Downloaded from Stanmorephysics.com

PHYSICS REVISION BOOK

2024

SIL

14

© HFDW

5

Physicansalesastack from Stanmorephysics.com

FS/2024

Secondary Schools Directorate

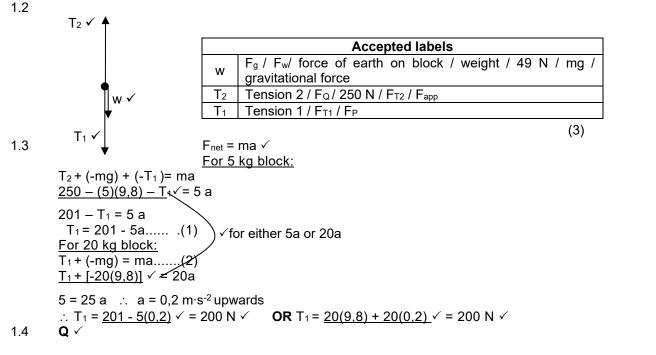
education Department of Education FREE STATE PROVINCE

TABLE OF CONTENTS

1
13
35
58
65
107
117

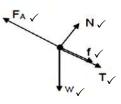
(2)

(6)


(1) [**12**]

(5)

QUESTION 1


NEWTON'S LAWS

1.1 When a <u>resultant (net) force</u> acts on an object, the object will accelerate in the direction of the force with an <u>acceleration which is directly proportional to the force</u> ✓ and <u>inversely proportional to the</u> mass of the object.✓

QUESTION 2

- When body A exerts a force on body B, body B exerts a <u>force of equal magnitude</u> √ in the <u>opposite</u> <u>direction</u> √ on body A.
- 2.2

Accepted labels				
W	F_g/F_w /force of earth on block / weight / mg / gravitational force			
Ν	Normal force/F _N			
Т	Tension / F⊤			
FA	F / F _{applied} /40 N			
f	Frictional force / F _f			

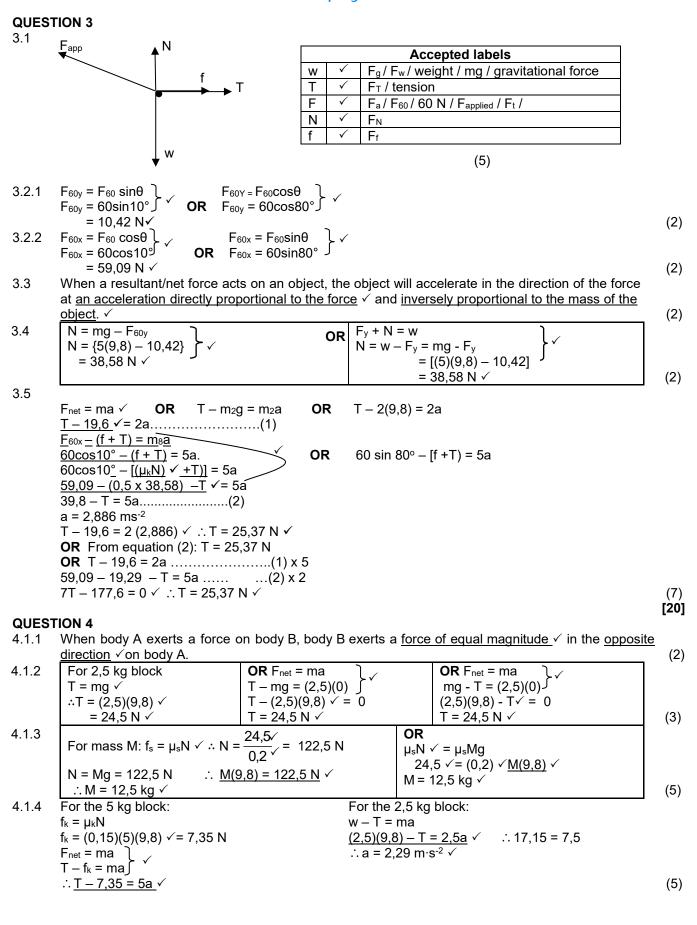
2.3.1 **OPTION 1/OPSIE 1**

For the 1 kg block/Vir die 1 kg blok;

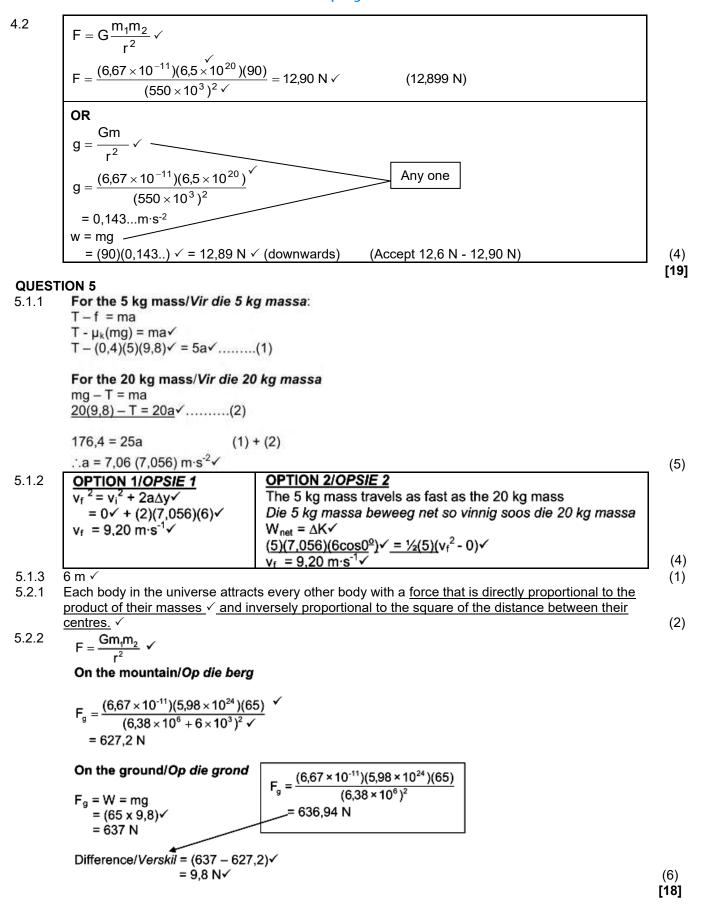
$$f_k = \mu_k N$$

= μ_k mgcosθ√ = 0,29 (1 x 9,8 cos 30°) √

= 2,46 N√

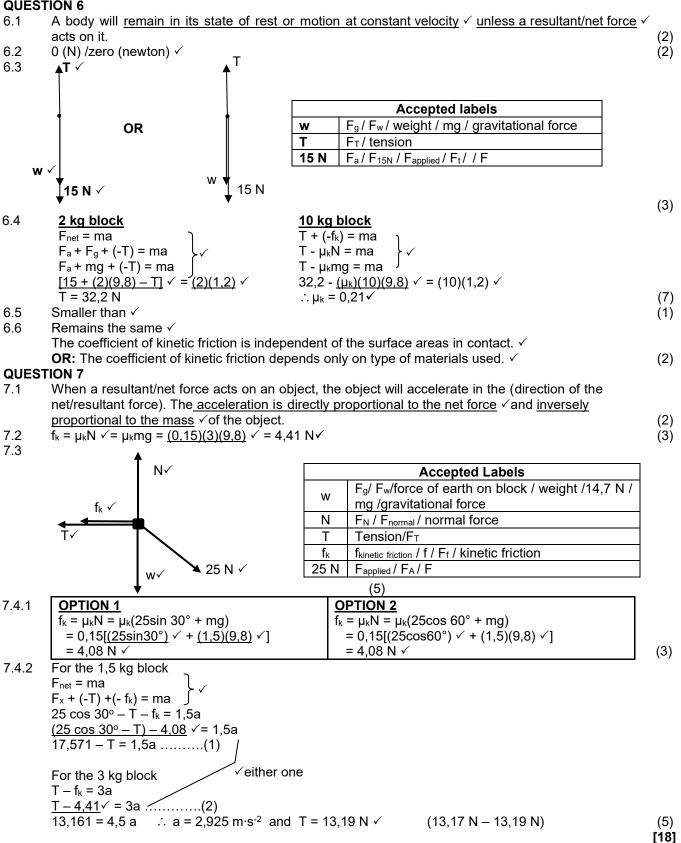

OPTION 2/OPSIE 2

BY PROPORTION:/DEUR EWEREDIGHEID The smaller mass = ¼ of the larger mass√ Die kleiner massa = ¼ die groter massa ∴frictional force/wrywingskrag = ¼ (10) √ = 2,5 N√

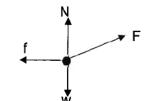

(3)

2.3.2 F_{net} = ma√

For 1 kg block/*Vir 1 kg blok* $\frac{F_{A} - \{(T+f_{k}) + mgsin\theta\} = ma}{40 - \{T + 2,46 + 1(9,8)(sin30^{\circ})\}} \neq (1 x) a \neq 40 - T - 7,36 = a$ 32,64 - T = a.....(1)For 4 kg block/*Vir 4 kg blok* $\frac{T - (mg sin\theta + f_{k}) = 4a}{T - (4 x 9,8 sin30^{\circ} + 10) = 4a} \neq 10$ T - 29,6 = 4a.....(2)From (1) and (2)/*Vanaf* (1) en (2) $a = 0,61 \text{ m} \cdot s^{-2}$ $T = 29,6 + (4(0,61) \neq (6))$ $T = 32,04 \text{ N} \neq (16)$



FS/2024



QUESTION 6

Physicaceandream Stanmorephysics.com

QUESTION 8 8.1.1

Ac	cepted labels/Aanvaarde benoemings	
N	Fg/Fw/weight/mg/gravitational force Fg/Fw/gewig/mg/gravitasiekrag	~
F	Friction/F _t /f _k /3 N/wrywing/F _w	\checkmark
N	Normal (force)/Fnormal/FN/Fnormaal/Freaction/reaksie	1
F	FA/Fapplied/toegepas	v

8.1.2
$$f_k = \mu_k N \checkmark$$

 $3 = (0,2)N \checkmark$
 $N = 15 N \checkmark$

(3)

(4)

(3)

(1)

(2)

(4)

8.1.3

$$F_{net} = ma N + F_{vert} - W = 0 N + F_{vert} = W$$
 Any one

$$Fsin20^{\circ} \checkmark = (2)(9.8) - 15 \checkmark$$

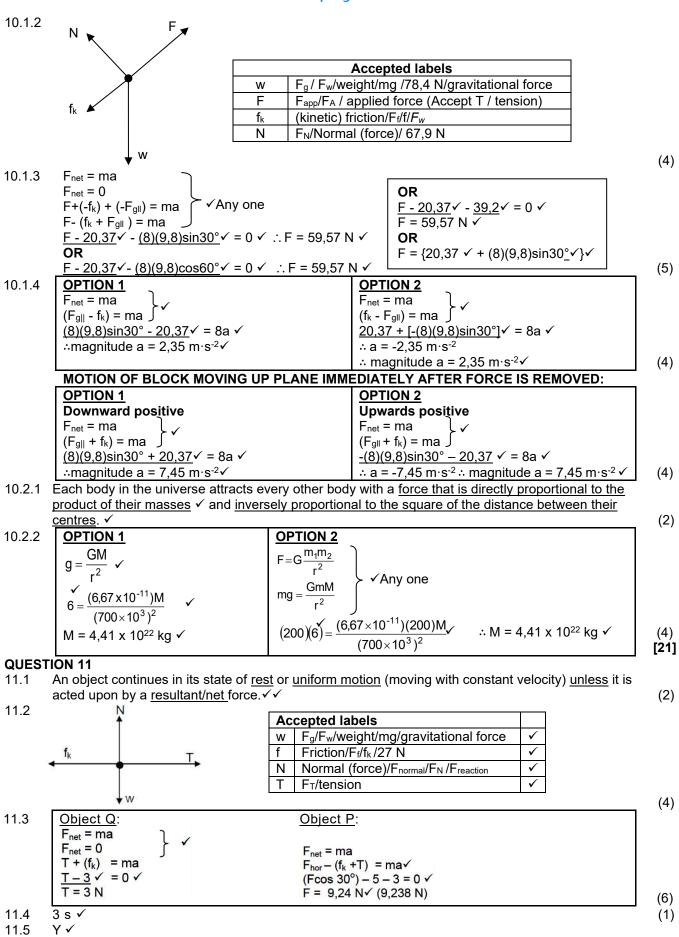
F = 13.45 N

 $F_{net} = ma$ $Fcos 20^{\circ} - f = ma$ $\checkmark Any one$

8.2.1 Each body in the universe attracts every other body with a force that is directly proportional to the product of their masses √ and inversely proportional to the square of the distance between their centres. ✓ (2)

