
\left.\left.\left.\begin{array}{|lrl}
\hat{\mathrm{T}}_{1} \& =90^{\circ} \& \\
\hat{\mathrm{P}} \& =\hat{\mathrm{T}}_{1}-\hat{\mathrm{R}}_{1} \&
\end{array} \angle \text { in semi-circle] }\right] \text { [exterior } \angle \text { of } \Delta \mathrm{PTR}\right]\right] \text { } \begin{aligned}
\& =90^{\circ}-48^{\circ} \& \& \\
\& =42^{\circ} \& \&
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
S/R \(\checkmark\) \\
A \(\checkmark \mathrm{P} \hat{S} R=48^{\circ}\) \\
CA \(\checkmark\) answer \\
OR \\
\(S / R \checkmark\) \\
S \(\checkmark\) \\
A \(\checkmark\) answer
\end{tabular} \& (2)

(3)

\hline \[
$$
\begin{aligned}
& 6.1 .2 \\
& \text { (b) }
\end{aligned}
$$

\] \& | $\begin{aligned} \hat{\mathrm{R}}_{2} & =90^{\circ}-48^{\circ}=42^{\circ} \\ \hat{\mathrm{V}}_{1} & =\hat{\mathrm{R}}_{2} \\ & =42^{\circ} \end{aligned}$ |
| :--- |
| [$\angle \mathrm{s}$ in same segment] | \& \[

$$
\begin{aligned}
& \mathrm{A} \checkmark \hat{R}_{2}=42^{\circ} \\
& \mathrm{R} \checkmark \\
& \mathrm{CA} \checkmark \text { answer }
\end{aligned}
$$
\] \&

\hline 6.1.3 \& \& $$
\begin{aligned}
& \mathrm{S} / \mathrm{R} \checkmark \\
& \mathrm{~S} \checkmark \hat{\mathrm{~T}}_{1}=90^{\circ} \\
& \mathrm{S} \checkmark \mathrm{VT} \mathrm{~S}=90^{\circ}+\hat{\mathrm{T}}_{2} \\
& \mathrm{~S} / \mathrm{R} \checkmark \\
& \text { OR } \\
& \mathrm{S} \checkmark \mathrm{OQ} \\
& \mathrm{~S} \checkmark \mathrm{R} \checkmark \\
& \mathrm{R} \checkmark \\
& \hline \mathrm{OR} \\
& \hline \mathrm{OR} \\
& \hline \mathrm{~S} \checkmark \mathrm{R} \checkmark \\
& \mathrm{~S} / \mathrm{R} \checkmark \\
& \mathrm{R} \checkmark \\
& \hline
\end{aligned}
$$ \& (4)

(4)

\hline
\end{tabular}

6.2	$\begin{aligned} & \hat{\mathrm{O}}_{1}=2 \times \hat{\mathrm{A}} \\ &=2 \times 66^{\circ}=132^{\circ} \\ & \hat{\mathrm{C}}_{1}=\hat{\mathrm{E}} \\ &=42^{\circ} \\ & \hat{\mathrm{B}}_{2}=\hat{\mathrm{O}}_{1}-\hat{\mathrm{C}}_{1} \\ &=132^{\circ}-42^{\circ}=90^{\circ} \\ & \therefore \mathrm{AB}=\mathrm{BC} \end{aligned}$	[\angle at centre $=2 \times \angle$ at circumf.] [ext. \angle of cyclic quad.] [ext. \angle of $\Delta \mathrm{OBC}]$ [line from centre \perp to chord]	S/R \checkmark A \checkmark answer S/R \checkmark \checkmark A answer \checkmark A $132^{\circ}-42^{\circ}=90^{\circ}$ R \checkmark	
				[18]

QUESTION 7

| 7.2.1 | $\begin{aligned} & \hat{\mathrm{F}}_{2}=\hat{\mathrm{G}}_{4}=x \\ & \hat{\mathrm{P}}=\hat{\mathrm{G}}_{4}=x \\ & \hat{\mathrm{G}}_{2}=\hat{\mathrm{P}}=x \end{aligned}$ | [tan-chord-theorem]
 [tan-chord-theorem]
 [alt. $\angle \mathrm{s} ; \mathrm{GE} \\| \mathrm{HP}$] | $\begin{aligned} & S \checkmark R \checkmark \\ & S \checkmark R \checkmark \\ & S \checkmark R \checkmark \end{aligned}$ | (6) | |
|---|---|---|---|---|---|---|
| 7.2.2 | In $\triangle H M G$ and $\triangle E F G$:
 1. $\hat{H}_{2}=\hat{\mathrm{E}}$
 2. $\hat{\mathrm{G}}_{3}=\hat{\mathrm{G}}_{1}$
 3. $\hat{\mathrm{M}}_{3}=\mathrm{EF} G$
 $\therefore \Delta \mathrm{HMG}\|\|\mid \mathrm{EFG}$ | $\begin{aligned} & \text { [} \angle \mathrm{s} \text { in the same segment }] \\ & \text { [} \angle \mathrm{s} \text { subtended by } \mathrm{chords} \text {] } \\ & \text { [sum of } \angle \mathrm{s} \text { of a } \Delta \text {] } \\ & {[\angle \angle \angle]} \end{aligned}$ | $\begin{aligned} & S \checkmark R \checkmark \\ & S \checkmark R \checkmark \\ & R \checkmark \end{aligned}$ | |
| 7.2.3 | $\begin{aligned} \frac{\mathrm{HM}}{\mathrm{EF}} & =\frac{\mathrm{HG}}{\mathrm{EG}} \\ \text { But: } \mathrm{EF} & =\mathrm{PH} \\ \therefore \frac{\mathrm{HM}}{\mathrm{PH}} & =\frac{\mathrm{HG}}{\mathrm{EG}} \end{aligned}$
 [\||| $\Delta \mathrm{s}$]
 [given]
 And PH.HG = EG.HM | | $S \checkmark R \checkmark$
 $\mathrm{S} \checkmark \frac{\mathrm{HM}}{\mathrm{PH}}=\frac{\mathrm{HG}}{\mathrm{EG}}$ | |
| | | | | (3) |
| | | | | [19] |

