

NSC

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of **9** questions.
- 2. Answers ALL questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Write neatly and legibly.

June 2024 (Practice)

x

C (6 ; -1)

Stanmore

QUESTION 1 A (-3; 3), B (2; 3), C (6; -1) and D (x; y) are vertices of quadrilateral ABCD in a Cartesian plane. y A (-3 ; 3) B (2 ; 3)

1.1	Determine the equation of AD.	(4)
1.2	Prove that the coordinates of D are $\left(\frac{3}{2}; -\frac{3}{2}\right)$ if D is equidistant from B and C.	(6)
1.3	Hence, or otherwise, determine the gradient of BD.	(2)
1.4	Determine the size of θ , the angle between BD and BC, rounded off to one decimal digit.	(4)
1.5	Calculate the area of Δ BDC rounded off to the nearest square unit.	(5)
		[21]

D(x; y)

(3)

NSC

QUESTION 2

2.1 The equations of two circles O and M are:

(x + 1)² + (y - 3)² = 1 M: $x^{2} + y^{2} + 8x - 6y + 9 = 0$

2.1.1 Determine the coordinates of the centre of the circle M.

2.1.2 Show, by calculation, that the circles touch each other, internally. (4)

2.2 In the diagram below, the line AC with equation y - x - 2 = 0 is a tangent at A to the circle with centre M (4; 4) while AB is a diameter of the circle.

Mathema**Rephysicaled from Stanmorephysics.com** NSC

QUESTION 33.1Given:
$$\sin \alpha = \frac{8}{17}$$
 where $90^\circ \le \alpha \le 270^\circ$
Calculate the following with the aid of a diagram and without using a calculator:
 $3.1.1$ $3\tan \alpha$ (3)
(3)
(3)
(3)
(3)
(3)
(3.1.2 $\sin(90^\circ + \alpha)$ (2)
(3)
(3)
(3)3.2Given: $\sin \theta \cos \theta = \frac{k}{4}$
Use a diagram to find the value of $\tan 2\theta$ in terms of k if 2θ is an acute angle.(5)[13]
QUESTION 44.1Simplify, without using a calculator:

$$\frac{2\cos 105^{\circ}\cos 15^{\circ}}{\cos (45^{\circ}-x)\cos x - \sin (45^{\circ}-x)\sin x}$$
(6)
Starmore physics.com

 $\frac{1+\sin 2\theta}{\cos 2\theta} = \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta}$ 4.2 Given:

4.2.1 Prove the identity.(5)4.2.2 Determine the values of
$$\theta$$
 for which the identity is undefined.(3)4.2.3 Hence, or otherwise, without the use of a calculator, find the value of:(3) $\frac{\cos 15^{\circ} + \sin 15^{\circ}}{\cos 15^{\circ} - \sin 15^{\circ}}$ (3)4.3 Determine the general solution for the equation: $7\cos x - 2\sin^2 x + 5 = 0$ (7)[24]

In the diagram above the graphs of $f(x) = \sin ax$ and $g(x) = b\cos x$ for $x \in [-180^\circ; 180^\circ]$ are drawn.

		[14]
5.7	If g is reflected about the x-axis, write down the new function as $k(x) =$	(2)
5.6	If the curve f is shifted 45° to the left, write down the new function as $h(x) = \dots$	(2)
5.5	Determine the value(s) of x, if $f(x)$. $g(x) < 0$, for $x \in [-180^\circ; 180^\circ]$.	(3)
5.4	Determine the range of $f(x) + 3$.	(2)
5.3	State the amplitude of <i>f</i> .	(1)
5.2	Write down the periods of <i>f</i> and <i>g</i> .	(2)
5.1	Determine the numerical values of \boldsymbol{a} and \boldsymbol{b} .	(2)

A, B and C are three points in the same horizontal plane. DA is perpendicular to the horizontal plane at A, and D is joined to C.

Determine AC in terms of a and 2β . 6.1

Hence, show that $AD = a \tan \beta \sqrt{1 + 8 \sin^2 \beta}$ 6.2

(4)

[7]

(3)

In the diagram O is the centre of circle HEATR. AOF is parallel to EH. 7.1 $\widehat{F}_2 = 78^\circ$ and $\widehat{R}_1 = 22^\circ$.