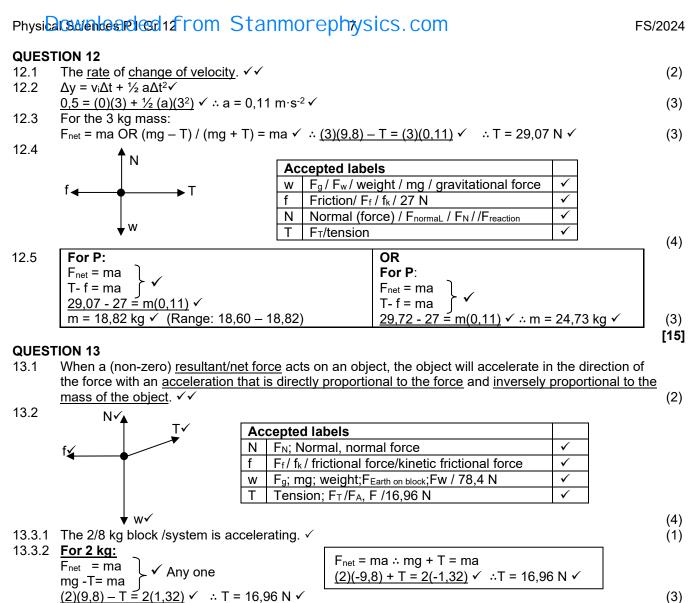
8.2.2 Increases √

Gravitational force is inverely proportional to the square of the distance between the centres of the


objects.
$$\checkmark$$
 OR $F\alpha \frac{1}{r^2}$ (2)

		Accepted labels
f_k	w	F _g /F _w /weight/mg/gravitational force/N/19,6 N
	f	F _{friction} /F _f /friction/f _k
	N	F _N /F _{normal} /normal force
		Deduct 1 mark for any additional force.
↓ w		Mark is given for both arrow and label

9.3.1	F _{net} = ma	
	$f_k - mgsin\theta = 0$ \checkmark 1 mark for any of these	
	$f_k = mgsin\theta$	
	$f_k = (2)(9,8) \sin 7^\circ$ ✓ ∴ $f_k = 2,39$ N ✓ (2,389) N	(3)
9.3.2	$f_k = \mu_k N$, \downarrow any one	
	$= \mu_k mg cos 7^{\circ} \int dt y dt e^{-t} dt$	
	$2,389 = \mu_k(2)(9,8)\cos^{7^\circ} \checkmark \therefore \mu_k = 0,12 \checkmark$	(3)
9.3.3	F _{net} = ma OR - f _k = ma OR μ _k N = ma ✓	
	$-\mu_k(mg) = ma$	
	$-(0,12)(2)(9,8) \checkmark = 2a \checkmark \therefore a = -1,176 \text{ m.s}^{-2}$ (-1,18)	
	$v_f^2 = v_i^2 + 2a\Delta x$	
	<u>0 = (1,5)² + 2(-1,176)Δx</u> ✓ ∴Δx = 0,96 m ∴ Distance = 0,96 m✓	(5)
		[15]


QUESTION 10

10.1.1 An object continues in its state of rest or uniform motion (moving with constant velocity) unless it is acted upon by an <u>unbalanced (resultant/net)</u> force.

Graph Y represents motion of Q after the string breaks and shows a decreasing velocity \checkmark with a negative acceleration, \checkmark because the net force (friction) on Q is in opposite direction to its motion. \checkmark

(4) [17]

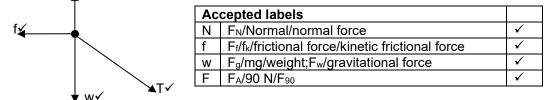
13.3.3 $F_{net} = ma$

 $T_{cos15^{\circ}} - f = ma$ $T_{x} = T_{cos15^{\circ}}$ $= 16,96 \cos 15^{\circ} = 16,38 \text{ N} (16,382 \text{ N})$

$$\frac{16,382 - f}{1000} \neq \frac{100}{1000} \neq \frac{1000}{1000} \neq \frac{1000}$$

13.4 <u>ANY ONE</u>

Normal force changes/decreases ✓


The angle (between string and horizontal) changes/increases.

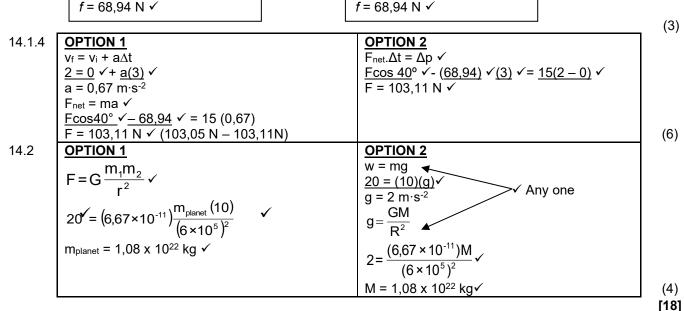
The vertical component of the tension changes/increases.

13.5 Yes ✓

The frictional force (coefficient of friction) depends on the nature of the surfaces in contact. \checkmark

14.1.1

(4) (1)


(4)

(1)

(2) [**17**]

NV

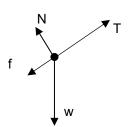
✓ any one

QUESTION 15

- 15.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force with an acceleration that is directly proportional to the force ✓ and inversely proportional to the mass of the object. ✓ (2)
- 15.2

14.1.3

F_{net} = ma

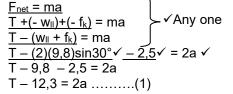

 $F_x - f = 0$

Fcos $40^{\circ} - f = 0$

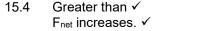
 $90 \cos 40^{\circ} - f = 0 \checkmark$

 $F_{net} = 0$

 $F_x = f$



	Accept the following symbols
N✓	F _N /Normal/Normal force
F√	F _f /f _k /frictional force/kinetic frictional force
w√	F _{g,/} mg/weight/F _{Earth on block} /19,6 N/gravitational force
T✓	Tension/F⊤/F₄/F


(4)

FS/2024

15.3 For the 2 kg block:

For the 3 kg block: $\frac{F_x + (-T) + (-w_{II})}{F_x - (T + w_{II})} = ma$ $\frac{[40 \cos 25^\circ \sqrt{-T} - (3)(9,8)\sin 30^\circ \sqrt{}]}{36,25 - T} = 3a$ 36,25 - T - 14,7 = 3a 21,55 - T = 3a (2) 9,25 = 5 a $a = 1,85 \text{ m} \cdot \text{s}^{-2} \sqrt{2}$

(8)

m = 3,25 kg ✓

QUES 16.1 16.2	TION 16 The <u>perpendicular force exerted by a surface of</u> Fapplied N	<u>n an object</u> in contact with the surface. \checkmark	(2)
16.3	f T w For the 20 kg:	16.4.1 Decreases ✓	(5) (1)
	F _{net} = ma $T - f - F_{Ax} = ma$ $T - 5 - 35 \cos 40^{\circ} \checkmark = 0 \checkmark$ $T = 31,81 \text{ N}$ For m: F _{net} = ma mg - T = ma m(9,8) - 31,81 \checkmark = 0	 16.4.2 Velocity decreases ✓ Accelerates/Net force to left ✓ ✓ OR As the tension decreases, the net force/acceleration acts in the opposite direction of motion /to the left. ✓ ✓ 	(3)

(5) [16]

(2)

QUESTION 17

17.1 When a (non-zero) resultant/net force acts on an object, the object will accelerate in the direction of the force with an acceleration that is directly proportional to the force \checkmark and inversely proportional to the mass of the object. ✓ OR

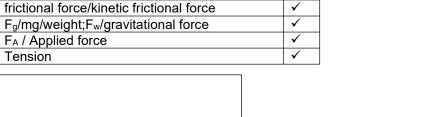
The (non-zero) resultant/net force acting on an object is equal to the rate of change of momentum of the object in the direction of the resultant/net force.

17.2	▲ N		Acceptable labels	
			N F _N /Normal/normal force	 ✓
	T	F	f F _f /f _k /frictional force/kinetic frictional force	\checkmark
		2	w F _g /mg/weight/F _w /gravitational force	\checkmark
	1		F FA	\checkmark
	↓ w		T Tension	 ✓ ()
17.3	$\frac{8 \text{ kg}}{F_{net} = \text{ma } \checkmark \text{ OR}}$ $F_{net} = 0 \text{ OR}$ $F - (f + T) = \text{ma}$ $29,6 - 10 - T = 0 \checkmark$ $T = 19,6 \text{ N} \checkmark$	$ \begin{bmatrix} 2 kg \\ F_{net} = ma \checkmark 0 \\ F_{net} = 0 OR \\ T - w = 0 \\ T - (2)(9,8) = 0 \\ T = 19,6 N \checkmark $		(
17.4.1	8 kg Fnet = ma ✓ OR/OF F- (f + T) = ma 50 - 10 - T ✓ = 8a ✓ 40 - T = 8a	2 kg F _{net} = ma T – mg = r T – 2(9,8) a = 2,04 m		
17.4.2	T - 2(9,8) = 2a T - 19,6 = 2(2,04) \checkmark T = 23,68 N \checkmark	OR	40 - T = 8a $T = 40 - 8(2,04) \checkmark$ $T = 23,68 N \checkmark$	(
	L			() [1

 \mathbf{f}_{k}

w

F


Т

QUESTION 18

fk

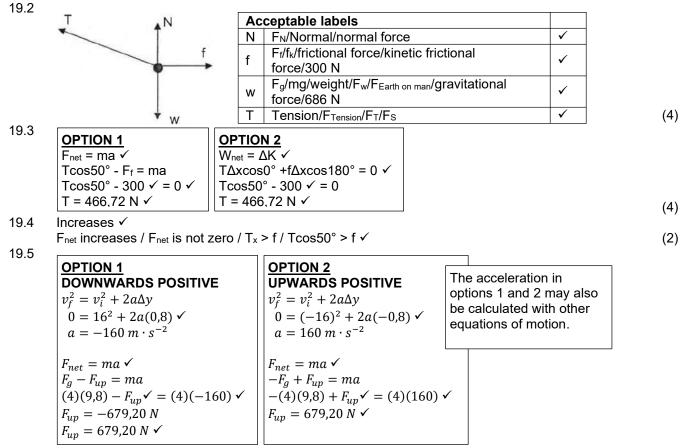
W

18.1 A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant/net force/unbalanced force acts on it. VV OR A body will remain in its state of rest or uniform motion in a straight line unless a (non-zero) resultant/net /unbalanced force acts on it. VV 18.2 N Acceptable labels F_N/Normal/normal force Ν ~

Positive up the incline F_{net} = ma ✓ **OR** $F + f_k + w_{II} = ma \mathbf{OR}$ F - [18 + (20)(9,8)(sin30°)] ✓ = 0 ✓ F = 116 N ✓ OR W_{net} = ∆Ek ✓ $F\Delta x \cos 0^{\circ} + f\Delta x \cos 180^{\circ} + w\Delta x \cos 120^{\circ} \checkmark = 0 \checkmark$ $F\Delta x = 18\Delta x + (20)(9,8)\Delta x(0,5)$ F = 116 N ✓ 18.4 116 N / f + w|| ✓ Down the incline/opposite to direction of motion. ✓

(4) (2)

(2)


18.5

18.3

Up the incline pos	itive		W _{net} = ∆E _K ✓ OR]
F _{net} = ma -116 = 20a ✓ a = -5,80 m·s ⁻²	$v_{f}^{2} = v_{i}^{2} + 2a\Delta x \checkmark$ $0 = (2)2 + (2)(-5,8)\Delta x \checkmark$ $\Delta x = 0,34 \text{ m} \checkmark$	OR	F _{net} ∆xcosθ = ½m(v _f ² - v _i ²) (116)∆xcos180° ✓ = ½(20)(02 – 22) ✓ ∆x = 0,34 m ✓	(4
				_ [1

QUESTION 19

A body will remain in its state of rest or motion at constant velocity unless a (non-zero) resultant/net 19.1 force/unbalanced force acts on it. </

(2)

(4)

OPTION 3 $\overline{W_{net}} = \Delta K \checkmark$ $F_{net}\Delta x \cos\Theta = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $(4)(9,8)(0,8)\cos^{\circ}\checkmark + F_{up}(0,8)\cos^{\circ}\checkmark = \frac{1}{2}(4)(0-16^{2})\checkmark$ $F_{up} = 679,20 \ N \checkmark$ **OPTION 4** $\overline{W_{nc}} = \Delta K + \Delta U \checkmark$ $F_{up}\Delta x \cos\Theta = \frac{1}{2}m(v_f^2 - v_i^2) + mg(h_f - h_i)$ $F_{up}(0,8)\cos 180^{\circ} \checkmark = \frac{1}{2}(4)(0-16^2) \checkmark + (4)(9,8)(0-0,8) \checkmark$

$$\begin{array}{l} \underline{\text{OPTION 5}} \\ \Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \\ 0.8 = \left(\frac{16 + 0}{2}\right) \Delta t \\ \Delta t = 0.1 \ s \\ F_{net} \Delta t = \Delta p \checkmark \\ \left[(4)(9.8) \checkmark - F_{up}\right](0.1) \checkmark = (4)(0 - 16) \checkmark \\ F_{up} = 679.20 \ N \checkmark
\end{array}$$

(5) [17]

