

SENIOR PHASE

GRADE 9

NOVEMBER 2018

MATHEMATICS

MARKS: 140

TIME: 2¹/₂ hours

This question paper consists of 18 pages, including 2 annexures.

INSTRUCTIONS AND INFORMATION

- 1. Read the instructions for each question carefully before answering the questions.
- 2. This paper consists of NINE questions.
- 3. Answer ALL the questions.
- 4. Number your answers exactly as the questions are numbered in the question paper.
- 5. You may use an approved scientific calculator (non-programmable and nongraphical).
- 6. Clearly show ALL the calculations, diagrams and graphs etc. you have used in determining your answers.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Write neatly and legibly.

Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question number, for example if the correct answer for 1.1 is A, write your answer as 1.1 A.

1.1 Which ONE of the following numbers is irrational?

$$\begin{array}{c}
\textbf{A} & \textbf{3}, \textbf{7} \\
\textbf{B} & \sqrt[3]{-27} \\
\textbf{C} & -\sqrt{3} \\
\textbf{D} & \sqrt{1\frac{7}{9}}
\end{array}$$

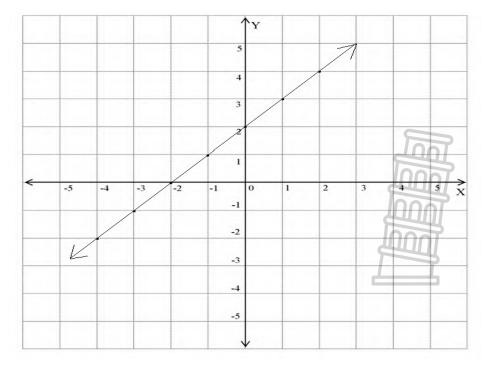
(1)

1.2

 3^{x+2} is simplified, the answer is:

A 3^{x+1}

When


 $3^{x}.3^{x+3}$

- B 3^{*x*+5}
- C 3^{x} D 9^{2x+3}

 3^{x+2}

(1)

1.3 The equation of the straight line drawn below is:

A y = 2x - 2

$$\mathsf{B} \qquad y = x + 2$$

C
$$y = -2x + 2$$

D
$$y = -x - 2$$

Please turn over

4 Downloaded from Stannwargenayes.com

(EC/NOVEMBER 2018)

1.4 If x(2x-8) = 0, then x is:

$$\begin{array}{c} A & 0 \text{ or } 4 \\ B & 0 \text{ or } -4 \\ C & 2 \text{ or } -2 \\ D & \text{None of the above} \end{array}$$
(1)

1.5 The general rule (T_n) for the pattern -5; -1; 3; 7; ... is:

 $T_n = 4n + 9$ А T = -4n - 9R

 $T_n = -4n + 9$ D $T_n = 4n - 9$

The value (in scientific notation) of $5,2 \times 10^{-5} \times 3 \times 10^{3}$ is:

А 15.6×10^{-1}

1.6

- В $1,56 \times 10^{-1}$
- С 0.156×10^{1}
- D $15,6 \times 10^{1}$

(1)

(1)

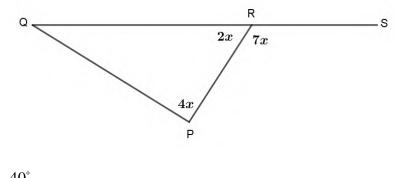
(1)

(1)

1.7 A cylindrical cake has a diameter of 220 mm and a height of 100 mm If the cake is cut into 12 equal size slices, the volume of each slice will be:

$$\left(\text{Use }\pi=\frac{22}{7}\right)$$

- 3 802 857 mm³ А
- В 1 267 619 mm³
- С 316 905 mm³


15 211 429 mm³ D

There are 3 green and 2 red balls in a bag. Two balls are drawn consecutively 1.8 and then replaced after each ball is drawn. The probability that both balls will be green is: 001

A B C	$ \begin{array}{c} 0 \\ 100\% \\ \frac{3}{5} \end{array} $	
D	$\frac{9}{25}$	

- 1.9 If 12 workers clean up a certain stretch of the Swarkops River in 4 days, then 8 workers would have cleaned the same stretch in ...
 - A 2 days. B 24 days. C 6 days. D 3 days.
- 1.10 In $\triangle PQR$, QR is extended to S.

The size of $\angle Q$ is:

A	40°
В	20°
С	140°

D 60°

(1) [**10**]

(1)

(1)

(3)

(2)

[25]

QUESTION 2

- Write 1 042 000 000 in scientific notation. 2.1
- 2.2 Simplify:

2.2.1
$$3z^2 - \left(4\frac{2}{3}z^3 \div \frac{7z}{2}\right)$$
 (3)

$$2(x-3)^2 - 3(x+1)(2x-5)$$
(3)

2.2.3
$$\left(\frac{2x^{-1}y}{3y^2}\right)^{-2}$$

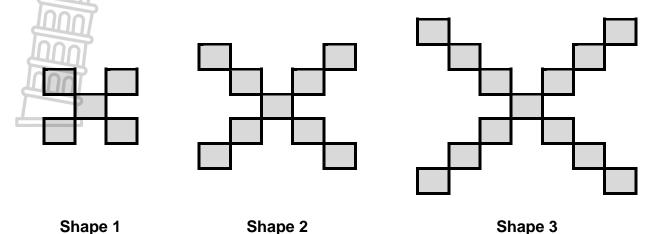
2.2.4
$$\frac{\sqrt{169x^6} \times \left(\frac{y}{p^{99}q}\right)^0}{\sqrt[3]{x^{12}}}$$
 (3)

2.3 Factorise completely:

2.3.1 $ax^2 - 5ax + 6a$ (3)

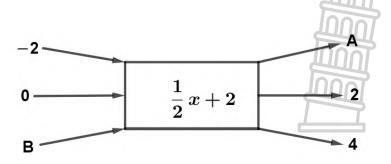
$$2.3.2 \quad (2x-3y)+(3y-2x)x^2 \tag{3}$$

2.4 Solve for x:


2.4.1	$\frac{x}{2} + \frac{2x+3}{2} = 1$	
	2 3	(2)

2.4.2 $x^2 + x = 12$ (2)

2.4.3
$$5^{x+2} = \frac{1}{25}$$


3.1 Consider the following shapes and answer the questions that follow.

3.1.1 Refer to the table below and write down the values of *q* and *r*.

Shape	1	2	3	4	 r	1
Number of rectangles	5	9	13	q	 101	(1)

- 3.1.2 Determine the general rule (T_n) of the pattern.
- 3.1.3 Hence, determine which shape will have 205 rectangles.
- 3.2 Given the following number pattern: 2; 5; 10; 17; ...
 - 3.2.1 Provide a rule to describe the relationship between the numbers in this number pattern. (2)
 - 3.2.2 Use your rule to find the 10th term in this number pattern.
- 3.3 Read the flow diagram below and answer the questions that follow.