Calculate, with reasons, the size of:

- 7.1.1 $\hat{0}_1$ (2) 7.1.2 \hat{H}_1 (2) 7.1.3 T
- (2) 7.1.4 \hat{H}_2 (2)

Mathematic Mathematic

NSC

7.2 In the diagram, O is the centre of the circle. Chords AD and CB intersect at E and AC || BD.

Prove, with reasons, that AEOB is a cyclic quadrilateral.

(6)

[14]

Mathem Rownloaded from Stanmorephysics.com

NSC

QUESTION 8

8.1 In the diagram, Δ KLM and Δ PQR are two triangles such that $\hat{K} = \hat{P}$, $\hat{L} = \hat{Q}$ and $\hat{M} = \hat{R}$.

Use the diagram to prove the theorem which states that $\frac{KL}{PQ} = \frac{KM}{PR}$. (6)

8.2 In the figure, FE is a tangent to the circle O. D and F are joined so that EG = GF.

NSC

QUESTION 9

In the figure below, TW is a tangent to the circle with centre R at point V. Radius RV intersects chord SM at P such that NP = PS. The circle has a radius of 10 units. RST and RKW are straight lines. RW intersects the circle at K and chord SM at N. ST = 7 units and NW = 6 units.

Mathem Rownloaded from Stanmorephysics.com

NSC DIAGRAM SHEET

Mathema**Republicaded from Stanmorephysics.com** NSC

QUESTION 8.1

Mathema**Rownloaded from Stanmorephysics.com** NSC

INFORMATION SHEET

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
A = P(1 + ni) A = P(1 + ni)	(n+1) A	$A = P(1-i)^n$ $F = a + (n-1)a$	A	$= P(1+i)^n$ $= {n \choose 2a + (n-1)d}$	
$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = -$ $T_n = ar^{n-1} \qquad \qquad$	$\frac{1}{2}$ $S_n = \frac{a(r^n - 1)}{2}$	$; \qquad r \neq 1$	$S_{\infty} = \frac{a}{1}$	$-\frac{1}{2}(2u + (n-1)u)$	
$F = \frac{x\left[(1+i)^n - 1\right]}{i}$	" r-1	<i>P</i> =	$=\frac{x[1-(1+i)^{-n}]}{i}$	<i>.</i>	
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - h}{h}$	f(x)		·		
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$	$(-y_1)^2$	$M\left(\frac{x_1+x_2}{2}\right)$	$\frac{x_2}{2}; \frac{y_1 + y_2}{2} \right)$		
$y = mx + c \qquad \qquad$	$y - y_1 = m(x - x)$	(x ₁)	$n = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$	
$(x-a)^2 + (y-b)^2 = r^2$					
In $\triangle ABC$: $\frac{a}{\sin A} =$	$=\frac{b}{\sin B}=\frac{c}{\sin C}$	$a^2 = b^2$	$+c^2-2bc.\cos A$	$area\Delta ABC = -$	$\frac{1}{2}ab.\sin C$
$\sin(\alpha + \beta) = \sin \alpha . \cos \beta$	$\beta + \cos \alpha . \sin \beta$	S	$\sin(\alpha - \beta) = \sin \alpha$	$\alpha .\cos\beta - \cos\alpha .\sin\beta$	
$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta$	$\beta - \sin \alpha . \sin \beta$	($\cos(\alpha - \beta) = \cos(\alpha - \beta)$	$\alpha .\cos\beta + \sin\alpha .\sin\beta$	

$$(x; y) \to (x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$$

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}$$

$$\bar{x} = \frac{\sum fx}{n}$$
$$P(A) = \frac{n(A)}{n(S)}$$

P(A or B) = P(A) + P(B) - P(A and B)

$$\hat{y} = a + bx \qquad \qquad b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Copyright reserved

This marking guideline consists of 9 pages.