QUESTION 20

 $F_{up} = 679,20 \, N \checkmark$

When a resultant/net force acts on an object, the object will accelerate in the direction of the force. 20.1 The acceleration is directly proportional to the resultant/net force and inversely proportional to the mass of the object. VV OR The resultant/net force acting on an object is equal to the rate of change of momentum of the

$$\begin{array}{c} \text{object.} \\ \text{20.2} \\ \text{20.2} \\ \text{20.2} \\ \text{1} \\ \text$$

Tension/FTension/FT/F

(2)

(2)

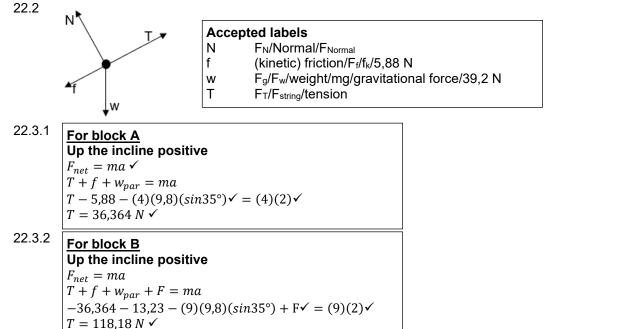
(2)

(4)

(4)

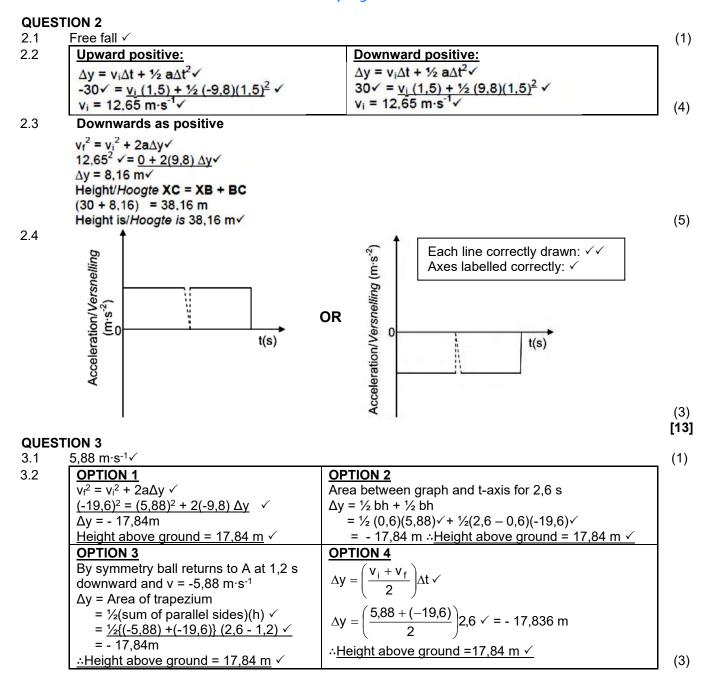
(3)

21.3 When a resultant/net force acts on an object, the object will accelerate in the direction of the force with an acceleration that is directly proportional to the force and inversely proportional to the mass of the object. VV OR


The resultant/net force acting on an object is equal to the rate of change of momentum of the object in the direction of the resultant/net force.

$m_B g - T = m_B a \qquad T (7,5)(9,8) - T \checkmark = (7,5)(3,88) \checkmark 4$	$f_{net} = ma$ $f - mg = ma$ $4,4 - 9,8m = 3,88m \checkmark$ $n = 3,25 kg \checkmark$
OPTION 1 UPWARD AS POSITIVE $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $0^2 = 3.41^2 \checkmark + 2(-9.8)\Delta y \checkmark$ $\Delta y = 0.59 m$	DOWNWARD AS POSITIVE $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $0^2 = (-3,41)^2 \checkmark + 2(+9,8)\Delta y \checkmark$ $\Delta y = -0.59 m$
Maximum height = $0,59 + 1,5 \checkmark$ = 2,09 m \checkmark	Maximum height = 0,59 + 1,5 ✓ = 2,09 m ✓
$\begin{array}{l} \hline \textbf{OPTION 2} \\ \textbf{UPWARD AS POSITIVE} \\ v_f = v_i + a\Delta t \\ 0 = 3,41 + (-9,8)\Delta t \\ \Delta t = 0,348 \ s \end{array}$	DOWNWARD AS POSITIVE $v_f = v_i + a\Delta t$ $0 = -3.41 + (+9.8)\Delta t$ $\Delta t = 0.348 s$
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ = (3,41)(0,348) \sqcap + \frac{1}{2}(-9,8)(0,348)	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $= (-3,41)(0,348)\checkmark + \frac{1}{2}(+9,8)(0,348^2)\checkmark$ = -0.59 m
= 0,59 m	

QUESTION 22


22.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force. The acceleration is directly proportional to the resultant/net force and inversely proportional to the mass of the object. VV OR

The resultant/net force acting on an object is equal to the rate of change of momentum of the object in the direction of the resultant/net force.

Physica	acessianlasedeed 12 From Stanmoreph	nysics.com	FS/2024		
	22.4.1 Increase ✓				
22.4.2	As θ decreases, the normal force increases. \checkmark The frictional force is directly proportional to the	normal force √ OR fα N / f = μN	(2)		
			[16]		
	VERTICAL PRO	JECTILE MOTION			
QUEST	ΓΙΟΝ 1		(-)		
1.1 1.2	Motion under the influence of the gravitational for	rce/weight ONLY. ✓ ✓	(2)		
1.2	OPTION 1 Upwards positive <i>:</i>	Downwards positive <i>:</i>			
	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$			
	$0 \checkmark = \frac{15 \Delta t + \frac{1}{2} (-9,8) \Delta t^2}{\sqrt{1-9}}$	$0 \checkmark = -15 \Delta t + \frac{1}{2} (9.8) \Delta t^2 \checkmark$			
	$\Delta t = 3,06 \text{ s}$ \therefore It takes 3,06 s \checkmark	∆t = 3,06 s ∴lt takes 3,06 s ✓			
	OPTION 2				
	Upwards positive:	Downwards positive:			
	$v_f = v_i + a\Delta t \checkmark$	$v_{f} = v_{i} + a\Delta t \checkmark$			
	$ \begin{array}{l} 0 \checkmark = \frac{15 + (-9,8)\Delta t}{\Delta t} \checkmark \\ \Delta t = 1,53 \text{ s} \end{array} $	$0\checkmark = \frac{-15 + (9,8)\Delta t}{\Delta t} \checkmark$ $\Delta t = 1,53 \text{ s}$			
	It takes (2)(1,53) = 3,06 s \checkmark	It takes (2)(1,53) = 3,06 s \checkmark	(4)		
1.3	Upwards positive:	Downwards positive:	(')		
	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$			
	For ball A	For ball A			
	$0 = (15)^2 \checkmark + 2 (-9,8) \Delta y \checkmark \therefore \Delta y_A = 11,48 \text{ m}$	$0 = (-15)^2 \checkmark + 2 (9,8) \Delta y \checkmark \therefore \Delta y_A = -11,48 \text{ m}$			
	When A is at highest point:	When A is at highest point:			
	$\Delta y_{B} = \mathbf{v}_{i} \Delta t + \frac{1}{2} \mathbf{a} \Delta t^2$	$\Delta y_{\rm B} = v_i \Delta t + \frac{1}{2} a \Delta t^2$			
	$= 0 + \frac{1/2}{2} (-9.8) (1.53)^2 \sqrt{2}$	$= 0 + \frac{1}{2} (9.8) (1.53)^2 \sqrt{\sqrt{1}}$			
	$\Delta y_B = -11,47 \text{ m} \therefore \Delta y_B = 11,47 \text{ m}$ downward	$\Delta y_B = 11,47 \text{ m} \therefore \Delta y_B = 11,47 \text{ m}$ downward			
	Distance = y _A + y _B = 11,47 + 11,48 ✓ = 22,95 m ✓	Distance = $y_A + y_B = 11,48 + 11,47 \checkmark$ = 22,95 m \checkmark	(6)		
1.4		DOWNWARD POSITIVE	(6)		
1.4	A CONTRACT AS POSITIVE	DOWNWARD FOSITIVE			
	15	Ī			
		15			
	3,06				
	x is is is is is is is is is is				
		>			
		-15			
	-15 Marking criteria				
	Graph starts at correct initial velo	city shown ✓			
	Time for maximum height shown				
	Time for return shown (3,06 s)	\checkmark			
	Shape: Straight line extending be	eyond 3,06 s 🗸			

(4) [**17**]

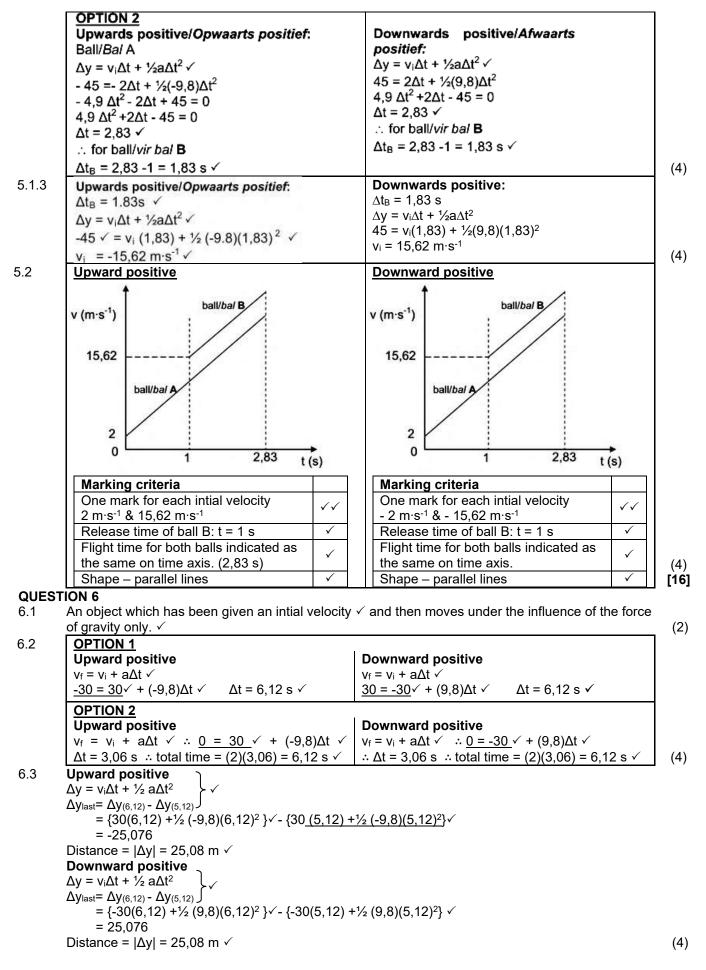
Physicaceandream Stanmorephysics.com

		1 3		
3.3	OPTION 1		OPTION 2	
	$t_p = \left(\frac{3,2-2,6}{2}\right) + 2,6 \checkmark$ Time at P	(tp) = 2.9 s √	v _f = v _i + a∆t 0 = 2,94 + (-9,8)∆t √	
		($\Delta t = 0.3s \therefore t_{p} = 2.6 + 0.3 = 2.9s \checkmark$	
	OPTION 3		<u></u>	
	Gradient = -9,8			
	$\frac{\Delta y}{\Delta t} = -9.8 \therefore \frac{0-2.94}{\Delta t} = -9.8 \checkmark \therefore$	$\Delta t = 0,3 \text{ s}$ Time at	P (tp) = <u>(2,6 + 0,3)</u> = 2,9 s √	(2)
3.4		PTION 2	OPTION 3	. ,
		y = v _i ∆t + ½a∆t²√	$\overline{v_f^2} = v_i^2 + 2a\Delta y \checkmark$	
	= ½ (0,3)(2,94) ✓	$= (2,94)(0,3) + \frac{1}{2}(-9)$	$(0,8)(0,3)^2 \checkmark 0 = 2,94^2 + 2(-9,8)\Delta y$	
	= 0,44 m√	= 0,44 m √	∆y = 0,44m ✓	(3)
3.5	For t =2,9 s t _p = 2,9 s			
	Distance travelled by balloon since b	all was dropped		
	$\Delta y = v\Delta t = (5,88)(2,9) \checkmark = 17,05 \text{ m}$			
	Height of balloon when ball was drop			
	Height of balloon after 2,9 s = $(17,05)$		m	
	Maximum height of ball above groun ∴distance between balloon and ball		21 15 m /	(4)
	Adistance between balloon and ball	- (34,09 - 0,44) * -	34,45 m v	(4) [13]
QUES	TION 4			[13]
4.1	Upwards positive	Downwards posit	ive	
	$v_f = v_i + a\Delta t \checkmark$	$v_f = v_i + a \Delta t \checkmark$		
	-16✓ = <u>16 - 9,8(∆t)</u> ✓	16 √ = -1 <u>6 +9,8(</u> ∆t) 🗸	
	$\Delta t = 3,27s \checkmark$	∆t = 3,27s √	-	(4)
				()
4.2	Upwards positive:	Dow	/nwards positive <i>:</i>	
	16	10	₹ <i>¬</i>	
		-		
	$\widehat{}$	t(s) t(s)		
	(i.e. 3,26 i.e. 3,26 1,63	Ë		
	<u>E</u> 3,26	<u>ک</u>		
		t(s) tio	1,63 3,26 t(s)	
			,	
	e	>		
	16	-16	5	
	-16			