3.3.1 What is the output value in A?

3.3.2 What is the input value in **B**?

7

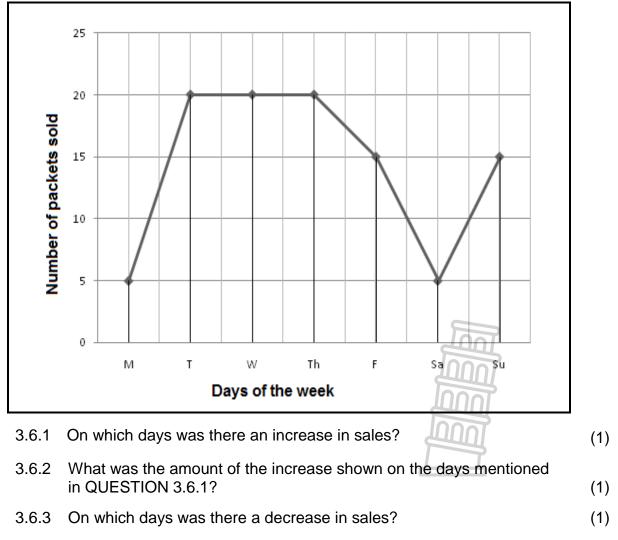
(2)

(2)

(2)

(2)

(2)


8 Downloaded from Stannmargenayciss.com (EC/NOVEMBER 2018)

(3)

3.4 Use the table below to answer the questions that follow.

		-3	-2	-1	0	 q	
	y	-10	-7	-4	-1	 8	
	3.4.1 Find	the rule in the	form $y =$	·			(2)
Ī	3.4.2 Dete	ermine the valu	ie of q .				(2)
5	A straight-li	ne graph is def	ined by y	y = -x + 3.			
	3.5.1 Dete	ermine the X-ir	ntercept o	f the graph			(1)

- 3.5.2 Draw the graph showing all your intercepts with the axes. Use **ANNEXURE 1.**
- 3.6 The following graph shows the number of packets of sweets that a shop owner sold during a week.

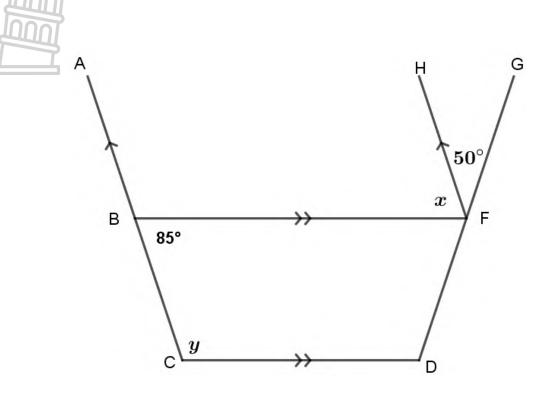
- 3.6.4 Was the decrease constant or did it vary?
- What happened from Tuesday to Thursday regarding the number of 3.6.5 packets sold? (1)

(1)

3.5

(3)

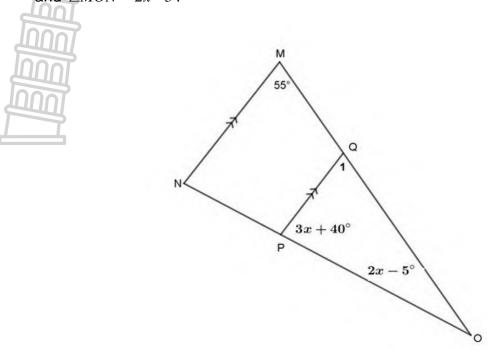
(5)


QUESTION 4

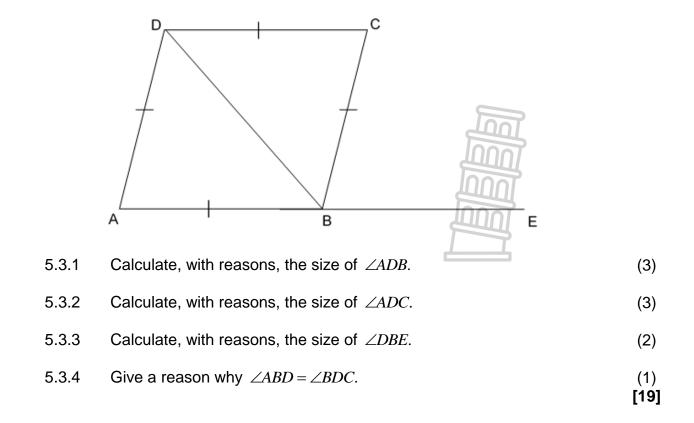
- 4.1 Dhanielle invests R 1 800 for 5 years at r % simple interest per annum. The interest on the investment is R720. Calculate the interest rate.
- 4.2 A playground is in the form of a rectangle with the length 1 m longer than the breadth. A new rectangular playground is planned that will be 3 m longer than the original length and with a breadth 1 m shorter than that of the original breadth. Determine the difference in perimeter of the two playgrounds.
- 4.3 Lenneth drives from Cape Town to Worcester, a distance of 120 km, in 1 hour 30 minutes. He then drives from Worcester to Stellenbosch, a distance of 90 km, in 1 hour. Calculate the average speed at which he travelled.

(4) [**12**]

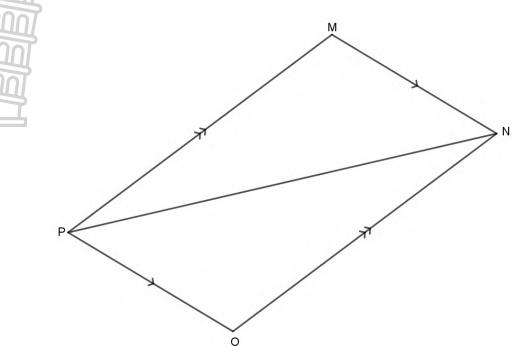
In the diagram below AC || HF and BF || CD. $\angle CBF = 85^{\circ}$ and $\angle GFH = 50^{\circ}$ 5.1 Find with reasons, the size of:



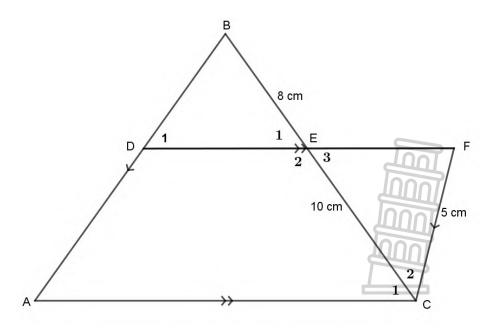
- 5.1.1 x
- 5.1.2 Y


(2)

5.2 In the diagram below is ΔMNO with MN || QP, $\angle OMN = 55^{\circ}$, $\angle QPO = 3x + 40^{\circ}$ and $\angle MON = 2x - 5^{\circ}$.