QUESTION 8

8.1	$\begin{aligned} \mathrm{AB}^{2} & =\mathrm{AC}^{2}-\mathrm{BC}^{2} \\ & =6,5^{2}-6^{2} \\ \therefore \mathrm{AB} & =2,5 \text { units } \end{aligned}$	S/R \checkmark using Theorem of Pythagoras A \checkmark				
8.2	In $\triangle \mathrm{CBA}$ and $\triangle \mathrm{CEB}$: 1. $\hat{\mathrm{C}}=\hat{\mathrm{C}}$ 2. $\mathrm{A} \hat{\mathrm{B}} \mathrm{C}=\mathrm{CE} \mathrm{B}$ 3. $\hat{\mathrm{A}}=\mathrm{C} \hat{\mathrm{BE}}$ $\therefore \triangle \mathrm{CBA}\|\|\mid \triangle \mathrm{CEB}$ $\therefore \frac{\mathrm{CB}}{\mathrm{CA}}=\frac{\mathrm{CE}}{\mathrm{CB}}$ $\therefore \mathrm{CB}^{2}=\mathrm{CA} . \mathrm{CE}$ and $\mathrm{CB}=\sqrt{\mathrm{CA} . \mathrm{CE}}$ OR $\Delta \mathrm{CBA}\|\|\mid \triangle \mathrm{CEB}$ $\begin{aligned} & \therefore \frac{\mathrm{CB}}{\mathrm{CA}}=\frac{\mathrm{CE}}{\mathrm{CB}} \\ & \therefore \mathrm{CB}^{2}=\mathrm{CA} \cdot \mathrm{CE} \end{aligned}$ $\text { and } \mathrm{CB}=\sqrt{\mathrm{CA} \cdot \mathrm{CE}}$ [common] [both $=90^{\circ}$; given] [sum of $\angle \mathrm{s}$ of a Δ] [$\angle \angle \angle$] $[\|\|\mid \Delta \mathrm{s}]$ [perpendicular from right \angle vertex to hypotenuse] $[\|\|\mid \Delta s]$	$\mathrm{S} \checkmark$ identifying triangles S \checkmark S/R \checkmark R \checkmark S \checkmark $\mathrm{S} \checkmark \mathrm{CB}^{2}=\mathrm{CA} . \mathrm{CE}$ OR S $\checkmark \Delta$ CBA $\|\|\mid \Delta$ CEB R $\checkmark \checkmark \checkmark$ S \checkmark $\mathrm{S} \checkmark \mathrm{CB}^{2}=\mathrm{CA} . \mathrm{CE}$ (6)				
8.3	6 $=\sqrt{6,5 \cdot \mathrm{CE}}$ 36 $=6,5 . \mathrm{CE}$ $=5,5$ units Penalty of 1 mark for incorrect rounding off (5,54 units)	A \checkmark substitution A \checkmark answer				
8.4	$\mathrm{AE}=6,5-5,5=1$ unit \quad Accept 0,96 units	CA \checkmark answer				
8.5	$\frac{\mathrm{BD}}{\mathrm{BC}}=\frac{\mathrm{AE}}{\mathrm{AC}}[$ prop. theorem; $\mathrm{AB} \\| \mathrm{ED}]$ or [line $\\|$ to side of $\left.\Delta\right]$ $=\frac{1}{6,5}$ Also: $\frac{\mathrm{BD}}{\mathrm{BC}}=\frac{\mathrm{EF}}{\mathrm{EC}}$ [prop. theorem; $\mathrm{EB} \\| \mathrm{FD}$] or [line $\\|$ to side of Δ] $\therefore \frac{1}{6,5}=\frac{\mathrm{EF}}{5,5}$ Penalise only once if parallel $\therefore \mathrm{EF}=\frac{1 \times 5,5}{6,5}$ $\therefore \mathrm{EF}=\frac{11}{13}$ units $=0,85$ units Accept 0,82 units	CA \checkmark answer				
		[16]				