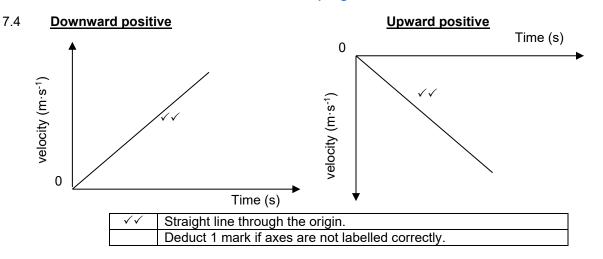
Criteria for graph	
Correct shape for line extending beyond t = 1,63 s.	\checkmark
Initial velocity correctly indicated as shown.	\checkmark
Time to reach maximum height and time to return to the ground correctly shown.	\checkmark

(3)

FS/2024

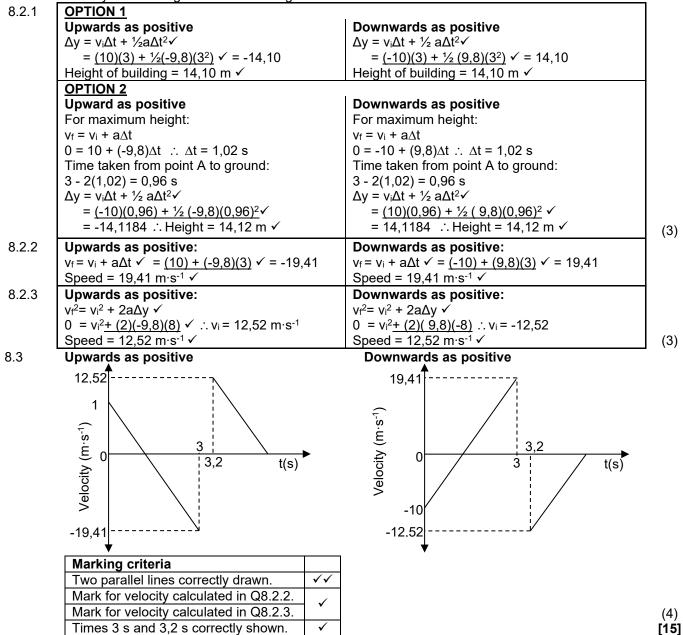

Physicaceandream Stanmorephysics.com

 Marking criteria: Both equations √ 			
• Equation for distance/displacement cover	ed by A. ✓		
• Equation for distance/displacement covered by B. ✓			
 One of equations to have time as (Δt + 1) 	or $(\Delta t - 1)$.		
• Solution for t = 2,24 s. \checkmark			
 Final answer: 11,25 m ✓ 			
Upwards positive:	Downwards positive:		
Take y _A as height of ball A from the ground:	Take y_A as height of ball A from the ground.		
$\Delta y_{A} = v_{i} \Delta t + \frac{1}{2} a \Delta t^{2}$	$\Delta y_{A} = v_{i}\Delta t + \frac{1}{2} a\Delta t^{2}$		
$y_{A} - 0 = 16\Delta t + \frac{1}{2}(-9,8)\Delta t^{2} = 16\Delta t - 4,9\Delta t^{2} \checkmark$	$y_{A} - 0 = -16\Delta t + \frac{1}{2}(9,8)\Delta t^{2}$		
Take y_B as height of ball B from the ground:	$= -16\Delta t + 4,9\Delta t^2 \checkmark \qquad \qquad \checkmark Bc$		
$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$	Take y_B as height of ball B from the ground.		
$y_{\rm B} - 30 = (v_i \Delta t + \frac{1}{2} a \Delta t^2)$	$\Delta y_{\rm B} = v_i \Delta t + \frac{1}{2} a \Delta t^2 - \frac{1}{2$		
$y_B = 30 - [-9(\Delta t - 1) + \frac{1}{2}(-9,8)(\Delta t - 1)^2 \checkmark$,		
= 34,1 +0,8∆t - 4,9 ∆t² √	$y_{B} = 30 - [9(\Delta t - 1) + \frac{1}{2}(9,8)(\Delta t - 1)^{2} \checkmark$		
$y_A = y_B$	= 34,1 + 0,8∆t - 4,9 ∆t² √		
$\therefore 16 \Delta t - 4,9 \Delta t^2 = 34,1 + 0,8 \Delta t - 4,9 \Delta t^2$	$y_A = y_B \therefore 16 \Delta t - 4,9 \Delta t^2 = 34,1 + 0,8 \Delta t - 4,9 \Delta t^2$		
15,2∆t = 34,1 ∴ ∆t = 2,24 s ✓	∴15,2∆t = 34,1 ∴∆t = 2,24 s ✓		
10,230 01,10 20 2,210	$\Delta y_A = (-16 (2,24) + 4,9(2,24)^2) = 11,25 \text{ m} \checkmark$		

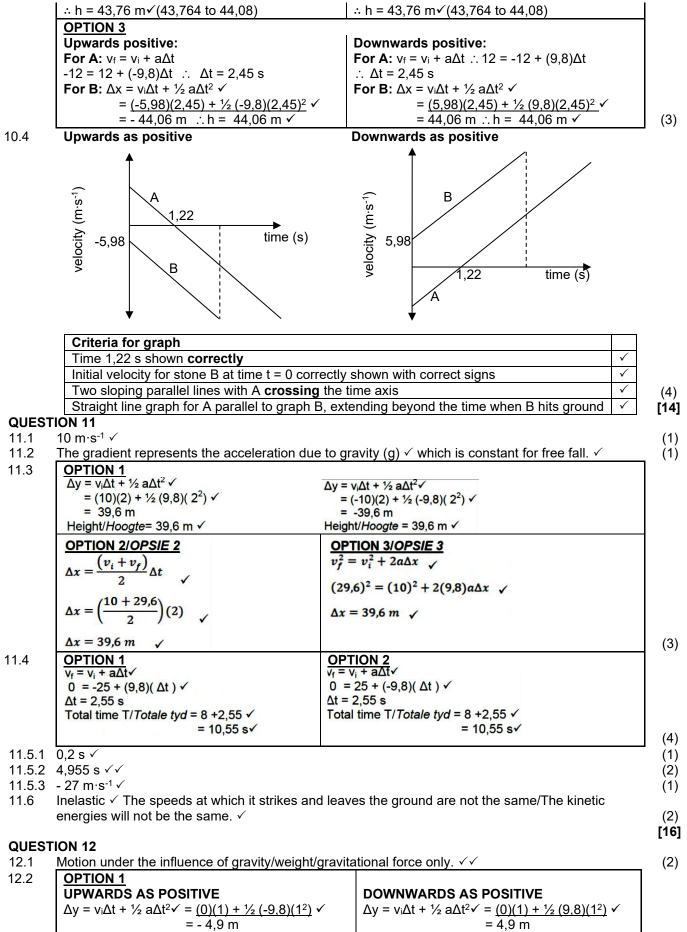

QUESTION 5

5.1.1		Downwards positive /Afwaarts positief: $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $v_f^2 = (2)^2 + 2(9,8)(45) \checkmark$ $v_f = 29.76 \text{ m} \cdot \text{s}^{-1} \checkmark (29.77 \text{ m} \cdot \text{s}^{-1})$	
	OPTION 2/OPSIE 2 Upwards positive/Opwaarts positief: $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \sqrt{\frac{1}{2}}$	Downwards positive/Afwaarts positief:	
	for either equation/vir beide vergelykings - $45 = -2\Delta t + \frac{1}{2}(-9,8)\Delta t^2$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ for either equation/vir beide	
	$-4.9 \Delta t^{2} - 2\Delta t + \frac{1}{2}(-9,8)\Delta t$ -4.9 $\Delta t^{2} - 2\Delta t + 45 = 0$ 4.9 $\Delta t^{2} + 2\Delta t - 45 = 0 \checkmark$	vergelykings $45 = 2\Delta t + \frac{1}{2}(9,8)\Delta t^2$	
	$\Delta t = 2,83$	$43 - 2\Delta t + \frac{1}{2}(9,8)\Delta t$ $4,9 \Delta t^{2} + 2\Delta t - 45 = 0 \checkmark$ $\Delta t = 2,83$	
	$v_f = v_i + a \Delta t$	$v_f = v_i + a \Delta t$	
	$v_f = 0 + (-9,8)(2,83)$ $v_f = -29,73 \text{ m s}^{-1} \checkmark$	$v_f = 0+(9,8)(2,83)$ $v_f = 29,73 \text{ m s}^{-1} \checkmark$	(4)
510	OBTION 1/OBS/E 1	Downwards positive/Afwaarts	٦

.1.2	OPTION 1/OPSIE 1	Downwards positive/Afwaarts
	Upwards positive/Opwaarts positief:	positief
	The balls hit the water at the same	The balls hit the water at the
	instant./Die balle tref die water gelyktydig	same instant./Die balle tref die
	v _f = v _i +a∆t ✓	water gelyktydig
	Ball/Bal A	v _f = v _i +a∆t ✓
	-29,76 = -2+(-9,8) ∆t`	Ball/Bal A
	Δt = 2,83 s ✓	$29,76 = 2 + (9,8) \Delta t$
	∴ for ball/vir bal B	∆t = 2,83 s ✓
		∴ for ball/ <i>vir bal</i> B
	$\Delta t_{\rm B} = 2,83 - 1 = 1,83 {\rm s}$	∆t _B = 2,83 -1 = 1,83 s
	∴ for ball/ <i>vir bal</i> B	∴ for ball/vir bal B
	Δt _B = 2,83 -1 = 1,83 s ✓	Δt _B = 2,83 -1 = 1,83 s ✓



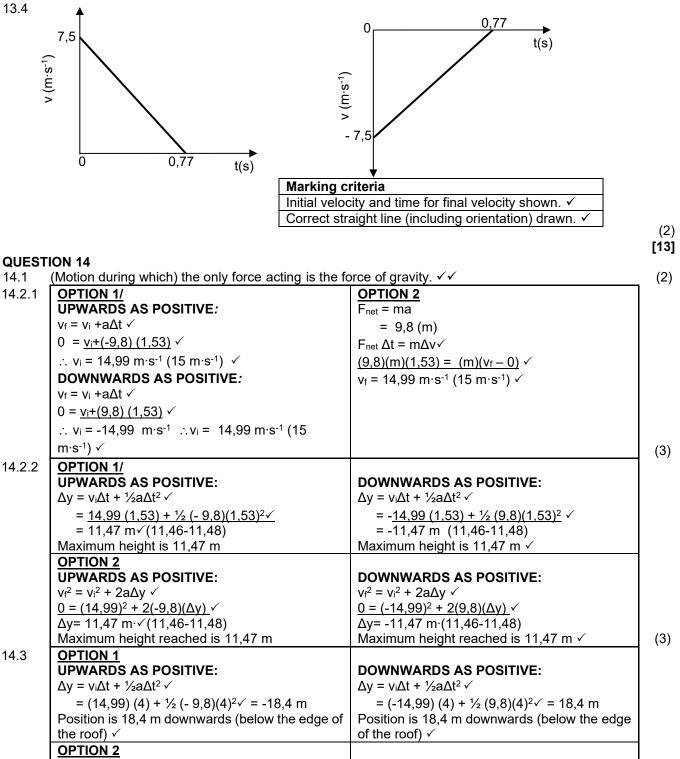
.6.4 Upward positive **Downward positive** $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $50\sqrt{4} = v_i(4,12) + [\frac{1}{2}(9,8)(4,12)^2] \sqrt{4}$ $-50\sqrt{=} [v_i (4, 12)] + [\frac{1}{2} (-9, 8)(4, 12)^2] \sqrt{-9}$ $v_i = 8,05 \text{ m} \cdot \text{s}^{-1}$ v_i = - 8,05 m⋅s⁻¹ speed = 8,05 m·s⁻¹ \checkmark speed = 8,05 m·s⁻¹ \checkmark 6.5 Upward positive: Downward positive: 30 30 /elocity (m·s⁻¹) . S В 8,05 velocity (m[.] 3.06 6,12 2 time (s) 3,06 6,12 time (s) -8,05 A -30 -30 Marking criteria Marking criteria Correct shape of A. Correct shape of A. Correct shape of Graph B parallel to \checkmark Correct shape of Graph B parallel to 1 A above A. A below A. Time at which both A and B reach \checkmark Time at which both A and B reach the ground (6,12 s). the ground (6,12 s). Time for A to reach the maximum Time for A to reach the maximum \checkmark (4)height (3,06 s) shown. height (3,06 s) shown. [18] QUESTION 7 7.1 The motion of an object under the influence of weight/ gravitational force only / Motion in which the only force acting is the gravitational force. √√ (2) 7.2 **OPTION 1: Upwards positive OPTION 1: Downwards positive** $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ v_f² = v_i² + 2a∆y √ = 0²+ (2)(-9,8) √ (-20) √ $= 0^{2} + (2)(9,8) \checkmark (20) \checkmark$ v_f = 19,80 m·s⁻¹ √ v_f = 19,80 m·s⁻¹ √ **OPTION 2: Upwards positive OPTION 2: Downwards positive** $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$ $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$ $-20 = 0 + \frac{1}{2} (-9,8) \Delta t^2 \sqrt{2}$ $20 = 0 + \frac{1}{2} (9,8) \Delta t^2 \sqrt{2}$ ✓ either one √either one ∆t = 2,02 s ∆t = 2,02 s v_f = v_i + a∆t v_f = v_i + a∆t = 0 + (-9,8)(2,02) √ = 0 + (9,8)(2,02) √ = -19,80 m·s⁻¹ ∴ v_f = 19,80 m·s⁻¹ √ (4)= 19,80 m·s⁻¹ √ **OPTION 1: Upwards positive OPTION 1: Downwards positive** 7.3 $v_f = v_i + a\Delta t \checkmark$ $v_f = v_i + a\Delta t \checkmark$ <u>19,80 = 0 + (9,8)∆t</u> ✓ ∴ ∆t = 2,02 s ✓ $-19,80 = 0 + (-9,8)\Delta t \checkmark \therefore \Delta t = 2,02 \text{ s} \checkmark$ **OPTION 2: Upwards positive: OPTION 2: Downwards positive:** $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \sqrt{2}$ $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \sqrt{2}$ $-20 = 0 + \frac{1}{2} (-9,8) \Delta t^2 \checkmark \therefore \Delta t = 2,02 \text{ s} \checkmark$ $20 = 0 + \frac{1}{2} (9,8) \Delta t^2 \checkmark \therefore \Delta t = 2,02 \text{ s} \checkmark$ (3)