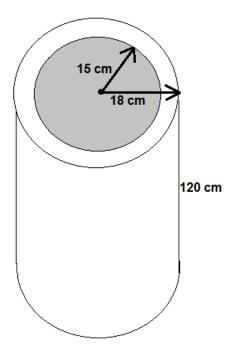
- 5.2.1 Calculate the value of x. Give reasons for your answer. (4)
- 5.2.2 Calculate the actual size of $\angle MON$.
- 5.3 The diagram below is rhombus ABCD with diagonal BD. AB is extended to E and $\hat{A} = 70^{\circ}$.


(2)

6.1 In parallelogram MNOP with diagonal PN, MN || PO and MP || NO.

Use congruency to prove that PM = NO.

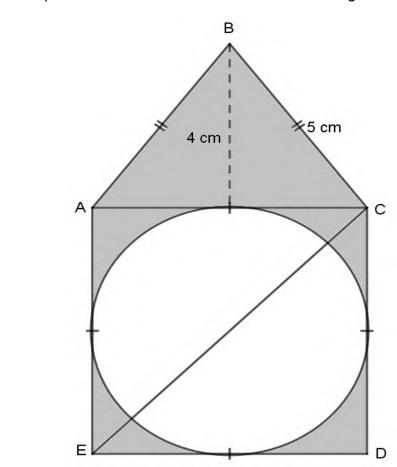
6.2 In the diagram below, AC \parallel DF, AB \parallel CF, BE = 8 cm, EC = 10 cm and CF = 5 cm.



6.2.1Prove that $\Delta DBE ||| \Delta FCE.$ (4)6.2.2Hence, determine the length of DB.(3)[12]

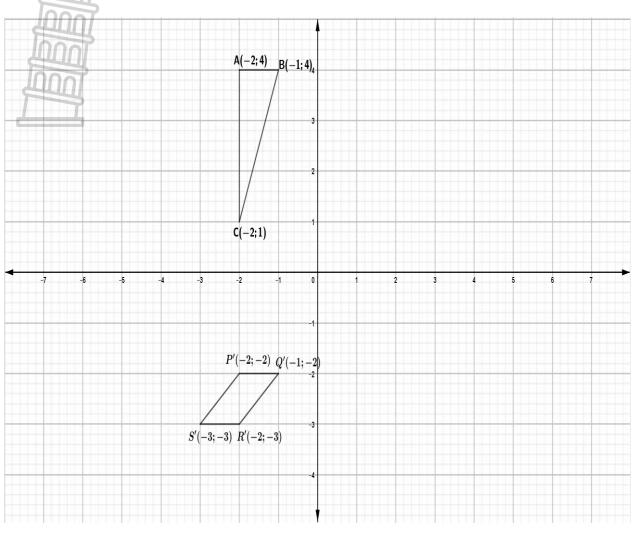
(5)

7.1 A water pipe is cast in concrete. The inner radius of the pipe is 15 centimetres and the outer radius is 18 centimetres. The height of the pipe is 120 centimeters.



- 7.1.1 Determine, correct to TWO decimal places, the total surface area in cm^2 if the pipe is open on both ends. (4)
- 7.1.2 Determine, correct to TWO decimal places, the volume in cm^3 of concrete needed to make a 120-centimetre-long pipe. (4)

nn


7.2 In the diagram is an isosceles triangle ABC with BC = 5 cm and height BF = 4 cm. Square ACDE has an enclosed circle touching all four of its sides.

Calculate the shaded area in the diagram, correct to two decimal places, if the height of the triangle is h = 4 cm.

(5) **[13]**

Use the diagram given below and answer the following questions.

- 8.1 $\triangle ABC$ is reduced by a scale factor of $\frac{1}{2}$ about the origin. Draw $\triangle A'B'C'$ on ANNEXURE 2.
- 8.2 Reflect $\triangle ABC$ in the line y = x to form $\triangle A^{ll}B^{ll}C^{ll}$. Draw $\triangle A^{ll}B^{ll}C^{ll}$ on ANNEXURE 2.
- 8.3 Quadrilateral P/Q/R/S' is the image of quadrilateral PQRS being translated according to the following rule: $(x; y) \rightarrow (x+1; y-2)$ Draw the original quadrilateral PQRS on ANNEXURE 2.

(3)

(3)

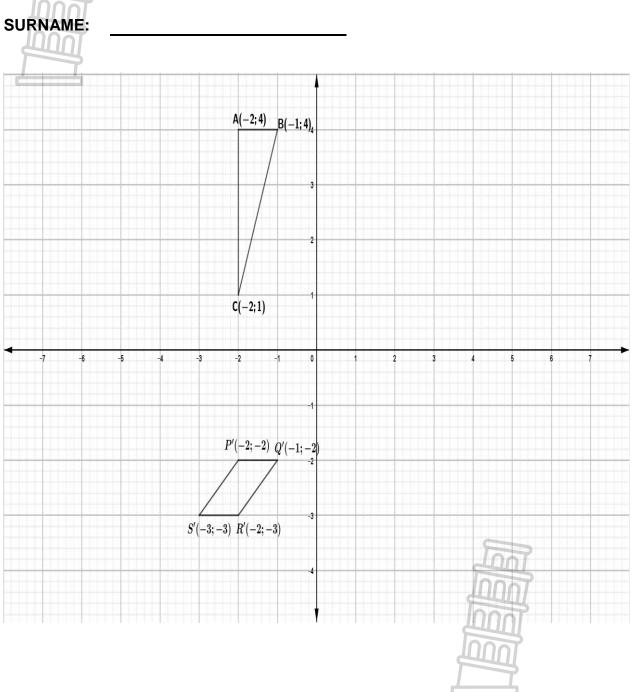
(4) [10]

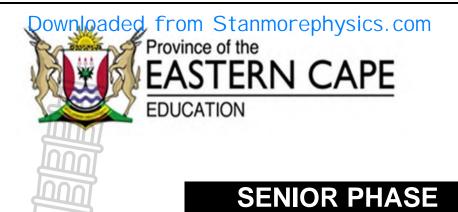
9.1 All the Grade 9 learners of a school were asked whether they had cellphones or not. If they had one, they also had to indicate whether they had it on a contract, with the phone being paid for by the parent/guardian or whether it was pre-paid. Their responses are shown in the table below:

	Contract	Pre-paid	No cellphone	Total
Boys	а	57	24	100
Girls	23	b	37	150
Total	42	147	С	250

- 9.1.1 Calculate the value of a, b and c in the table. (2)
 9.1.2 If a Grade 9 learner is chosen at random from this school, what is the probability that this learner will be:

 (a) A girl?
 (b) A boy owning a cellphone?
 - (c) A learner with no cellphone? (2)
- 9.2 The mean monthly salary of all the staff at company Gringos is R7 550 per month, but the median salary is R5 225.
 - 9.2.1 Explain and give a reason why the two summary statistics are so different. (3)
 - 9.2.2 Which summary statistic gives a better idea of the salaries at the company? Give a reason for your answer. (2)


[13]


140

ANNEX	(URE	1										
QUEST	TION 3	.5.2										
NAME:												
SURNA	AME:											
						ŶΥ						
					5							
					4							
					3							
					2							
					1							
←	-5	-4	-3	-2	-1	0	1	2	3	4	5	\rightarrow_{X}
					-1							
					-2							
					-3							
					-4							
					-5					Ц]		
						\downarrow						

ANNEXURE 2 QUESTION 8.1; QUESTION 8.2 and QUESTION 8.3 NAME:

GRADE 9

NOVEMBER 2018

MATHEMATICS MARKING GUIDELINE

MARKS: 140

This marking guideline consists of 13 pages.