Please Turn Over

Mathema**Rowphoaded from Stanmorephysics.com** NSC - MARKING GUIDELINE

1.1	$m_{\rm AD} = m_{\rm BC} = \frac{3+1}{2-6}$	✓ substitution
	= -1	√ m
	Sub A(-3; 3): y = -x + c 3 = -(-3) + c c = 0	✓ substitution
	$\therefore y = -x$	\checkmark equation (4)
1.2	$D(x; y) \rightarrow y = -x$	
	BD = CD → BD ² = CD ² : $(2 - x)^{2} + (3 - y)^{2} = (6 - x)^{2} + (-1 - y)^{2}$ $(2 - x)^{2} + (3 - (-x))^{2} = (6 - x)^{2} + (-1 - (-x))^{2}$ $4 - 4x + x^{2} + 9 + 6x + x^{2} = 36 - 12x + x^{2} + 1 - 2x + x^{2}$	✓ BD = CD ✓ substitution ✓ $y = -x$
	16x = 24	✓ simplification
	$x = \frac{24}{16} = \frac{3}{2}$	$\checkmark x$ -value
	$y = -\frac{3}{2}$	✓ y -value
	$\therefore D\left(\frac{3}{2} ; -\frac{3}{2}\right)$	(6)
1.3	$3 + \frac{3}{2} = 0$	✓ substitution
	$m_{\rm BC} = \frac{1}{2 - \frac{3}{2}} = 9$	\checkmark answer (2)
1.4	let \angle of inclination of BC be α and \angle of inclination of BD be β	\checkmark tan = m
	$ \begin{aligned} tan \alpha &= m_{\rm BC} \\ tan \alpha &= -1 \end{aligned} $ $ tan \beta = m_{\rm BD} \\ tan \beta = 9 \end{aligned} $	✓ angles
	$\alpha = 135^{\circ} \qquad \qquad \beta = 83,7^{\circ} \qquad \qquad \beta = 83,7^{\circ} \qquad \qquad \beta = 83,7^{\circ} \qquad \qquad \beta = 135^{\circ} - 83,7^{\circ} \qquad \qquad \qquad = 51,3^{\circ} \qquad \qquad$	√difference √answer (4)
1.5	$BD^{2} = CD^{2} = \left(2 - \left(\frac{3}{2}\right)\right)^{2} + \left(3 - \left(-\frac{3}{2}\right)\right)^{2} = \frac{41}{2}$	✓ substitution ✓ BD=CD
	\therefore BD = CD = $\frac{\sqrt{82}}{2}$ units	✓ BDC
	$BDC = 180^{\circ} - (51,3^{\circ} \times 2) = 77,4^{\circ}$	✓ sub in Area
	Area _{<math>\Delta ABC = $\frac{1}{2} \left(\frac{41}{2} \right) \sin 77, 4^{\circ} = 10$ square units</math>}	Rule √answer (5)

Mathema**Rowphoaded from Stanmorephysics.com** NSC - MARKING GUIDELINE

QUEST	TION 2	
2.1.1	$x^{2} + 8x + (4)^{2} + y^{2} - 6y + (-3)^{2} = -9 + (4)^{2} + (-3)^{2}$ (x + 4) ² + (y - 3) ² = 16	✓ substitution ✓ centre- radius form
	\therefore centre (-4;3)	√answer (3)
2.1.2	Circle 0: $r_0 = 1$ unit 0 (-1; 3) Circle M: $r_M = 4$ units	√r ₀ √r _M
	OM = 3 units	√ ОМ
	Since: OM = r _M − r _O ∴ circles touch internally	✓ conclusion
		(4)
2.2.1	$y = x + 2 \qquad \therefore m_{AC} = 1 \\ \Rightarrow m_{AB} = -1 \qquad \text{tan } \perp \text{ rad}$	✓ S/R
	sub M(4;4) $4 = -(4) + c$ $c = 8$ $\therefore y = -x + 8$	√substitution √eqn (3)
2.2.2	At A: $x + 2 = -x + 8$	√equating
	x = 3	$\checkmark x$ -val
	y=(3)+2=5 : A (3;5)	(2)
2.2.3	$(x-4)^2 + (y-4)^2 = r^2$	$\begin{array}{c} \sqrt{(x-4)} \\ (y-4) \end{array}$
	sub A (3; 5): $r^2 = (3-4)^2 + (5-4)^2 = 2$	√sub√r
	$\therefore (x-4)^2 + (y-4)^2 = 2$	√eqn (4)
2.2.4	$\frac{x_{\rm B}+3}{2} = 4$ $\frac{y_{\rm B}+5}{2} = 4$	
	$x_{\rm B} + 3 = 8$ $x_{\rm B} = 5$ $y_{\rm B} + 5 = 8$ $y_{\rm B} = 3$	$\checkmark x_{\rm B}$ $\checkmark y_{\rm B}$ Answer Only:
	∴ B(5;3)	full marks
2.2.5	AC BD (co-int $\angle s =$) $m_{AC} = m_{BD} = 1$	\checkmark S/R \checkmark = m
	sub B(5;3): $3 = 5 + c$ $c = -2$ $\therefore y = x - 2$	√substitution √eqn (4)
L	1	[22]