QUESTION 8

8.1 The only force acting on the ball is the gravitational force. $\checkmark\checkmark$

(2) [11]

QUEST					
9.1					
9.2	the gravitational force/weight only. $\checkmark \checkmark$ (2) No \checkmark The balloon is <u>not accelerating</u> ./The balloon is <u>moving with constant velocity</u> ./The net force				
0.2	acting on the balloon is zero. \checkmark	ne method with constant volocity. The net lefter	(2)		
9.3	OPTION 1 Upward positive:	Downward positive:	()		
	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$			
	$-22\checkmark = (-1,2) \Delta t + \frac{1}{2} (-9,8) \Delta t^2 \checkmark :: \Delta t = 2 \text{ s }\checkmark$	$22\checkmark = (1,2) \Delta t + \frac{1}{2} (9,8) \Delta t^2 \checkmark \therefore \Delta t = 2 \text{ s } \checkmark$			
	OPTION 2	December of the set			
	Upward positive:	Downward positive:			
	$v_f^2 = v_i^2 + 2a\Delta y$	$v_f^2 = v_i^2 + 2a\Delta y$			
	$v_f^2 = (-1,2)^2 + (2)(-9,8)(-22)$	$v_f^2 = (1,2)^2 + (2)(9,8)(22)$ Both			
	$v_{\rm f}$ = -20,8 m·s ⁻¹	v _f = 20,8 m·s ^{-⊤}			
	$v_f = v_i + a\Delta t$	$v_f = v_i + a\Delta t$			
<u>.</u>	$-20.8 = -1.2 + -9.8\Delta t \checkmark \therefore \Delta t = 2 s \checkmark$	$\underline{20,8} = 1,2 + 9,8\Delta t \checkmark \therefore \Delta t = 2 s \checkmark$	(4)		
9.4	Upward positive:				
	v _f = v _i + aΔt ✓ ∴ 0 = 15 + (-9,8)Δt ✓ ∴ Δt = 1,53 s	$v_f = v_i + a\Delta t \checkmark ∴ 0 = -15 + (9,8)\Delta t \checkmark$ ∴ Δt = 1,53 s			
	Total time elapsed = $2 + 1,53 + 0,3$ \checkmark	Total time elapsed = $2 + 1,53 + 0,3$			
	= 3,83 s	= 3,83 s			
	Displacement of the balloon:	Displacement of the balloon:			
	Δy = v _i Δt + ½ aΔt ² = -(1,2)(3,83) ✓ = - 4,6 m	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 = (1,2)(3,83) \checkmark = 4,6 m$			
	Height = <u>22 - 4,6</u> ✓ = 17,4m ✓	Height = $22 - 4,6 \checkmark$ = 17,4m \checkmark			
	OR	OR	(-)		
	$y_f = y_i + \Delta y = [22 - (1,2)(3,83)] \checkmark \checkmark = 17,4 \text{ m}$	$y_f = y_i + \Delta y = [-22 + (1,2)(3,83)] \checkmark \checkmark = -17,4 \text{ m}$	(6)		
QUEST	∴ Height = 17,4 m✓	∴ Height = 17,4 m ✓	[14]		
10.1	OPTION 1				
10.1	Upwards positive:	Downwards positive <i>:</i>			
	$v_f = v_i + a\Delta t \checkmark : 0 = (12) + (-9,8)(\Delta t) \checkmark$	$v_f = v_i + a\Delta t \checkmark \therefore 0 = (-12) + (9,8)(\Delta t) \checkmark$			
	∴Δt = 1,22 s√	∴ Δt = 1,22 s√			
	OPTION 2	December 11			
	Upwards positive:	Downwards positive:			
	$v_f^2 = v_i^2 + 2a\Delta y$	$v_f^2 = v_i^2 + 2a\Delta y$			
	0 = 12 ² + 2(-9,8)Δy ✓ ∴ Δy = 7,35	$0 = (-12)^2 + 2(9,8)\Delta y\checkmark \therefore \Delta y = -7,35$			
	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$			
40.0	$7,35 = 12\Delta t + \frac{1}{2} (-9,8)\Delta t^2$ ∴ Δt = 1,22 s√	$-7,35 = -12\Delta t + \frac{1}{2}(9,8)\Delta t^2 \therefore \Delta t = 1,22 \text{ s}$	(3)		
10.2	<u>OPTION 1</u> Upwards positive:	Downwordo positivo			
	$v_f = v_i + a\Delta t \checkmark \therefore \underline{-3v} = -v \checkmark + (\underline{-9,8})(1,22) \checkmark$	Downwards positive: $v_f = v_i + a\Delta t \checkmark \therefore 3v = v \checkmark + (9,8)(1,22) \checkmark$			
	$v = 5,98 \text{ m}\cdot\text{s}^{-1} \checkmark (5,978 \text{ to } 6,03 \text{ m}\cdot\text{s}^{-1})$	$v = 5,98 \text{ m} \text{ s}^{-1} \checkmark (5,978 \text{ to } 6,03 \text{ m} \text{ s}^{-1})$			
	OPTION 2				
	Upwards positive:	Downwards positive:			
	$F_{net}\Delta t = m(v_f - v_i) \checkmark$	$F_{net}\Delta t = m(v_f - v_i) \checkmark$			
	$mg\Delta t = m(v_f - v_i)$	$mg\Delta t = m(v_f - v_i)$			
	$(-9,8)(1,2245) \checkmark = -3v - (-v) \checkmark$	$(9,8)(1,2245) \checkmark = 3v - v\checkmark$			
40.0	∴ v = 6,00 m·s ⁻¹ ✓	$v = 6,00 \text{ m} \cdot \text{s}^{-1} \checkmark$	(4)		
10.3	<u>OPTION 1</u> Upwards positive:	Downwards positive:			
	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$			
	$= (-5,98)(2,44) + \frac{1}{2}(-9,8)(2,44)^2 \checkmark = -43,764$	$= (5.98)(2.44) + \frac{1}{2}(9.8)(2.44)^2 \checkmark = 43,764$			
	\therefore h = 43,76 m \checkmark (43,764 to 44,08 m)	$\therefore h = 43,76 \text{ m} \checkmark (43,764 \text{ to } 44,08)$			
	OPTION 2				
	Upwards positive:	Downwards positive:			
	$v_f = v_i + a\Delta t$	$v_f = v_i + a\Delta t$			
	$v_f = -5,98 + (-9,8)(2,44) = -29,892 \text{ m} \cdot \text{s}^{-1}$	$v_f = 5,98 + 9,8(2,44) = 29,892 \text{ m} \cdot \text{s}^{-1}$			
	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$			
	$(-29,892)^2 = (-5,98)^2 + 2(-9,8)\Delta y$	$(29,892)^2 = (5,98)^2 + 2(9,8)\Delta y$			
	$\Delta y = -43,763 \text{ m}$	$\Delta y = 43,76 \text{ m}$			