INSTRUCTIONS AND INFORMATION

- 1. Give full marks for answers only, unless stated otherwise.
- 2. Accept any alternate correct solutions that are not included in the marking guideline.
- 3. Underline errors committed by learners and apply Consistent Accuracy (CA).
- 4. THE FINAL MARK MUST BE CONVERTED TO 100.

	KEYS
Μ	Method
CA	Consistent Accuracy
A	Accuracy
S	Statement
SF	Substitution in Formula
R	Reason
S/R	Statement and Reason

QUES	ΓΙΟΝ	1 [10 marks]		
Ques.			Mark allocation	Total
1.1	С	\checkmark		(1)
1.2	A	✓		(1)
1.3	В	✓		(1)
1.4	A	✓		(1)
1.5	D	✓		(1)
1.6	В	✓		(1)
1.7	С	✓		(1)
1.8	A	✓		(1)
1.9	С	✓		(1)
1.10	D	\checkmark		(1)
				[10]

QUEST	[ION 2 [25]		
Ques.	Solution	Mark allocation	Total
2.1	1 042 000 000 = $1,042 \times 10^9$ \checkmark A	Answer: 1Mark	(1)
2.2.1	$3z^{2} - \left(4\frac{2}{3}z^{3} \div \frac{7z}{2}\right)$ = $3z^{2} - \left(4\frac{2}{3}z^{3} \div \frac{7z}{2}\right) \checkmark \mathbf{M}$	$\left(\frac{14z^3}{3} \times \frac{2}{7z}\right): 1 \text{ Mark}$	
	$= 3z^{2} - \frac{4z^{2}}{3} \checkmark \mathbf{M}$ $= \frac{5z^{2}}{3} / \frac{5}{3} z^{2} \checkmark \mathbf{CA}$	$\frac{4z^2}{3}: 1 \text{ Mark}$ Answer: 1 Mark	(3)
2.2.2	$2(x-3)^2 - 3(x+1)(2x-5)$		(0)
	$\checkmark \mathbf{M} \checkmark \mathbf{M} $	$(x^2-6x+9): 1$ Mark	
	$= 2x^{2} - 12x + 18 - 6x^{2} + 9x + 15$ = -4x^{2} - 3x + 33 CA	$(2x^2-3x-5)$: 1 Mark Answer: 1 Mark	(3)
2.2.3	$\left(\frac{2x^{-1}y}{3y^2}\right)^{-2}$	$\left(\frac{2y}{3xy^2}\right)^{-2}: 1 \text{ Mark}$	
	$= \left(\frac{2y}{3xy^2}\right)^{-2} \checkmark \mathbf{M}$ $= \left(\frac{3xy^2}{2y}\right)^2 \checkmark \mathbf{M}$	$\left(\frac{3xy^2}{2y}\right)^2: 1 \text{ Mark}$ Answer: 1 Mark	
	$=\frac{9x^2y^2}{4}\checkmark CA$		
	OR		
	$\left(\frac{2x^{-1}y}{3y^{2}}\right)^{-2}$ $=\frac{2^{-2}x^{2}y^{-2}}{3^{-2}y^{-4}} \checkmark \mathbf{M}$ $=\frac{\frac{1}{4}x^{2}y^{2}}{\frac{1}{9}} \checkmark \mathbf{M}$ $=\frac{9}{4}x^{2}y^{2} \checkmark \mathbf{CA}$	OR $2^{2}x^{2}y^{-2}$: 1 Mark $\frac{1}{4}x^{2}y^{2}$: 1 Mark	
	$=\frac{9}{4}x^2y^2\checkmark \mathbf{CA}$	$\frac{4}{\frac{1}{9}}: 1 \text{ Mark}$ Answer: 1 Mark	
	OR	OR	

Ques.	Solution	Mark allocation	Total
	$\left(\frac{2x^{-1}y}{3y^2}\right)^{-2}$ $=\frac{1}{\left(\frac{2x^{-1}y}{3y^2}\right)^2} \checkmark \mathbf{M}$	$\frac{1}{\left(\frac{2x^{-1}y}{3y^2}\right)^2}: 1 \text{ Mark}$	
	$=\frac{1}{\frac{2^2 x^{-2} y^2}{3^2 y^4}} \checkmark \mathbf{M}$	$\frac{\frac{1}{2^2 x^{-2} y^2}}{3^2 y^4} : 1 \text{ Mark}$	
	$=\frac{9x^2y^2}{4}\checkmark CA$	Answer: 1 Mark	(3)
2.2.4	$\frac{\sqrt{169x^{6}} \times \left(\frac{y}{p^{99}q}\right)^{0}}{\sqrt[3]{x^{12}}}$	$13x^3$: 1 Mark x^4 : 1 Mark Answer: 1 Mark	
	$ \begin{array}{l} \checkmark \mathbf{M} \\ = \frac{13x^3 \times 1}{x^4 \checkmark \mathbf{M}} \\ = \frac{13}{4} \checkmark \mathbf{A} \end{array} $		
	x		(3)
2.3.1	$ax^2 - 5ax + 6a$	$a(x^2-5x+6): 1$ Mark	
	$ \mathbf{\checkmark M} = a(x^2 - 5x + 6) $ $\mathbf{\checkmark CA} $	(x-3): 1 Mark (x-2): 1 Mark	
	=a(x-3)(x-2)		(3)
2.3.2	$(2x-3y) + (3y-2x)x^{2}$ = (2x-3y) - (2x-3y)x^{2} (2x-3y)(1-2x)(2x-3y)x^{2}	$(2x-3y)-(2x-3y)x^2$: 1 Mark	
	$= (2x-3y)(1-x^2) \mathbf{CA}$ = (2x-3y)(1+x)(1-x) \mathbf{CA}	$(2x-3y)(1-x^2)$: 1 Mark	
		(2x-3y)(1+x)(1-x): 1 Mark	(3)
2.4.1	$\frac{x}{2} + \frac{2x+3}{3} = 1$ $\therefore 6\left(\frac{x}{2}\right) + 6\left(\frac{2x+3}{3}\right) = 6(1) \checkmark \mathbf{M}$ $\therefore 3x + 4x + 6 = 6$	× by LCM: 1 Mark Answer: 1 Mark	
	$\therefore 7x = 0$ $\therefore x = 0 \checkmark CA$		(2)