Mathem Rownloaded from Stanmorephysics.com

NSC – MARKING GUIDELINE

Mathema**Rowphoaded from Stanmorephysics.com** NSC – MARKING GUIDELINE

OUFSTION A

QUESI	IUN T					
4.1	$=\frac{2\cos(90^\circ + 15^\circ)\cos 15^\circ}{2}$				$\checkmark \cos(45^\circ - x)$	+ x)
	$\cos(45^\circ - x + x)$				✓ sin 15°	
	$=\frac{2\sin 15^{\circ}\cos 15^{\circ}}{\cos 45^{\circ}}$				✓ cos 45°	
	$= \frac{\sin 30^\circ}{2}$				$\checkmark \cos 30^{\circ}$	
	$\cos 45^{\circ}$ $\frac{1}{\sqrt{2}}$				$\sqrt{\frac{2}{1}}$	
	$=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$				$\frac{1}{\sqrt{2}}$	(c)
121	$\sqrt{2}$ 2 $\cos\theta + \sin\theta$ $\cos\theta + d$	$rac{1}{1}$ sin A			✓ answer	(6)
4.2.1	$RHS = \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} \times \frac{\cos\theta + \sin\theta}{\cos\theta + \cos\theta}$	$-\sin\theta$			• Aconjugate	
	$=\frac{(\cos\theta+\sin\theta)^2}{\cos^2\theta-\sin^2\theta}$				$\checkmark \cos^2 \theta - \sin^2 \theta$	² Ө
	$\cos^2\theta - \sin^2\theta$. Averancian	
	$-\frac{\cos^2\theta + 2\sin\theta\cos\theta + \sin\theta}{\cos\theta}$	$^{2}\theta$			• expansion	
	$\cos 2\theta$				$\checkmark \cos 2\theta$	
	$=\frac{1+\sin 2\theta}{2}$ = LHS				√ 1	(5)
	$\cos 2\theta$	OR				(3)
	$\cos^2\theta + 2\sin\theta\cos\theta + \sin\theta$	$1^2 \theta$			✓ expansion	
	LHS = $\cos^2 \theta - \sin^2 \theta$				$\sqrt{2} \sin \theta \cos \theta$	
					$\sqrt{\cos^2 \theta} - \sin^2 \theta$	θ^2
	$= \frac{(\cos\theta + \sin\theta)^2}{(\cos\theta + \sin\theta)^2}$					
	$(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)$	θ)			✓ square	
	$\cos\theta + \sin\theta$				✓ factors	(5)
	$=\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} = RHS$					(3)
4.2.2	$\cos 2\theta = 0$ $ref \angle = 90^{\circ}$				$\checkmark \cos 2\theta = 0$	
	$2\theta = 90^\circ + k.360^\circ$				$\checkmark 45^{\circ} + k.180$	0
	$\theta = 45^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$				$\checkmark k \in \mathbb{Z}$	(3)
4.2.3	$=\frac{1+\sin 30^\circ}{1+\sin 30^\circ}$				\checkmark	
	cos 30			000	5	
	1 1				y substitution	
	$=\frac{1+\frac{1}{2}}{\frac{1}{2}}$			Inn	Substitution	
	$\frac{\sqrt{3}}{2}$			000	5	
	2			<u>Here</u>		
	$=\sqrt{3}$				√answer ((3)
4.3	$7\cos x - 2(1 - \cos^2 x) + 5 = 0$				✓ expansion	
	$7\cos x - 2 + 2\cos^2 x + 5 = 0$					
	$2\cos^2 x + 7\cos x + 3 = 0$				✓ std form	
	$(2\cos x + 1)(\cos x + 3) = 0$				✓ factors	
	$\cos x = \frac{2}{2}$	or	$\cos x = -3$		$\sqrt{\cos x} = -\frac{1}{2}$	
	$x = 120^{\circ} + k.360^{\circ}$		∴n/a		$\sqrt{\cos x} = -3$	
	$x = 240^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$				√√answers (7)