Height = $2\Delta y = (2)(4,9)$

= 9,8 m ✓

Height = $2\Delta y = (2)(4,9)$

= 9,8 m ✓

$12.3 \begin{array}{ c c c c c } \hline OPTION 2 \\ UPWARD POSITIVE \\ v_{f} = v_{i} + a\Delta t = 0 + (-9,8)(1) = -9,8 \text{ m} \cdot \text{s}^{-1} \\ v_{f}^{2} = v_{i}^{2} + 2a\Delta y \checkmark \\ (-9,8)^{2} = 0 + (2)(-9,8)\Delta y \checkmark \\ \Delta y = -4,9 \text{ m} \\ \text{Height/hoogte} = 2\Delta y = (2)(4,9) \\ = 9,8 \text{ m}\checkmark \\ \hline UPWARDS \text{ AS POSITIVE} \\ v_{f}^{2} = v_{i}^{2} + 2a\Delta y \checkmark \\ = 0 + (2)(-9,8)(-9,8) \checkmark \\ v_{f} = 13,86 \text{ m} \cdot \text{s}^{-1}\checkmark \\ \hline OR \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3)
$12.3 \qquad \begin{array}{ll} v_{f} = v_{i} + a\Delta t = 0 + (-9,8)(1) = -9,8 \text{ m} \cdot \text{s}^{-1} & v_{f} = v_{i} + a\Delta t = 0 + (9,8)(1) = 9,8 \text{ m} \cdot \text{s}^{-1} \\ v_{f}^{2} = v_{i}^{2} + 2a\Delta y \checkmark & (9,8)^{2} = 0 + (2)(-9,8)\Delta y \checkmark & (9,8)^{2} = 0 + (2)(9,8)\Delta y \checkmark & (9,8)^{2} = 0 + (2)(9,8)(9,8) \land & (9$	3)
$12.3 \qquad \begin{array}{ll} v_{f}^{2} = v_{i}^{2} + 2a\Delta y \checkmark & v_{f}^{2} = v_{i}^{2} + 2a\Delta y \checkmark & (9,8)^{2} = 0 + (2)(-9,8)\Delta y \checkmark & (9,8)^{2} = 0 + (2)(9,8)\Delta y \checkmark & (9,8)^{2} = 0 + (2)(9,8)(9,8) \checkmark & (9,8)^{2} = 0 + (2)(9,8)(-9,8) \checkmark & (9,8)^{2} = 0 + (2)(9,8)(-9,8) \checkmark & (9,8)^{2} = 0 + (2)(-9,8)(-9,8) \land & (9,8)^{2} = 0 + (2)(-9,8)(-9,8) \lor$	3)
$12.3 \qquad \begin{array}{c} \underbrace{(-9,8)^2 = 0 + (2)(-9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{\Delta y = -4,9 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)\Delta y}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \checkmark & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \rightthreetimes & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \rightthreetimes & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \rightthreetimes & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8 \text{ m}} \rightthreetimes & \underbrace{(9,8)^2 = 0 + (2)(9,8)}_{A = -9,8$	3)
12.3 $ \begin{array}{c} \Delta y = -4,9 \text{ m} \\ \text{Height/hoogte} = 2\Delta y = (2)(4,9) \\ = 9,8 \text{ m}\checkmark \\ \end{array} $ $ \begin{array}{c} \Delta y = 4,9 \text{ m} \\ \text{Height/hoogte} = 2\Delta y = (2)(4,9) \\ = 9,8 \text{ m}\checkmark \\ \end{array} $ $ \begin{array}{c} \text{UPWARDS AS POSITIVE} \\ v_{f}^{2} = v_{i}^{2} + 2a\Delta y\checkmark \\ = 0 + (2)(-9,8)(-9,8) \checkmark \\ v_{f} = 13,86 \text{ m}\cdot\text{s}^{-1}\checkmark \\ \end{array} $ $ \begin{array}{c} \Delta y = 4,9 \text{ m} \\ \text{Height/hoogte} = 2\Delta y = (2)(4,9) \\ = 9,8 \text{ m}\checkmark \\ \end{array} $ $ \begin{array}{c} \text{OOWNWARDS AS POSITIVE} \\ v_{f}^{2} = v_{i}^{2} + 2a\Delta y\checkmark \\ = 0 + (2)(-9,8)(-9,8) \checkmark \\ v_{f} = 13,86 \text{ m}\cdot\text{s}^{-1}\checkmark \\ \end{array} $ $ \begin{array}{c} \Delta y = 4,9 \text{ m} \\ \text{Height/hoogte} = 2\Delta y = (2)(4,9) \\ = 9,8 \text{ m}\checkmark \\ \end{array} $ $ \begin{array}{c} \text{OWNWARDS AS POSITIVE} \\ v_{f}^{2} = v_{i}^{2} + 2a\Delta y\checkmark \\ v_{f} = 13,86 \text{ m}\cdot\text{s}^{-1}\checkmark \\ \end{array} $ $ \begin{array}{c} \Delta y = 4,9 \text{ m} \\ \text{Height/hoogte} = 2\Delta y = (2)(4,9) \\ = 9,8 \text{ m}\checkmark \\ \end{array} $ $ \begin{array}{c} \text{OWNWARDS AS POSITIVE} \\ v_{f}^{2} = v_{i}^{2} + 2a\Delta y\checkmark \\ v_{f} = 13,86 \text{ m}\cdot\text{s}^{-1}\checkmark \\ \end{array} $	3)
Height/hoogte = $2\Delta y = (2)(4,9)$ = $9,8 \text{ m}\checkmark$ Height/hoogte = $2\Delta y = (2)(4,9)$ = $9,8 \text{ m}\checkmark$ (3) 12.3 UPWARDS AS POSITIVE $v_f^2 = v_i^2 + 2a\Delta y\checkmark$ DOWNWARDS AS POSITIVE $v_f^2 = v_i^2 + 2a\Delta y\checkmark$ $v_f^2 = v_i^2 + 2a\Delta y\land$ </td <td>3)</td>	3)
12.3 $\begin{array}{c c} = 9,8 \text{ m}\checkmark & = 9,8 \text{ m}\checkmark & (3) \\ \hline \textbf{UPWARDS AS POSITIVE} & \textbf{DOWNWARDS AS POSITIVE} \\ v_{t}^{2} = v_{t}^{2} + 2a\Delta y\checkmark & v_{t}^{2} = v_{t}^{2} + 2a\Delta y\checkmark & \\ = \underline{0 + (2)(-9,8)(-9,8)}\checkmark & \underline{0 + (2)(9,8)(9,8)}\lor & \\ v_{f} = 13,86 \text{ m}\cdot\text{s}^{-1}\checkmark & v_{f} = 13,86 \text{ m}\cdot\text{s}^{-1}\checkmark & \end{array}$	3)
12.3 UPWARDS AS POSITIVE $v_{t}^{2} = v_{t}^{2} + 2a\Delta y \checkmark$ $= 0 + (2)(-9,8)(-9,8) \checkmark$ $v_{f} = 13,86 \text{ m} \cdot \text{s}^{-1} \checkmark$ DOWNWARDS AS POSITIVE $v_{t}^{2} = v_{t}^{2} + 2a\Delta y \checkmark$ $= 0 + (2)(9,8)(9,8) \checkmark$ $v_{f} = 13,86 \text{ m} \cdot \text{s}^{-1} \checkmark$	3)
$ \begin{array}{ll} v_{f^{2}} = v_{i}^{2} + 2a\Delta y \checkmark & v_{f^{2}} = v_{i}^{2} + 2a\Delta y \checkmark \\ &= \underline{0 + (2)(-9,8)(-9,8)} \checkmark & \\ v_{f} = 13,86 \text{ m} \cdot \text{s}^{-1} \checkmark & v_{f} = 13,86 \text{ m} \cdot \text{s}^{-1} \checkmark \end{array} $	
$= \underbrace{0 + (2)(-9,8)(-9,8)}_{V_{f}} \checkmark \qquad \qquad = \underbrace{0 + (2)(9,8)(9,8)}_{V_{f}} \checkmark \qquad \qquad$	
$v_f = 13,86 \text{ m} \cdot \text{s}^{-1} \checkmark$ $v_f = 13,86 \text{ m} \cdot \text{s}^{-1} \checkmark$	
OR OR	
FROM POINT B	
UPWARDS AS POSITIVE DOWNWARDS AS POSITIVE	
$v_f^2 = v_i^2 + 2a\Delta y \checkmark \qquad \qquad v_f^2 = v_i^2 + 2a\Delta y \checkmark$	
$= (-9,8)^2 + (2)(-9,8)(-4,9) \checkmark$ $= (9,8)^2 + (2)(9,8)(4,9) \checkmark$	
$v_f = -13,86 \text{ m} \cdot \text{s}^{-1}$ $v_f = 13,86 \text{ m} \cdot \text{s}^{-1} \checkmark$	_ `
	3)
12.4UPWARDS AS POSITIVEDOWNWARDS AS POSITIVE	
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $v_f^2 = v_i^2 + 2a\Delta y \checkmark$	
$0 = v_i^2 + (2)(-9,8)(4,9) \checkmark \therefore v_i = 9,8 \text{ m} \cdot \text{s}^{-1} \qquad 0 = v_i^2 + (2)(9,8)(-4,9) \checkmark \therefore v_i = -9,8 \text{ m} \cdot \text{s}^{-1}$	
$F_{net}\Delta t = m\Delta v$ $f_{net}\Delta t = m\Delta v$ $f_{net}\Delta t = m\Delta v$	
$F_{net}\Delta t = m (v_f - v_i) \int F_{net}\Delta t = m (v_f - v_i) \int F_{net}A t = m$	
$\underline{F}_{net}(0,2) \checkmark = \underline{0,4[9,8-(-13,86)]} \checkmark \qquad \underline{F}_{net}(0,2) \checkmark = \underline{0,4[-9,8-(13,86)]} \checkmark \qquad (6)$	6)
$F_{net} = 47,32 \text{ N} \checkmark$ $F_{net} = 47,32 \text{ N} \checkmark$ $F_{net} = 47,32 \text{ N} \checkmark$ [1]	4]
QUESTION 13	
13.1 Downwards ✓	
The only force acting on the object is the gravitational force/weight which acts downwards. ✓ ((2)
13.2 OPTION 1	
Upward positive Downward positive	
$v_f = v_i + a\Delta t \checkmark$ $v_f = v_i + a\Delta t \checkmark$	
$\underline{0 = 7,5 + (-9,8)\Delta t} \checkmark \qquad \underline{0 = -7,5 + (9,8)\Delta t} \checkmark$	
$\Delta t = 0,77 \text{ s} \checkmark$	
OPTION 2	
Upward positive Downward positive	
$F_{net}\Delta t = m(v_f - v_i) \checkmark$ $F_{net}\Delta t = m(v_f - v_i) \checkmark$	
$mg\Delta t = m(v_f - v_i)$ $mg\Delta t = m(v_f - v_i)$	
$(-9,8)\Delta t = 0 - 7,5 \checkmark (9,8)\Delta t = 0 - (-7,5) \checkmark$	
$\therefore \Delta t = 0.76531 \text{ s} (0.77 \text{ s}) \checkmark \qquad \qquad \therefore \Delta t = 0.76531 \text{ s} (0.77 \text{ s}) \checkmark \qquad (3)$	3)
13.3 OPTION 1	
Upward positive - At highest point $v_f = 0$ Downward positive - At highest point $v_f = 0$	
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $v_f^2 = v_i^2 + 2a\Delta y \checkmark$	
$0 \checkmark = (7,5)^2 + (2)(-9,8)\Delta y \checkmark$	
$\Delta y = 2,87 (2,869) \text{ m} \checkmark$	
It is higher than height needed to reach point T It is higher than height needed to reach point	
$(2,1 \text{ m}) \checkmark$ therefore ball will pass point T \checkmark T $(2,1 \text{ m}) \checkmark$ therefore ball will pass point T \checkmark	
OPTION 2	
Upward positive Downward positive	
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	
$\Delta y = (7,5)(0,77) \checkmark + \frac{1}{2} (-9,8)(0,77)^2 \checkmark$ $\Delta y = 2,87 \text{ m} (2,86 \text{ m}) \checkmark$ $\Delta y = (-7,5)(0,77) \checkmark + \frac{1}{2} (9,8)(0,77)^2 \checkmark$ $\Delta y = -2,87 \text{ m} (2,869 \text{ m}) \checkmark$	
It is higher than height needed to reach point T It is higher than height needed to reach point T $(2,1 \text{ m}) \checkmark \text{ therefore ball will pass point T} \checkmark T (2,1 \text{ m}) \checkmark \text{ therefore ball will pass point T} \checkmark (6)$	6)
$(2,1 \text{ m}) \checkmark \text{ therefore ball will pass point } \mathbf{T} \checkmark \mathbf{T} (2,1 \text{ m}) \checkmark \text{ therefore ball will pass point } \mathbf{T} \checkmark \mathbf{T}$	6)

OPTION 2		
UPWARDS AS POSITIVE:	DOWNWARDS AS POSITIVE:	
v _f = v _i +a∆t = (14,99) + (-9,8) (4) = - 24,2 m·s ⁻¹	$v_f = v_i + a\Delta t = (-14,99) + (9,8) (4) = 24,2 \text{ m}\cdot\text{s}^{-1}$	
v _f ² = v _i ² + 2a∆y√	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	
$(-24,2)^2 = (14,99)^2 + 2(-9,8)(\Delta y)^{\checkmark}$	$(24,2)^2 = (-14,99)^2 + 2(9,8)(\Delta y)^{\checkmark}$	
Δy= - 18,4 m·	Δy= 18,4 m·	
Ball is 18,4 m downwards (below the edge of the	Ball is 18,4 m downwards (below the edge of	
roof) √	the roof) ✓	(3)

14.4 No ✓

The motion of the ball is only dependent on its initial velocity. $\checkmark\checkmark$

OR: The initial velocity depends on the time taken to reach maximum height.

Physicaceandream Stanmorephysics.com

FS/2024

OPTION 1/ UPWARDS AS POSITIVE:	DOWNWARDS AS POSITIVE:
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	$v_{f^2} = v_{i^2} + 2a\Delta y \checkmark$
$\frac{0}{0} = (10)^2 + (2)(-9,8)\Delta y \checkmark$	
$\frac{D - (10)^2 + (2)(-3,3)\Delta y}{\Delta y} = 5,10 \text{ m} (5,102)$	$\frac{0 = (-10)^2 + (2)(9,8)\Delta y}{\Delta y = -5,10 \text{ m}} \checkmark$
Δy = 3,10 III (3,102)	$\Delta y = -3,10$ III (3,102)
Height = $40 + 5, 10 \checkmark$	Height = <u>40 +</u> 5,10 ✓
= 45,10 m ✓	$= 45,10 \text{ m} \checkmark$
OPTION 2	- +0,10 m /
UPWARDS AS POSITIVE:	DOWNWARDS AS POSITIVE:
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$0 = (10) \Delta t + \frac{1}{2}(-9,8)\Delta t^2$	$0 = (-10) \Delta t + \frac{1}{2}(9,8)\Delta t^2$
$\Delta t = 2,04 \text{ s}$	$\Delta t = 2,04 \text{ s}$
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
$= (10)(1,02) + \frac{1}{2} (-9,8)(1,02)^2 \checkmark$	$= (-10)(1,02) + \frac{1}{2}(9,8)(1,02)^2 \checkmark$
= 5,103	= - 5.103
0,100	0,100
Height = $40 + 5,10 \checkmark$	Height = <u>40 +</u> 5,10 ✓
= 45,10 m ✓	= 45,10 m ✓
$9,8 \text{ m}\cdot\text{s}^{-2}\checkmark$ downwards \checkmark	
OPTION 1/	
UPWARDS AS POSITIVE:	DOWNWARDS AS POSITIVE:
Displacement from roof to meeting poi	
= -40+29,74 = - 10,26 m ✓	= 40 - 29,74 = 10,26 m ✓
Stone A	Stone A
$\Delta y_{A} = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2} \checkmark$	$\Delta y_{A} = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2}\checkmark$
-10,26 = 10Δt + ½(-9,8)Δt ² ✓	$10,26 = -10\Delta t + \frac{1}{2}(9,8)\Delta t^2 \checkmark$
$\Delta t = 2,79 \text{ s}$	$\Delta t = 2,79 \text{ s}$
Stone B	Stone B
$\Delta y_{\rm B} = v_i \Delta t + \frac{1}{2} a \Delta t^2$	$\Delta y_{\rm B} = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$-10,26 = 0 + \frac{1}{2}(-9,8)\Delta t^2 \checkmark$	$10,26 = 0 + \frac{1}{2}(9,8)\Delta t^2 \checkmark$
$\Delta t = 1,45 s (1,447 s)$	$\Delta t = 1,45 \text{ s} (1,447 \text{ s})$
$x = 2,79 - 1,45 \checkmark = 1,34$ (s) \checkmark	$x = 2,79 - 1,45 \checkmark = 1,34$ (s) \checkmark
OPTION 2	
UPWARDS AS POSITIVE:	DOWNWARDS AS POSITIVE:
Displacement from roof to meeting point	Displacement from roof to meeting point
= - 40 + 29,74 = - 10,26 m ✓	= 40 - 29,74 = 10,26 m ✓
Displacement of ball A from max height	Displacement of ball A from max height to
meeting point = -15,36 m	meeting point = 15,36 m
Stone A	Stone A
v _f = v _i + a∆t	v _f = v _i + a∆t
0 = 10 +(-9,8)∆t	$0 = -10 + (9,8)\Delta t$
$\Delta t = 1,02 s$	$\Delta t = 1,02 s$
$\Delta y_{A} = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2} \checkmark$	$\Delta y_{A} = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2}\checkmark$
-15,36 = 0 + ½(-9,8)Δt ² ✓	$15,36 = 0 + \frac{1}{2}(9,8)\Delta t^2 \checkmark$
Δt = 1,77 s	$\Delta t = 1,77 s$
$\Delta t_{tot} = 1,77 + 1,02 = 2,79s$	$\Delta t_{tot} = 1,77 + 1,02 = 2,79s$
StoneB	StoneB
$\Delta y_{\rm B} = v_i \Delta t + \frac{1}{2} a \Delta t^2$	$\Delta y_{\rm B} = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$-10,26 = 0 + \frac{1}{2}(-9,8)\Delta t^2 \checkmark$	$10,26 = 0 + \frac{1}{2}(9,8)\Delta t^2 \checkmark$
$\Delta t = 1,45 \text{ s} (1,447 \text{ s})$	$\Delta t = 1,45 s (1,447 s)$
$x = 2,79 - 1,45 \checkmark = 1,34$ (s) \checkmark	x = 2,79 − 1,45 ✓ = 1,34 (s) ✓
J√	······································
a ✓	