Ques.	Solution	Mark allocation	Total
2.4.2	$x^2 + x = 12$	(x+4)(x-3): 1 Mark	
ç	$x^2 + x - 12 = 0$	Both solutions: 1 Mark	
	$\therefore (x+4)(x-3) = 0 \checkmark \mathbf{M}$		
<u> </u>	$\therefore x = -4$ or $x = 3$		(2)
2.4.3	$5^{x+2} = \frac{1}{2}$	5^{-2} : 1 Mark	
	$\mathbf{S}^{5} = \frac{1}{25}$ $\therefore 5^{x+2} = 5^{-2} \mathbf{M}$	Answer: 1 Mark	
	$\therefore x + 2 = -2$		
	∴ <i>x</i> = −4 √CA		(2)
			[25]

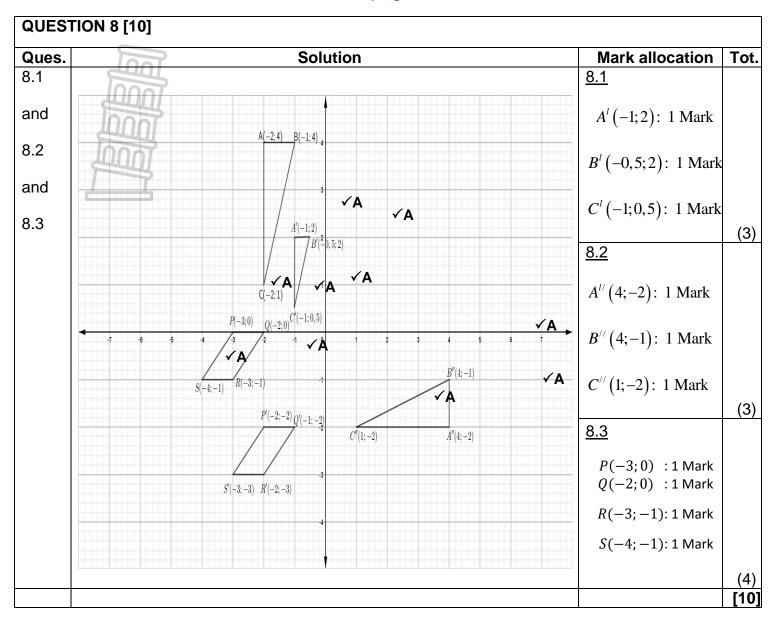
5

<u>6 Downloaded from Stanmangenhymiss.com</u>

QUES	TION 3 [26]							
Ques.	Solution					Mark allocation	Total	
3.1								
3.1.1							q = 17 and $r = 25 : 1$ Mark	
	Shape	1	2	3	4	 25	•	
	Number of rectangles	5	9	13	17	 101		
	q = 17 and $r = 25$							(1)
3.1.2	✓ A ✓ A						4 <i>n</i> : 1 Mark	
	$T_n = 4n + 1$						+1 : 1 Mark	(2)
3.1.3	$T_n = 4n + 1$						$T = 205 + 1 M_{emb}$	
	205 = 4n + 1 SF						$T_n = 205 : 1 \text{ Mark}$	
	n = 51 $\therefore \text{ Shape number 51 has 205}$	nooton		∕ CA			Answer: 1 Mark	
	Shape humber 51 has 20.	rectai	igies.					(2)
3.2.1							n^2 : 1 Mark	
	$T_n = n^2 + 1 \checkmark \mathbf{A}$						+1:1 Mark	
3.2.2	$T_n = n^2 + 1$						SF(n = 10): 1 Mark	
	$T = (10)^2 + 1$ VSF						Answer: 1 Mark	
	$\begin{bmatrix} T_n & 0 & 0 \\ T_{10} & = (10)^2 + 1 \\ T_n &= 101 \\ \hline \end{bmatrix} \mathbf{CA}$							(2)
3.3.1	· 1						SF x = -2 : 1 Mark	
0.0.1	$A = \frac{1}{2}x + 2$						Answer: 1 Mark	
	$A = \frac{1}{2} (-2) + 2$ $A = 1 \checkmark CA$							
								(2)
3.3.2						 	SF x = B : 1 Mark	
	$\frac{1}{2}(B) + 2 = 4$						Answer: 1 Mark	1
	$\frac{1}{2} \stackrel{\checkmark}{(B)} + 2 = 4$ $B = 4 \stackrel{\checkmark}{CA}$							(2)
							That	

Ques.	Solution	Mark allocation	Total
3.4.1	Common difference = $-7 - (-10) = 3$	Explanation: 1 Mark	
	$y - \text{intercept} = -1$ Since $x = 0$ $\checkmark \mathbf{A}$	Answer: 1 Mark	
	AND	If ANSWER ONLY	
	y = 3x - 1	Full Marks	
	OR		
	$m = \frac{y_2 - y_1}{y_1 - y_1}$	OR	
	$m - \frac{1}{x_2 - x_1}$	m = 3: 1 Mark	
	$m = \frac{-7 - (-10)}{-2 - (-3)}$	Answer: 1 Mark	
	$m^{-} -2 - (-3)$		
	$m=3$ \checkmark A	If ANSWER ONLY	
	m=3	Full Marks	
	$y = 3x - 1 \checkmark \mathbf{A}$		(2)
3.4.2	y = 3x - 1 $8 = 3q - 1 \checkmark SF$ $q = 3 \checkmark CA$	SF both values: 1 Mark	
	8 = 3q - 1 VSF	Answer: 1 Mark	
	<i>q</i> = 3 ✓CA		(2)
3.5.1	y = -x + 3	Answer: 1 Mark	
0.0.1	0 = -x + 3		
	$x = 3\sqrt{A}$		(1)
3.5.2		y = -x + 3	
0.0.2	ΎΥ		
	$\checkmark A^{5}$	x - int ercept : 1 Mark	
		y-int <i>ercept</i> : 1 Mark Straight Line : 1 Mark	
	4 (0.2) × A		
	3 (0;3)		
	y=-x+3		
	$\leftarrow \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOON	
	-2		
	-3		
	4		
	-5		
			(3)