5.1	a = 2	\checkmark	
	b = 2	√ (2	2)
5.2	f: 180°	\checkmark	
	<i>g</i> : 360°	√ (2	2)
5.3	amplitude: 1	✓ (1)	1)
5.4	$y \in [2; 4]$	✓ end points	
		✓ notation	
		(2	2)
5.5	$-180^{\circ} < x < 0^{\circ}$; $x \neq -90^{\circ}$	✓ end points	
		√ notation	
	OR	$\checkmark x \neq -90^{\circ}$ (3)	5)
	$x \in (-180^\circ; 90^\circ) \cup (90^\circ; 0^\circ)$	\checkmark end points	
		√notation (3	3)
5.6	$h(x) = \sin(2x + 45^\circ)$	\checkmark	
		(2	2)
5.7	$k(x) = -2\cos x$	\checkmark	,
		(2	2)
		[1	[4]

QUESTION 6

6.1	$AC^{2} = AB^{2} + BC^{2} - 2. AB. BC. \cos A\widehat{B}C$ $= a^{2} + 4a^{2} - 2(a)(2a). \cos 2\beta$	✓ cosine rule
	$\therefore AC = \sqrt{5a^2 - 4a^2 \cos 2\beta}$	✓ substitution
	$= \sqrt{a^2(5 - 4\cos 2\beta)}$ $= a\sqrt{5 - 4\cos 2\beta}$	\checkmark answer (3)
6.2	In $\triangle ADC$:	
	$\tan \beta =$	✓ trig ratio
	$a\sqrt{5-4\cos 2\beta}$	✓ substitution
	$AD = \tan\beta \cdot a\sqrt{5 - 4\cos 2\beta}$	
	$= a \tan \beta \sqrt{5 - 4(1 - 2\sin^2 \beta)}$	$\sqrt{1-2\sin^2\beta}$
	$= a \tan \beta \sqrt{5 - 4 + 8 \sin^2 \beta}$	
	$= a \tan \beta \sqrt{1 + 8 \sin^2 \beta}$	✓ simplification
		(4)

[7]

QUESTION	N7001	

	0001			
7.1.1	100°	$ext \angle of \Delta$	✓S ✓R	(2)
7.1.2	50°	∠ at cent = 2∠ at CFCE	✓S ✓R	(2)
7.1.3	130°	opp ∠s of cyclic quad = 180°	✓S ✓R	(2)
7.1.4	$78^{\circ} - 50^{\circ} = 28^{\circ}$	corres ∠s ; AOF EH	✓S ✓R	(2)
7.2	Let $\hat{C} = x$ $\therefore A\hat{D}B = x$ & $A\hat{O}B = 2x$	∠s in same segment ∠ at cent = 2∠ at CFCE	✓S/R ✓S/R	
	$\widehat{A}_{1} = \widehat{ADB} = x$ $\therefore \ \widehat{E}_{1} = 180^{\circ} - 2x$ $\therefore \ \widehat{E}_{2} = 2x$	alt ∠s; AC BD sum of ∠s in Δ ∠s on a str. line	✓S/R ✓S/R ✓S/R	
	$\widehat{E}_2 = A\widehat{O}B = 2x$ $\Rightarrow AEOB$ is a cyclic quadrilateral	converse ∠s in same segment	√R	(6)
				[14]

8.1	Construction: Draw KS =	PQ and KT = PR. Join ST	✓ construction	
	In Δ KST and Δ PQR: 1. KS = PQ 2. $\hat{K} = \hat{P}$ 3. KT = PR	(constr) (given) (constr)		
	$ \therefore \Delta KST \equiv \Delta PQR \Rightarrow \hat{S}_1 = \hat{Q} \& \hat{Q} = \hat{L} $	(S; A; S) (Δ KST $\equiv \Delta$ PQR)	√S/R √S/R	
	$\begin{array}{l} \therefore S_1 = L \\ \therefore ST \mid\mid LM \end{array}$	(corres ∠s =)	√R	
	$\therefore \frac{\mathrm{KL}}{\mathrm{KS}} = \frac{\mathrm{KM}}{\mathrm{KT}}$	(Prop. Int. Theorem; ST LM)	√S/R	
	but KS = PQ & KT = PR		√S	
	$\therefore \frac{\mathrm{KL}}{\mathrm{PQ}} = \frac{\mathrm{KM}}{\mathrm{PR}}$		(6	6)
1	1			