looked from C Physical

Physica	actional and the stanmore stanmore	ephysics.com	FS/2024
QUESTION 16 16.1 (Motion of an object) under the influence of <u>gravity (weight) only</u> . $\checkmark \checkmark$ 16.2.1 $\Delta t = 0.67 - 0.64 = 0.03 \text{ s } \checkmark \checkmark$			
16.2.2	$ \frac{\text{OPTION 1}}{\Delta t} = \frac{1,90 - 0,67}{2} \checkmark \\ = 0,62 s \checkmark (0,615 s) $	$\frac{\text{OPTION 2}}{\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2}$ (-1,8) = 0 + $\frac{1}{2}$ (-9,8) $\Delta t^2 \checkmark$ $\Delta t = 0,61 \text{ s} \checkmark$ (0,606 s)	
	$\frac{\text{OPTION 3}}{\Delta t} = \frac{1,90 + 0,67}{2} = 1,285 \text{ s}$ $\Delta t = 1,285 - 0,67 \checkmark$ $= 0,62 \text{ s} \checkmark (0,615 \text{ s})$	$\frac{\text{OPTION 4}}{v_{f}^{2} = v_{i}^{2} + 2a\Delta x}$ 0 = v_{i}^{2} + 2(-9,8)(1,8) v_{i} = 5,94 \text{ m}\cdot\text{s}^{-1}	
16.2.3		$v_f = v_i + a\Delta t$ $0 = 5,94 + (-9,8)\Delta t \checkmark$ $\Delta t = 0,61 s \checkmark$	(2)
10.2.3	$\label{eq:constraint} \begin{array}{ c c } \hline \textbf{OPTION 1} \\ Upwards positive \\ v_f = v_i + a\Delta t \checkmark \\ \hline 0 = v_i + (-9,8)(0,62) \checkmark \\ \hline v_i = 6,08 \text{ m}\cdot\text{s}^{-1}(6,076 \text{ m}\cdot\text{s}^{-1}) \checkmark \\ \hline \text{Downwards positive} \\ v_f = v_i + a\Delta t \checkmark \\ \end{array}$	$\begin{array}{ c c c c }\hline \textbf{OPTION 2} \\ Upwards positive \\ \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark \\ \hline 1.8 = v_i (0.62) + \frac{1}{2} (-9.8) (0.62)^2 \checkmark \\ \hline v_i = 5.94 \text{ m} \cdot \text{s}^{-1} (5.9412 \text{ m} \cdot \text{s}^{-1}) \checkmark \\ \hline \text{Downwards positive} \\ \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark \end{array}$	_
	$ \begin{array}{r} 0 = v_i + (9,8)(0,62) \checkmark \\ v_i = -6,08 \\ \therefore v_i = 6,08 \text{ m} \cdot \text{s}^{-1} (6,076 \text{ m} \cdot \text{s}^{-1}) \checkmark \\ \end{array} $	$\frac{1,8 = v_i (0,62) + \frac{1}{2} (9,8) (0,62)^2 \checkmark}{v_i = -5,94}$ $\therefore v_i = 5,94 \text{ m} \cdot \text{s}^{-1} (5,9412 \text{ m} \cdot \text{s}^{-1}) \checkmark$	

$\frac{\text{OPTION 4}}{\text{W}^2 - \text{W}^2 + 2\text{e}^{4}\text{W}}$
$\overline{v_{f}^{2}} = v_{i}^{2} + 2a\Delta x$ 0 = v _i ² + 2(-9,8)(1,8)
$v_i = 5.94 \text{ m} \cdot \text{s}^{-1}$
VI = 0,04 m 3
v _f = v _i + a∆t
0 = 5,94 + (-9,8)∆t √
Δt = 0,61 s ✓
OPTION 2
Upwards positive
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
$1,8 = v_i (0,62) + \frac{1}{2} (-9,8) (0,62)^2 \checkmark$
$v_i = 5,94 \text{ m} \cdot \text{s}^{-1} (5,9412 \text{ m} \cdot \text{s}^{-1}) \checkmark$
Downwards positive
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
$1,8 = v_i (0,62) + \frac{1}{2} (9,8) (0,62)^2 \checkmark$
$v_i = -5,94$
$\therefore v_i = 5,94 \text{ m} \cdot \text{s}^{-1} (5,9412 \text{ m} \cdot \text{s}^{-1}) \checkmark$
OPTION 4
Upwards positive
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
$0 = v_i(1,23) + \frac{1}{2}(-9,8)(1,23)^2 \checkmark$
$v_i = 6,03 \text{ m} \cdot \text{s}^{-1} \checkmark$
Downwards positive
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
$\frac{0 = v_i(1,23) + \frac{1}{2}(9,8)(1,23)^2}{v_i = -6,03 \text{ m} \cdot \text{s}^{-1}}$
speed = $6,03 \text{ m} \cdot \text{s}^{-1} \checkmark$
OPTION 5
$\Delta y = \left(\frac{v_f + v_i}{2}\right) \Delta t \checkmark$
$1,8 = \left(\frac{0+v_i}{2}\right)(0,62) \checkmark$
$v_i = 5.81 m \cdot s^{-1} \checkmark$
OPTION 6
$F_{\text{net}}\Lambda t = m\Lambda v$
$ \left\{ \begin{array}{l} \overline{F}_{net}\Deltat = m\Deltav \\ \overline{F}_{net}\Deltat = m(v_f - v_i) \end{array} \right\} \checkmark $
$m(9.8)(0.62) = m(0 - v_i) \checkmark$
$\frac{m(9,8)(0,62) = m(0 - v_i)}{v_i = 5,94 \text{ m} \cdot \text{s}^{-1} \checkmark}$
_

 $(mgh + \frac{1}{2} mv^2)_{floor} = (mgh + \frac{1}{2} mv^2)_{top}$ $0 + \frac{1}{2}v^2 = (9,8)(1,8) + 0$ v = 5,94 m·s⁻¹ √

(3)

Physicaceandream Stanmorephysics.com

16.2.4

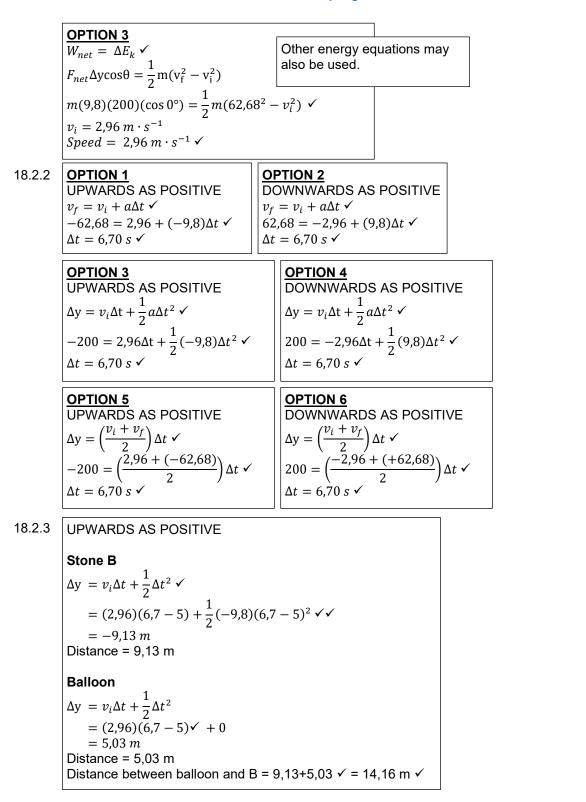
Calculate initial velocity:		Calculate time ∆t
OPTION 1		Upwards positive
Downwards positive		
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$		$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
) :		,
$\underline{0 = v_i^2 + 2(9,8)(-1,2)} \checkmark$		$\frac{1,2}{1,2} = (4,85)\Delta t + \frac{1}{2}(-9,8)\Delta t^2 \checkmark$
vi = - 4,85 m·s⁻¹		$\Delta t = 0.4898 \text{ s} / 0.5 \text{ s}$
		t = 1.97 + 2(0.4898)
Upwards positive		= 2,95 s / 2,97 s ✓
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$		OR
$0' = v_i^2 + 2(-9,8)(1,2)$	⊢→	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
$v_i = 4,85 \text{ m} \cdot \text{s}^{-1}$		$0 = (4,85)\Delta t + \frac{1}{2}(-9,8)\Delta t^2 \checkmark$
OPTION 2		$\Delta t = 0,9898 \text{ s} (\text{or } \Delta t = 0)$
		t = <u>1,97 +</u> 0,9898 ✓
(Emech)top = (Emech)bot ✓ Any one/		= 2,96 s 🗸
$(E_p + E_k)_{top} = (E_p + E_k)_{Bot}$		_,
$(mgh + \frac{1}{2}mv^2)_{top} = (mgh + \frac{1}{2}mv^2)_{Bot}$		Downwards positive
$(\underline{9,8})(\underline{1,2}) + 0 = 0 + (\frac{1}{2})v^2 \checkmark$		Downwards positive
v _i = 4,85 m·s ⁻¹ upwards		$\Delta y = y \Delta t + 1/c \Delta t^2$
		$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
OPTION 3		$\frac{1,2 = (-4,85)\Delta t + \frac{1}{2}(9,8)\Delta t^2}{4} \checkmark$
$W_{nc} = \Delta E_p + \Delta E_k$ \checkmark Any one/		Δt = 0,4898 s / 0,5 s
$0 = (0 - mgh) + \frac{1}{2}m(v_{f}^{2} - v_{i}^{2}) \int$		t = <u>1,97 +</u> 2(0,4898) ✓
$0 = -(9,8)(1,2) + \frac{1}{2}v_i^2 \checkmark$		= 2,95 s / 2,97 s ✓
$v_i = 4,85 \text{ m} \cdot \text{s}^{-1}$ upwards		OR
		$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
		$0 = (4,85)\Delta t + \frac{1}{2}(9,8)\Delta t^2 \checkmark$
OPTION 4		$\Delta t = 0.9898 \text{ s} \text{ (or } \Delta t = 0)$
$W_{net} = \Delta E_k$ / Any one/		$t = 1.97 + 0.9898 \checkmark$
$w\Delta x \cos 180^\circ = \frac{1}{2}m((v_f^2 - v_i^2))$		= 2,96 s ✓
$(9,8)(1,2)\cos 180^\circ = \frac{1}{2}v_i^2 \checkmark$		OR
$v_i = -4,85 \text{ m} \cdot \text{s}^{-1}$		-
. ,		$v_f = v_i + a\Delta t \checkmark$
		$-4,85 = 4,85 + (-9,8)\Delta t$
		∆t = 0,9898 s
		Δt = <u>1,97 +</u> 0,9898 ✓
		= 2,96 s ✓
		OR
		Upwards positive
		v _f = v _i + a∆t ✓
		$0 = 4,85 + (-9,8)\Delta t$
		$\Delta t = 0,4949 \text{ s}$
		$\Delta t = 1,97 + (2)(0,4949) \checkmark$
		$= 2,96 \text{ s} \checkmark$
		OR (n + n)
	L,	$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$
		$1,2 = \left(\frac{0+4,85}{2}\right) \Delta t \checkmark$
		∆t = 0,4948 s
		$\Delta t_{\text{total}} = 2(0,4948) = 0,99 \text{ s}$
		Δt = 1,97 + 0,99 ✓ = 2,96 s ✓
		,

	OPTION 5 Downwards positive $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $\frac{1,2}{\sqrt{2}} = 0 + \frac{1}{2}(9,8) \Delta t^2 \checkmark$ $\Delta t = 0,49 \text{ s}$ $t = 1,97 + \checkmark 2(0,49) \checkmark$ $= 2,96 \text{ s} \checkmark$ Upwards positive $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $\frac{-1,2}{\sqrt{2}} = 0 + \frac{1}{2}(-9,8) \Delta t^2 \checkmark$ $\Delta t = 0,49 \text{ s}$ $t = 1,97 + \checkmark 2(0,49) \checkmark$ $= 2,96 \text{ s} \checkmark$			(6)
OUFOT				[15]
17.2 17.3	Weight / gravitational force ↓ 9,8 m·s ⁻² ✓ downward ✓ 3 m	/		(1) (2) (1)
17.4.1	UPWARDS AS POSITIVE $v_f = v_i + a\Delta t \checkmark$ $0 = v_i + (-9,8)(1,02) \checkmark$ $v_i = 10 \text{ m} \cdot \text{s}^{-1} \checkmark (9,996)$			(3)
17.4.2	UPWARDS AS POSITIVE $v_{f}^{2} = v_{i}^{2} + 2a\Delta y \checkmark$ $0^{2} = 10^{2} + 2(-9,8)\Delta y \checkmark$ $\Delta y = -5,1 \text{ m} (-5,102)$ $h = 5,1 + 3 \checkmark$ $= 8,1 \text{ m} \checkmark (8,102)$			(4)
17.5	$v_{f}^{2} = v_{i}^{2} + 2a\Delta y$ = (-10) ² + 2(-9,8)(-3)	$W_{nc} = \Delta E_p + \Delta E_k \checkmark$ = 0 + $\frac{1}{2}$ (0,06)(10,78 ²) = -1,28 J \checkmark	(– 12,60 ²)√	
0	$v_{\rm f} = 12,60 {\rm m}\cdot{\rm s}^{-1}$			(6) [17]

