Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCES P2

COMMON TEST

Stanmorephysics.com

MARKS: 75

TIME: 11/2 hours

This question paper consists of 7 pages and a periodic table.

Downloaded from Stanmore shysics. com

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- 1. Write your name on the ANSWER BOOK.
- This question paper consists of FIVE questions. Answer ALL the questions in the 2. ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK. 3.
- Number the answers correctly according to the numbering system used in this 4. question paper.
- 5. Leave ONE line between two subsections, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- You are advised to use the attached PERIODIC TABLE. 8.
- 9. Show ALL formulae and substitutions in ALL calculations.
- Round off your final numerical answers to a minimum of TWO decimal places. 10.
- Give brief motivations, discussions, et cetera where required. 11.

Downloaded from Stanmbre 6119 sics. com

QUESTION 1 (start on a new page)

Four options are provided as possible answers to the following questions.	Each question
has only ONE correct answer. Write only the letter (A - D) next to the que	stion number
(1.1 – 1.5) in the ANSWER BOOK, for example 1.6 D.	

(1.1-	1.5) III	THE ANSWER BOOK, for example 1.6 D.	
1.1		ONE of the following combinations represents INTERMOLECULAR ONLY?	
		Jania handing and Country to disp	
	A	Ionic bonding and Covalent bonding	
	B C	Covalent bonding and London forces	
	D	Hydrogen bonding and London forces	(2)
	U	Dipole-dipole forces and Covalent bonding	(2)
1.2	An ex	cample of a NON-POLAR molecule with POLAR COVALENT bonds is:	
	Α	PCl ₃	
	В	CC4	
	C	HCl	
	D	H ₂ O	(2)
	35	1120	(-)
1.3		which ONE of the following pairs do the molecules have the SAME ECULAR shape?	
	Α	BeF ₂ and CO ₂	
	В	H ₂ O and CO ₂	10
	C	BF ₃ and CCl ₄	
	D	BeCl ₂ and H ₂ O	(2)
			-
1.4	In wh	ich ONE of the following compounds is the bonding ionic?	
	^	CC4	
	B	Cl ₂	en.
97	C	HCf.	
	D	KCI	(2)
			(2)
1.5	Which	h of the statements below is/are TRUE for the WATER molecule?	
	(i)	Hydrogen bonding occurs between O and H atoms to form H₂O	
	****	molecules.	
	(ii)	Hydrogen bonding occurs between H ₂ O molecules.	
	(ii)	Covalent bonding occurs between O and H atoms to form H ₂ O molecules.	8 8
	Α	(i) only	
	В	(i) only (i) and (ii) only	
	B C	(i) and (iii) only	
17	D	(i) and (iii) only (ii) and (iii) only	(2)
	1754		[10]
			174414

Physical Sciences P2 Downloaded from Staning Physics. com

QUE	STION	2 (start o	n a new p	oage)						
2.1	Define the following terms:									
	2.1.1 Covalent bond							(1)		
	2.1.2	Molecule)							(1)
	2.1.3	Lone pai	г							(2)
Cons	ider the	following	substanc	es:						
		NaCe	O ₂	CO2	H ₂ O	H ₂	NH ₃	N ₂	СО	
Ansv	ver the f	ollowing o	questions	based on	the above	Э.				
2.2	Draw	Lewis dia	grams for	the follow	/ing:					
	2.2.1	Carbon di	ioxide							(2)
	2.2.2	Ammonia								(2)
2.3	Consi	Consider the central atom of the ammonia molecule. How many								
	2.3.1	lone pair	s of elect	rons are th	nere on th	is cent	ral atom	?		(1)
	2.3.2	bonded	pairs of el	ectrons ar	re there o	n this c	entral at	om?		(1)
2.4	Name	the type	of chemic	al bond th	nat exists	in each	of the fo	ollowing	compounds:	
	2.4.1	N ₂								(1)
	2.4.2	CO ₂								(1)
2.5	Name	TWO sul	bstances	from the li	st above t	that car	n form d	ative co	valent bonds.	(2)
2.6		covalent							esult of the ESTION 2.5	(4)
2.7			number o	of valence	electrons	nreser	nt in an s	atom of	nitrogen	(1)
						2000	(1)			
2.8	CO and CO ₂ are molecules that have only C – O bonds, and are both linear in shape.									
	2.8.1	Define th	ne term el	ectronega	tivity.					(2)
	2.8.2	Calculate	e the diffe	rence in e	lectroneg	ativity ((ΔEN) fo	r the C	O bond.	(2)
	2.8.3	Explain v		a POLAF	R molecule	e, while	CO ₂ is	NON-P	OLAR	(4)

Downloaded from Stannson and sics. com

QUESTION 3 (start on a new page)

Study the table below and answer the questions that follow.