Mathema**Roy Inloaded from Stanmorephysics.com** NSC – MARKING GUIDELINE

Ê C	∠s opp = sides =	✓S ✓R	
\hat{D}_1	tan-chord theorem	✓S ✓R	(4)
$\widehat{\mathbf{F}} = \widehat{\mathbf{D}}_1$	above	√S	
$\therefore DE = EF$	sides opp = ∠s =	√R	(2)
$\widehat{G}_2 = 180^\circ - 2x$	sum of ∠s in ∆	✓S ✓R	
$\therefore \widehat{G}_1 = 2x$	∠s on a str. line	✓S/R	
$\therefore D\widehat{O}E = 4x$	∠ at cent = 2∠ at CFCE	✓S/R	(4)
In Δ FDE and Δ FEG:			
1. F is common		√S	
2. $\widehat{D}_1 = \widehat{E}_3$	above	√S	
		√ D	
$\cdots \Delta F D E \Delta F E G$	(∠, ∠, ∠)	· K	
FD FE	ΔFDE III ΔFEG	√S	
$\therefore \frac{1}{FE} = \frac{1}{FG}$		_	
\Rightarrow FE ² = FD × FG			(4)
			[20]
	\hat{F} \hat{D}_{1} $\hat{F} = \hat{D}_{1}$ $\therefore DE = EF$ $\hat{G}_{2} = 180^{\circ} - 2x$ $\therefore \hat{G}_{1} = 2x$ $\therefore D\hat{O}E = 4x$ In ΔFDE and ΔFEG : $1. \hat{F} \text{ is common}$ $2. \hat{D}_{1} = \hat{E}_{3}$ $\therefore \Delta FDE \Delta FEG$ $\therefore \frac{FD}{FE} = \frac{FE}{FG}$ $\Rightarrow FE^{2} = FD \times FG$	$ \begin{array}{c c} \hat{F} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

9.1	$R\widehat{V}W = 90^{\circ}$		tan⊥radius		√S √R	
	$R\widehat{P}N = 90^{\circ}$		line from cent to midpt of	f ch⊥ch	√S/R	
	∴ TW SN		corres ∠s =		√R	(4)
9.2	$\frac{\text{RS}}{\text{ST}} = \frac{\text{RN}}{\text{NW}}$	(Prop. Int. Theorem; SN TW)		√S √R		
	$\frac{10}{7} = \frac{\text{RN}}{6}$					
	$RN = \frac{60}{7}$				✓ RN	
	NK = RK - RN = 10 - $\frac{60}{100}$				\checkmark	
	$=\frac{10}{7}$ units				\checkmark	(5)
					<u>.</u>	

Mathema**Roy Inloaded from Stanmorephysics.com** NSC - MARKING GUIDELINE

9.3	$WV^2 = RW^2 - RV^2$	(Pythag)	✓R			
	$= \left(\frac{60}{7} + 6\right)^2 - (10)^2$		✓ substitution			
	WV = 10,598211		√WV			
	$\frac{PN}{WV} = \frac{RN}{RW}$	(ΔRPN ΔRVW)	√S/R			
	$\frac{PN}{10,598211} = \frac{\frac{60}{7}}{\frac{60}{7}+6}$		✓ substitution			
	PN = 6,23 units		✓PN (6)			
		OR				
	$\frac{RP}{RV} = \frac{RS}{RT}$	(Prop. Int. Th; TW SN)	✓S ✓R			
	$\frac{\mathrm{RP}}{\mathrm{10}} = \frac{\mathrm{10}}{\mathrm{17}}$					
	$RP = \frac{100}{17}$		✓RP			
	$PN^2 = RN^2 - RP^2$	(Pythag)	√R			
	$=\left(\frac{80}{7}\right) - \left(\frac{100}{17}\right)$		✓ substitution			
	= 6,23 units		✓ PN (6)			
	[]					