7


8 Downloaded from Stanmarnaphaness.com

	Solution	Ма	ark allocation	Total
3.6.1	Monday to Tuesday 🗸 A	Ans	swer: 1 Mark	
	OR Saturday to Sunday ✓A			(1)
				(י)
3.6.2	15 packets of sweets sold ✓A	Ans	swer: 1 Mark	
	OR 10 packets of sweets sold ✓A			(1)
				(י)
3.6.3	Thursday to Saturday 🗸 A	Ans	swer: 1 Mark	(1)
3.6.4	The decrease varied.	Ans	swer: 1 Mark	(1)
0.0.5		A		
3.6.5	The sales were constant. ✓ A OR	Ans	swer: 1 Mark	
	No increase or decrease in the sales. $\checkmark A$			(1)
				[26]
QUES Ques.	FION 4 [12] Solution		Mark allocation	Total
<u>4.1</u>	$SI = P.i.n \checkmark M$		Formula: 1 Mark	Total
4.1	$720 = 1800.i.5 \checkmark SF$		Substitution: 1	
	720		Mark	
	$i = \frac{720}{1800 \times 5}$		Answer: 1 Mark	
	$r = \frac{720}{1800 \times 5} \times 100$			
	$r = 8\% \checkmark CA$			(2)
				(3)
4.2	Let the breadth of the original playground $= x$			(3)
4.2	Let the breadth of the original playground $= x$ \therefore The length of the original playground $= x + 1$		2(x+1+x): 1 Mark	(3)
4.2	\therefore The length of the original playground = $x + 1$		2(x+1+x): 1 Mark	(3)
4.2	The length of the original playground $= x+1$ The perimeter of the original playground $= 2(x+1+x) \checkmark M$		2(x+1+x): 1 Mark 4x+2: 1 Mark	(3)
4.2	∴ The length of the original playground = $x+1$ ∴ The perimeter of the original playground = $2(x+1+x) \checkmark \mathbf{M}$ = $4x+2\checkmark \mathbf{M}$		4x+2: 1 Mark	(3)
4.2	The length of the original playground $= x+1$ The perimeter of the original playground $= 2(x+1+x) \checkmark \mathbf{M}$ $= 4x+2\checkmark \mathbf{M}$ The length of the new playground $= x+4$		· · · ·	(3)
4.2	∴ The length of the original playground = $x+1$ ∴ The perimeter of the original playground = $2(x+1+x)$ ✓ M = $4x+2$ ✓ M The length of the new playground = $x+4$ The breadth of the new playground = $x-1$	2	4x+2: 1 Mark 2(x+4+x-1): 1 Mark	
4.2	∴ The length of the original playground $= x+1$ ∴ The perimeter of the original playground $= 2(x+1+x)$ ✓ M = 4x+2 ✓ M The length of the new playground $= x+4$ The breadth of the new playground $= x-1$ ∴ The perimeter of the new playground $= 2(x+4+x-1)$ ✓ M		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark	(3)
4.2	∴ The length of the original playground $= x+1$ ∴ The perimeter of the original playground $= 2(x+1+x)$ ✓ M = 4x+2 ✓ M The length of the new playground $= x+4$ The breadth of the new playground $= x-1$ ∴ The perimeter of the new playground $= 2(x+4+x-1)$ ✓ M = 4x+6✓ M		4x+2: 1 Mark 2(x+4+x-1): 1 Mark	(3)
4.2	∴ The length of the original playground $= x+1$ ∴ The perimeter of the original playground $= 2(x+1+x)$ ✓ M = 4x+2 ✓ M The length of the new playground $= x+4$ The breadth of the new playground $= x-1$ ∴ The perimeter of the new playground $= 2(x+4+x-1)$ ✓ M = 4x+6✓ M ∴ The difference in perimeter $= 4x+6-(4x+2)$		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark	(3)
4.2	∴ The length of the original playground $= x+1$ ∴ The perimeter of the original playground $= 2(x+1+x)$ ✓ M = 4x+2 ✓ M The length of the new playground $= x+4$ The breadth of the new playground $= x-1$ ∴ The perimeter of the new playground $= 2(x+4+x-1)$ ✓ M = 4x+6✓ M		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark	(5)
	∴ The length of the original playground $= x+1$ ∴ The perimeter of the original playground $= 2(x+1+x)$ ✓ M = 4x+2 ✓ M The length of the new playground $= x+4$ The breadth of the new playground $= x-1$ ∴ The perimeter of the new playground $= 2(x+4+x-1)$ ✓ M = 4x+6 ✓ M ∴ The difference in perimeter $= 4x+6-(4x+2)$ = 4meters ✓ CA		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark Answer: 1 Mark	(5)
4.2	∴ The length of the original playground = $x+1$ ∴ The perimeter of the original playground = $2(x+1+x)$ ✓ M = $4x+2$ ✓ M The length of the new playground = $x+4$ The breadth of the new playground = $x-1$ ∴ The perimeter of the new playground = $2(x+4+x-1)$ ✓ M = $4x+6$ ✓ M ∴ The difference in perimeter = $4x+6-(4x+2)$ = $4meters$ ✓ CA		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark	(5)
	∴ The length of the original playground = $x+1$ ∴ The perimeter of the original playground = $2(x+1+x)$ ✓ M = $4x+2$ ✓ M The length of the new playground = $x+4$ The breadth of the new playground = $x-1$ ∴ The perimeter of the new playground = $2(x+4+x-1)$ ✓ M = $4x+6$ ✓ M ∴ The difference in perimeter = $4x+6-(4x+2)$ = $4meters$ ✓ CA Total distance travelled = $210km$ Total time travelled = $2,5hours$ ✓ M		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark Answer: 1 Mark	(5)
	∴ The length of the original playground = $x+1$ ∴ The perimeter of the original playground = $2(x+1+x)$ ✓ M = $4x+2$ ✓ M The length of the new playground = $x+4$ The breadth of the new playground = $2(x+4+x-1)$ ✓ M = $4x+6$ ✓ M ∴ The difference in perimeter = $4x+6-(4x+2)$ = $4meters$ ✓ CA Total distance travelled = $210km$ Total distance travelled = $2,5hours$ ✓ M Average Speed = $\frac{Dis \tan ce}{M}$		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark Answer: 1 Mark Distance & Time: 1 M	(5)
	∴ The length of the original playground = $x+1$ ∴ The perimeter of the original playground = $2(x+1+x)$ ✓ M = $4x+2$ ✓ M The length of the new playground = $x+4$ The breadth of the new playground = $x-1$ ∴ The perimeter of the new playground = $2(x+4+x-1)$ ✓ M = $4x+6$ ✓ M ∴ The difference in perimeter = $4x+6-(4x+2)$ = $4meters$ ✓ CA Total distance travelled = $210km$ Total distance travelled = $2,5hours$ ✓ M Average Speed = $\frac{Dis \tan ce}{Time}$ M 210km		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark Answer: 1 Mark Distance & Time: 1 M <i>Formula</i> : 1 Mark <i>Substitution</i> : 1 Mark	(5)
	$\therefore \text{ The length of the original playground } = x+1$ $\therefore \text{ The perimeter of the original playground } = 2(x+1+x) \checkmark M$ $= 4x+2\checkmark M$ $= 4x+2\checkmark M$ The length of the new playground $= x+4$ The breadth of the new playground $= 2(x+4+x-1) \checkmark M$ $= 4x+6\checkmark M$ $\therefore \text{ The difference in perimeter } = 4x+6-(4x+2)$ = 4meters = 4meters Total distance travelled $= 210km$ Total distance travelled $= 2,5hours \checkmark M$ Average Speed $= \frac{Dis \tan ce}{Time}$ $= \frac{210km}{Total} \checkmark SE$		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark Answer: 1 Mark Distance & Time: 1 M <i>Formula</i> : 1 Mark	(5)
	∴ The length of the original playground = $x+1$ ∴ The perimeter of the original playground = $2(x+1+x)$ ✓ M = $4x+2$ ✓ M The length of the new playground = $x+4$ The breadth of the new playground = $x-1$ ∴ The perimeter of the new playground = $2(x+4+x-1)$ ✓ M = $4x+6$ ✓ M ∴ The difference in perimeter = $4x+6-(4x+2)$ = $4meters$ ✓ CA Total distance travelled = $210km$ Total distance travelled = $2,5hours$ ✓ M Average Speed = $\frac{Dis \tan ce}{Time}$ M 210km		4x+2: 1 Mark 2(x+4+x-1): 1 Mark 4x+6: 1 Mark Answer: 1 Mark Distance & Time: 1 M <i>Formula</i> : 1 Mark <i>Substitution</i> : 1 Mark	(5)