	Bonded atoms	Bond length (pm)	Bond energy (kJ.mol ⁻¹)	Example of carbon compound
A	C-C	154	347	H-C-H I Stanmer-ephysics.com Methane
В	C = C	134	614	H H I I H-C=C-H ⊑tnene
С	C≡C	121	839	H – C ≡ C – H Acetylene/Ethyne

3.1	Define	the	term	bond	order.
-	-0			~~	0, 00.

(2)

(1)

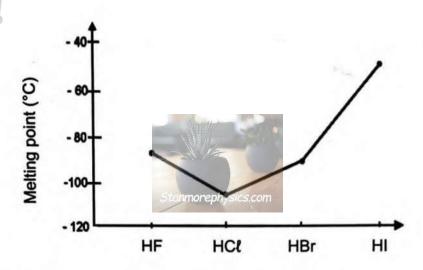
3.3 What is the relationship between:

3.3.1 bond order and bond length

(1)

3.3.2 bond length and bond energy

(1)


3.4 Acetylene (C₂H₂) is the world's most efficient and hottest burning welding gas. Use the table above to calculate the amount of energy needed to break all the bonds in 1 mol of C₂H₂, if the energy for a C – H bond is 437 kJ.mol⁻¹.

(3)

[8]

QUESTION 4 (start on a new page)

4.1 The melting points of four hydrogen halides are represented in the graph below.

- 4.1.1 Explain the meaning of the term intermolecular force. (2)
- 4.1.2 Define the term *melting point*. (2)
- 4.1.3 Provide a label for the x-axis on the graph. (1)
- 4.1.4 Identify the type of intermolecular forces present in HBr. (1)
- 4.1.5 Fully explain the difference in melting points between:
 - a) HF and HCl (4)
 - b) HI and HCl (4)
- 4.1.6 NAME the compound that will need the most amount of energy to melt. (1)

Downloaded from Stanmorephysics.com

4.2 The boiling points of three liquids are given below:

Compound	Boiling point
CH ₄	-161
CH₃OH	65
nmoreph 20 com	100

4.2.1 Define the term boiling point.

(2)

4.2.2 Explain the difference in the boiling points of the above three compounds.

(5)

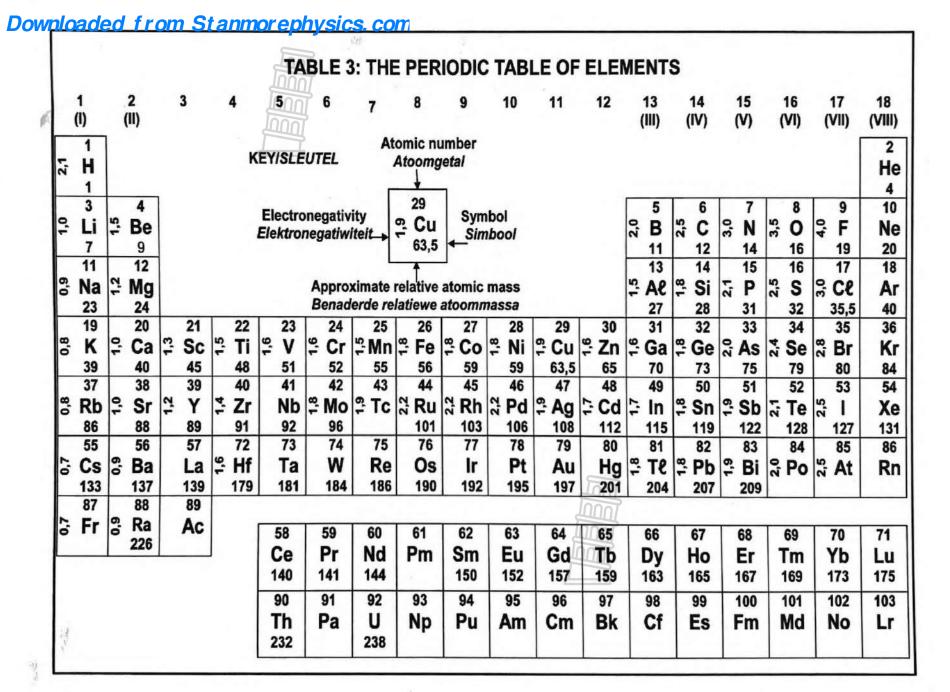
4.2.3 NAME the molecule that will have the highest vapour pressure. Provide a reason for the answer.

(2)

[24]

QUESTION 5 (start on a new page)

5.1 Define the term solubility.


(2)

5.2 Iodine (I₂) is soluble in carbon tetrachloride (CC4), but is insoluble in water (H₂O). Fully account for this observation in terms of the forces between the particles.

(4) [6]

TOTAL MARKS: 75

Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCES P2

MARKING GUIDELINES

COMMON TEST

JUNE 2024 or ephysics.com

This marking guideline consist of 5 pages.

[10]

(2)

QUESTION ONE

1.1 $C \checkmark \checkmark$ (2)

1.2 B \checkmark (2)

1.3 A \checkmark (2)

1.4 D ✓ ✓ (2)

1.5 D \checkmark (2)

QUESTION TWO

2.1.1 The bond formed when two atome share electrons (when orbitals overlap). ✓ (1)

2.1.2 A group of two or more atoms that are covalently bonded and that function as a unit. ✓ (1)

2.1.3 A pair of electrons in the valence shell of an atom that is not shared with another atom. ✓✓

 $2.2.1 \quad \ddot{\mathbf{Q}} :: \mathbf{C} :: \ddot{\mathbf{Q}} \qquad \checkmark \checkmark$

2.2.2 H

:N:H

H

Stanmarenhysics com

2.3.1 one√ (1)

2.3.2 three (1)

2.4.1 Covalent ✓ (1)

2.4.2 Covalent.√ (1)

2.5 $H_2O \checkmark$ and $NH_3 \checkmark$ (2)

2.6 Hydronium ion \checkmark - H₃O⁺ \checkmark Ammonium ion \checkmark - NH₄⁺ \checkmark (4)

2.7 Five \checkmark (1)

- 2.8.1 A measure of the tendancy of an atom in a molecule to attract bonding electrons / shared pairs of electrons. ✓✓
 - (2)

2.8.2

$$\Delta EN_{c-o} = 3.5 - 2.5 \checkmark$$
= 1.0 \checkmark (2)

2.8.3 CO is linear with O being more electronegative, ✓ therefore forming a slightly negative end / The charge distribution in CO is asymmetrical. ✓ thus is a polar molecule.

 CO_2 molecule is also linear with a central C atom \checkmark so that the O atoms on either side have the same polarity /The charge distribution is symmetrical \checkmark thus is a non-polar molecule.

(4) [27]

QUESTION 3

3.1 Is the number of bonds (single,double or triple) that exist between two atoms.✓✓

(2)

(1)

(1)

- 3.2 2√
- 3.3.1 As bond order increases, bond length decreases. ✓
- 3.3.2 As bond length increases bond energy decreases. ✓ (1)
- 3.4 Amount of energy = 1×839 + 2×437 \(\square = 1713 \text{ kJ.mol}^{-1} \sqrt{

[8]

(3)

QUESTION 4

4.1.1	Forces of attraction between molecules. ✓ ✓	(2)
4.1.2	The temperature at which the solid and liquid phases of a substance are in equilibrium ✓ ✓ (NOTE: The word temperature must be mentioned)	(2)
4.1.3	Hydrogen halides√	(1)
4.1.4	Dipole-dipole forces ✓ (No marks for <i>Van Der Waal Forces</i>)	(1)
4.1.5 a)	HCℓ has dipole-dipole forces (which are weak). ✓ HF (has weak dipole-dipole forces but also) has strong Hydrogen bonds. ✓ Since intermolecular forces are stronger between molecules of HF ✓, more energy is needed to overcome the intermolecular forces between HF molecules. ✓ Thus HF will have a higher melting point that HCℓ.	(4)
4.1.5 b)	HCℓ and HI both have (weak) dipole-dipole forces, ✓ however HI has a greater molecular mass/size (than HCI), ✓ hence stronger intermolecular forces. ✓ Thus more energy is needed to overcome the intermolecular forces/ dipole-dipole forces between molecules of HI (than HCℓ). ✓ Thus HI will have a higher melting point.	(4)
4.1.6	Hydrogen iodide√ (Do not accept HI)	(1)
4.2.1	The temperature at which the vapour pressure of a liquid equals atmospheric pressure. ✓✓ (NOTE: The word temperature must be mentioned)	(2)

4.2.2 MARKING CRITERIA:

Any

one√

Compare boiling points of CH₄ and CH₃OH:

- Identify type of IMFs in CH₄ and CH₃OH.√
- Compare strength of IMF in CH₄ and CH₃OH√
- Refer to the energy required

Compare boiling points of H₂O and CH₃OH:

- Compare number of sites for hydrogen bonding for molecules of H₂O and molecules of CH₃OH. ✓
- Compare strength of Hydrogen bonding in molecules of H₂O and CH₃OH√
- Refer to the energy required

Methane/CH₄- has weak London forces/dispersion forces between molecules while methanol/CH₃OH has (weak London forces and) strong hydrogen bonds. ✓ Therefore, intermolecular forces are stronger between molecules of methanol /CH₃OH ✓ (than between molecules of methane/CH₄).

More energy needed to overcome intermolecular forces between molecules of methanol/CH₃OH√ (than between molecules of methane/CH₄).

Thus methanol has a higher boiling point than methane.

Molecules of water/H₂O have more (two/four/multiple) sites for hydrogen bonding than molecules of CH₃OH.✓

Thus, molecules of water have stronger / the strongest intermolecular forces, ✓ thus the highest boiling point. (5)

4.2.3 Methane. ✓ It has the lowest boiling point. ✓

(2) [**24**]

QUESTION 5

- 5.1 The property of a solid, liquid or gaseous chemical substance(solute) to dissolve in a solid, liquid or gaseous solvent to form a homogenous solution. ✓✓ (2)
- Bonds between iodine molecules and carbon tetrachloride molecules are weak London forces. ✓ These intermolecular forces are of comparable strength / Non-polar solute will dissolve in a non-polar solvent. ✓

Between water molecules are hydrogen bonds√ that are much stronger than London forces√

(NB: "Like dissolves like" is NOT an explanation. Hence NO marks awarded)

[6]

(4)

TOTAL MARKS: 75