QUES	FION 5 [19]		
Ques.	Solution	Mark allocation	Tot
5.1			
	✓A	Answer: 1 Mark	
5.1.1	$x = 85^{\circ}$ (Alternate \angle 's; AC//HF)	Reason: 1 Mark	(2)
5.1.2	✓A ✓R	Answer: 1 Mark	
	$y = 95^{\circ}$ (Co-interior $\angle s = 180^{\circ}$; BF//CD)	Reason: 1 Mark	(2)
5.2			
5.2.1	√S/ P	Statement and reason:	
	$\angle Q_1 = 55^{\circ} (\text{Corresponding} \angle s; \text{MN//QP})^{\checkmark} \text{S/ R}$	1 Mark	
		Statement: 1 Mark	
	$55^{\circ} + 2x - 5^{\circ} + 3x + 40^{\circ} = 180^{\circ} (3 ∠'s \text{ of } \Delta PQO = 180^{\circ})$	Reason: 1 Mark	
	× · · · · · · · · · · · · · · · · · · ·	Answer: 1 Mark	
	$5x + 90^{\circ} = 180^{\circ}$ $x = 18^{\circ}$ CA		
5.2.2	$\angle MON = 2x - 5^{\circ}$	Substitution/Method:1 Mark	(4)
0.2.2	$= 2(18^{\circ}) - 5^{\circ}$ M	Answer: 1 Mark	
	= 31° ⁄CA		(2)
5.3.1		Statement and reason:1 Mark	
	$\angle ADB + \angle ABD = 110^{\circ} [3 \angle s \text{ of } \Delta ABD = 180^{\circ}]^{\checkmark} S/R$	Statement and reason:1 Mark	
	But $\angle ADB = \angle ABD[\Delta ADB is isosceles with AD = AB] \checkmark S/R$	Answer: 1 Mark	
	$\therefore \ \angle ADB = 55^{\circ} \checkmark \mathbf{A}$		(3)
5.3.2	√S .∕P	Statement :1 Mark	
	$\angle BDC = 55^{\circ}$ [Diagonal of rhombus ABCD bisect \angle 's]	Reason:1 Mark	
	$\therefore \angle ADC = 110^{\circ} \checkmark \mathbf{A}$	Answer: 1 Mark	
	$\therefore \angle ADC = 110$ · A		
	OR	OR	
	√S √R	GR	
	$\angle DAE + \angle ADC = 180^{\circ}$ [Co-interior \angle 's =180°; DC//AE]	Statement :1 Mark	
	$\therefore 70^{\circ} + \angle ADC = 180^{\circ}$ [Co-interior \angle 's = 180°; DC//AE]	Reason:1 Mark	
	$\therefore \angle ADC = 110^{\circ} \mathbf{A}$	Answer: 1 Mark	
	$\therefore \angle ADC = 110^{-12}$		(3)
5.3.3	/6	Statement :1 Mark	
0.0.0	$\checkmark S$ $\angle DBE = 125^{\circ} [Exterior \angle \text{ of } \triangle ABD]$	Reason:1 Mark	
	$\angle DBE = 123 [EXTEND \angle OI \ \triangle ABD]$		(2)
5.3.4	The opposite side of a rhombus are parallel. $\checkmark R$	Reason:1 Mark	
	OR		
	DC//AE ✓ R		(1)
			[19]

TION 6 [12]		
Solution	Mark allocation	Tota
In ΔPMN and ΔNOP : 1. $\angle MPN = \angle PNO$ [Alternate \angle 's; MP //NO] \checkmark S/R 2. $\angle MNP = \angle NPO$ [Alternate \angle 's; MN //PO] \checkmark S/R 3. PN=PN [Common] \checkmark S/R $\therefore \Delta PMN \equiv \Delta NOP[\angle \angle S] \checkmark$ S/R $\therefore PM = NO \checkmark$ S/R	Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark	(5)
In ΔDBE and ΔFCE : 1. $\angle E_1 = \angle E_3$ [Vertically Opposite \angle 's] \checkmark S/R 2. $\angle D_1 = \angle F$ [Alternate \angle 's; AB//CF] \checkmark S/R 3. $\angle B = \angle C_2$ [Alternate \angle 's; AB//CF] \checkmark S/R $\therefore \Delta DBE \parallel \Delta FCE[\angle \angle \angle] \checkmark$ S/R Note: The learner can use any 2 pairs of equal angles in his/her proof and then simply state that the last pair of corresponding angles are equal because the sum of 3 angles of a triangle is equal to 180°. $\frac{DB}{FC} = \frac{BE}{CE} [\Delta DBE \parallel \Delta FCE] \checkmark$ S/R	Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark	(4)
$\frac{DB}{5} = \frac{8}{10} \checkmark \mathbf{SF}$	Substitution: 1 Mark Answer: 1 Mark	(3)
		[12]
TION 7 [13]		
Solution	Mark allocation	Total
oolution	Mark anocation	Total
Total Surface Area of pipe closed $= 2\pi r^{2} + 2\pi r \times h$ $= 2\pi (18)^{2} + 2\pi (18) \times 120$ $= 15607, 4323 cm^{2} \checkmark CA$ Total Surface Area of circular ends $= 2\pi r^{2}$ $= 2\pi (15)^{2}$ $= 1413, 716694 cm^{2} \checkmark A$ Total Surface Area of pipe open both sides $= 15607, 4323 cm^{2} - 1413, 716694 cm^{2}$	Substitution: 1 Mark 25000,79434 <i>cm</i> ² :1 Mark 2513,274123 <i>cm</i> ² :1 Mark Answer: 1 Mark	
	Solution In APMN and ANOP: 1. $\angle MPN = \angle PNO$ [Alternate \angle 's; MP //NO] \checkmark S/R 2. $\angle MNP = \angle PNO$ [Alternate \angle 's; MN //PO] \checkmark S/R 3. PN =PN [Common] \checkmark S/R \therefore APMN = $\triangle NOP[\angle \angle S] \checkmark$ S/R \therefore APMN = $\triangle NOP[\angle \angle S] \checkmark$ S/R \therefore $\angle PM = NO\checkmark$ S/R In $\triangle DBE$ and $\triangle FCE$: 1. $\angle E_1 = \angle E_3$ [Vertically Opposite \angle 's] \checkmark S/R 2. $\angle D_1 = \angle F$ [Alternate \angle 's; AB//CF] \checkmark S/R 3. $\angle B = \angle C_2$ [Alternate \angle 's; AB//CF] \checkmark S/R \therefore $\triangle DBE$ III $\triangle FCE[\angle \angle \angle]$ \checkmark S/R Note: The learner can use any 2 pairs of equal angles in his/her proof and then simply state that the last pair of corresponding angles are equal because the sum of 3 angles of a triangle is equal to 180°. $\frac{DB}{FC} = \frac{BE}{CE} [\triangle DBE III \triangle FCE] \checkmark$ S/R $\frac{DB}{5} = \frac{8}{10} \checkmark$ SF $DB = 4cm \checkmark$ CA Total Surface Area of pipe closed $= 2\pi r^2 + 2\pi r \times h$ $= 2\pi (18)^2 + 2\pi (18) \times 120$ $= 15607, 4323cm^2 \checkmark$ CA Total Surface Area of circular ends $= 2\pi r^2$ $= 2\pi (15)^2$ $= 1413, 716694cm^2 \checkmark A$ Total Surface Area of pipe open both sides	SolutionMark allocationIn APMN and ΔNOP :1. $\angle MPN \in ZPNO$ [Alternate $\angle s$; MP //NO] \checkmark S/RStatement and reason: 1 Mark2. $\angle MNP = \angle NPO$ [Alternate $\angle s$; MN //PO] \checkmark S/RStatement and reason: 1 Mark3. $PN = PN$ (Common) \checkmark S/RStatement and reason: 1 Mark.: $\Delta PMN = \Delta NOP[\angle S] \checkmark$ S/RStatement and reason: 1 Mark.: $\Delta PMN = \Delta NOP[\angle S]$ /S/RStatement and reason: 1 Mark.: $\Delta PMN = \Delta NOP[\angle S]$ /S/RStatement and reason: 1 Mark.: $\Delta PMN = \Delta NOP[\angle S]$ /S/RStatement and reason: 1 Mark.: ΔDEE and ΔFCE : \checkmark S/R.: $\angle D_{I} = \angle F$ [Alternate $\angle s$; AB//CF] \checkmark S/R.: $\angle D_{I} = \angle F$ [Alternate $\angle s$; AB//CF] \checkmark S/R.: $\angle D_{I} = \angle F$ [Alternate $\angle s$; AB//CF] \checkmark S/R.: ΔDEE III $\Delta FCE[\angle \angle \angle]$ \checkmark S/R.: ΔDBE III $\Delta FCE[\angle \angle \angle]$ \checkmark S/R.: ΔDE is training is equal to 180°. $DB = \frac{BE}{10}$ $\Delta BE = \frac{BE}{10}$ ΔSF $DB = 4cm$ $\leftarrow CA$ Statement and reason: 1 MarkStatement and reason: 1 MarkSubstitution: 1 Mark $\Delta BE = 10$ $\Delta BE = 10$ ΔSF <td< td=""></td<>

Ques.	Solution	Mark allocation	Total
7.1.2	Total Volume of pipe closed	Substitution: 1 Mark	
	$=\pi r^2 imes h$	122145,1224 <i>cm</i> ³ : 1 Mark	
	$=\pi(18)^2 \times 120 \checkmark SF$	84823,00165 <i>cm</i> ³ : 1 Mark	
	=122145,1224 <i>cm</i> ³ CA	Answer: 1 Mark	
	=122145,1224cm • G A		
	Total Volume of hole $= \pi r^2 \times h$		
	$=\pi(15)^2 \times 120$		
	=84823,00165 <i>cm</i> ³ √ A		
	Total Valuma of ning (onen on both sides)		
	Total Volume of pipe (open on both sides)		
	$=122145,1224cm^{3}-84823,00165cm^{3}$		
	= 37322,12 <i>cm</i> ³ √CA		(4)
7.2	$FC = \sqrt{5^2 - 4^2}$ [Theorem of Pythagoras]	FC = 3cm : 1 Mark	
	$FC = 3cm \checkmark A$	$12cm^2$: 1 Mark	
		$36 \ cm^2$: 1 Mark	
	Area of $\triangle ABC = \frac{1}{2} \times 6cm \times 4cm$	28,27433388 cm ² : 1 Mark	
	$=12cm^2$ CA	Answer: 1 Mark	
	Area of square ACDE = $6cm \times 6cm$		
	= 36 <i>cm</i> ² ✓ CA		
	Area of Circle = $\pi \times (3cm)^2$		
	$= 28,27433388 \text{ cm}^2 \checkmark \text{CA}$		
	Area of ALL the shaded sections		
	$= 12 \text{ cm}^2 + (36cm^2 - 28, 27433388cm^2)$		
	$= 19,73 \ cm^2 \checkmark CA$		(5)
			[13]

QUESTI	ON 9 [13]		
Ques.	Solution	Mark allocation	Total
9.1.1	$a = 19 \checkmark \mathbf{A}$ $b = 90 \checkmark \mathbf{A}$ c = 61	Value of a: 1 Mark Value of b and c: 1 Mark	(2)
9.1.2 a)	$P(Girl) = \frac{150}{250} / \frac{3}{5} \checkmark A$	Numerator: 1 Mark Denominator: 1 Mark	(2)
9.1.2 b)	P(A boy owning a cell phone) = $\frac{76}{250} / \frac{38}{125} \checkmark \mathbf{A}$	Numerator: 1 Mark Denominator: 1 Mark	(2)
9.1.2 c)	P(A learner with no cell phone) = $\frac{61}{250} \checkmark \mathbf{A}$	Answer: 1 Mark	(2)
9.2.1	The mean tends to be shifted upwards if there are extreme values. \checkmark S In this case, there are a few higher salaries, so the mean is shifted upwards, R while the median shows that half of the salaries will be below R5 225. \checkmark R	Statement: 1 Mark Reason: 1 Mark Reason: 1 Mark Accept any other logical explanation.	(3)
9.2.2	\checkmark A The median is generally a better indicator of the real situation when the data is not evenly spread out. \checkmark R	The median: 1 Mark Reason: 1 Mark Accept any other logical explanation.	(2)
		TOTAL:	[13] 140