QUESTION 18

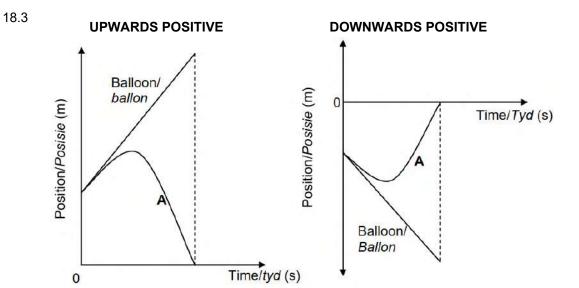
18.1 No ✓

ANY ONE:


- Gravitational force is not the only force acting on the balloon. / There are other forces acting on the balloon. \checkmark
- Its acceleration is not 9,8 m·s⁻²/ is zero.
- It has constant velocity / no acceleration.

```
18.2.1
```

OPTION 1	OPTION 2
UPWARDS AS POSITIVE	UPWARDS AS NEGATIVE
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$
$(-62,68)^2 = v_i^2 + 2(-9,8)(-200)$	$62,68^2 = v_i^2 + 2(9,8)(200)$ \checkmark
$v_i = 2,96 \ m \cdot s^{-1}$	$v_i = -2,96 \text{ m} \cdot \text{s}^{-1}$ Speed = 2,96 m \cdot \sigma^{-1} \lambda
Speed = 2,96 $m \cdot s^{-1} \checkmark$	Speed = 2,96 $m \cdot s^{-1} \checkmark$


(2)

(3)

(6)

(3)

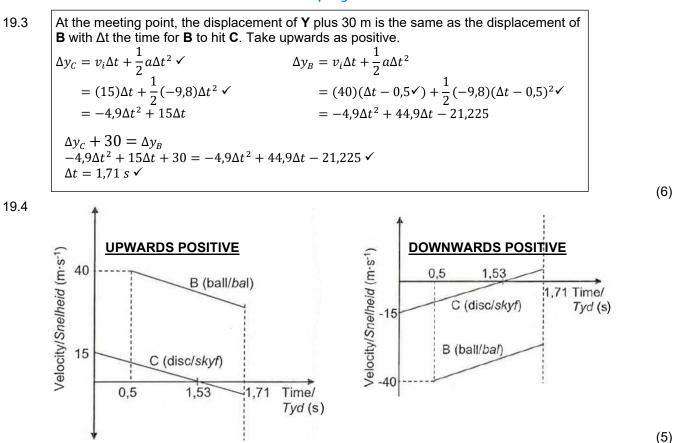
QUESTION 19

19.1 An object which has been given an initial velocity and then it moves under the influence of the gravitational force only / is in free fall. $\checkmark \checkmark$

19.2.1

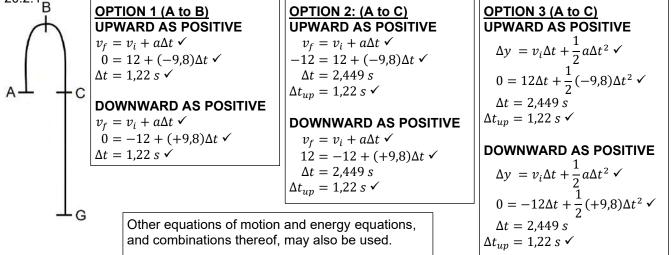
19.2.2

OPTION 1 OPTION 2 UPWARDS POSITIVE DOWNWARDS POSITIVE $v_f = v_i + a\Delta t \checkmark$ $v_f = v_i + a\Delta t \checkmark$ $0 = 15 + (-9,8)\Delta t \checkmark$ $0 = -15 + (9,8)\Delta t \checkmark$ $\Delta t = 1,53 \, s \checkmark$ $\Delta t = 1,53 \, s \checkmark$ **OPTION 3** Other equations of motion **UPWARDS POSITIVE** and energy formulae may $\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark \qquad v_f^2 = v_i^2 + 2a\Delta y$ $\Delta y = \left(\frac{15 + 0}{2}\right) \Delta t \qquad 0 = 15^2 + 2(-9,8)(7,5\Delta t) \checkmark$ $\Delta t = 1,53 \ s \checkmark$ also be used. $\Delta y = 7,5\Delta t$ **OPTION 4** $E_m(top) = E_m(30\ m)$ **UPWARDS POSITIVE** $\left(mgh + \frac{1}{2}mv^2\right)_{top} = \left(mgh + \frac{1}{2}mv^2\right)_{30\,m}$ $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $m(9,8)h + 0 = 0 + \frac{1}{2}m(15^2)$ $11,48 = (15)\Delta t + \frac{1}{2}(-9,8)\Delta t^2 \checkmark$ $\Delta t = 1.53 \text{ s} \checkmark$ $(9,8)h = \frac{1}{2}(15^2)$ h = 11,48 m**OPTION 1 OPTION 2 UPWARD POSITIVE UPWARD POSITIVE** $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $0 = 15^2 + 2(-9,8)\Delta y \checkmark$ $= (15)(1,53) + \frac{1}{2}(-9,8)(1,53^2) \checkmark$ $\Delta y = 11,48 \, m$ *Height* = 11,48 + 30 ✓ = 11,48 m= 41,48 *m* ✓ $Height = 11,48 + 30 \checkmark$ = 41,48 *m* ✓ Other equations of motion and energy formulae may also be used.


(4)

(3)

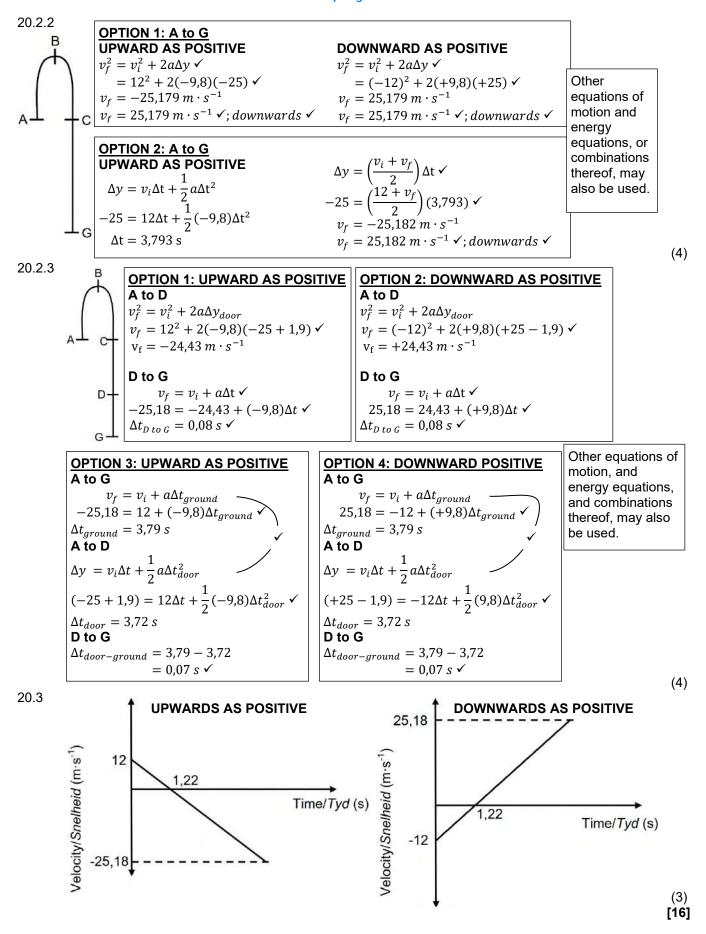
(4)


[18]

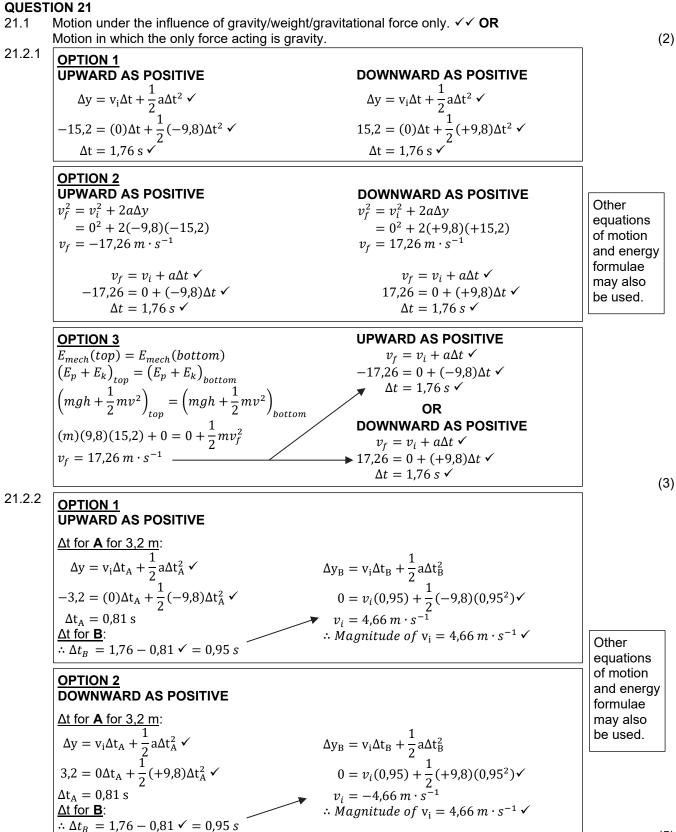
(2)

QUESTION 20

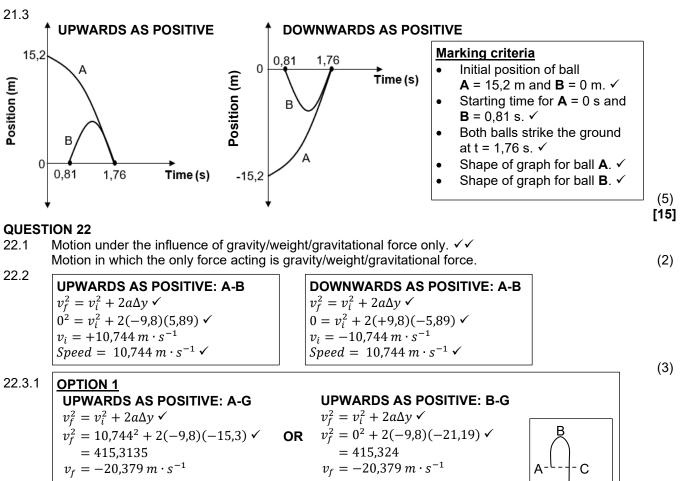
20.1 Motion in which the only force acting (on an object) is gravity/weight/gravitational force. \checkmark



(3)

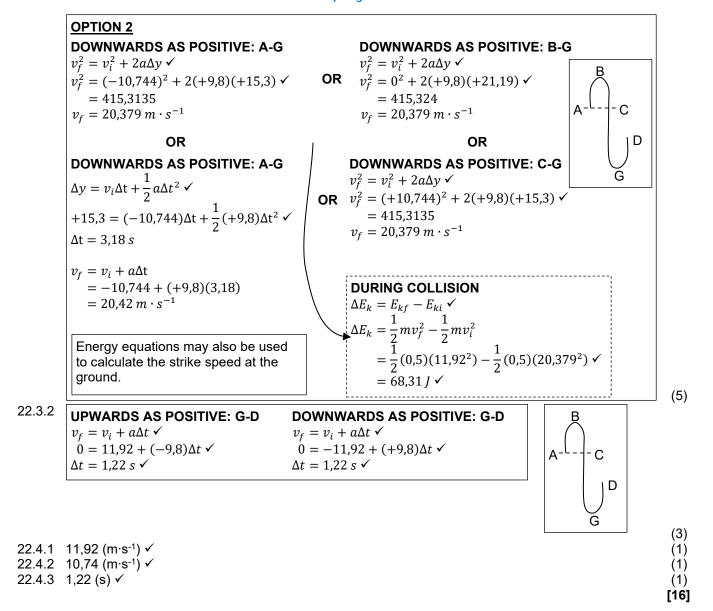

[20]

(2)


FS/2024

FS/2024

(5)


$$v_{f} = -20,379 \text{ m} \cdot \text{s}^{-1}$$

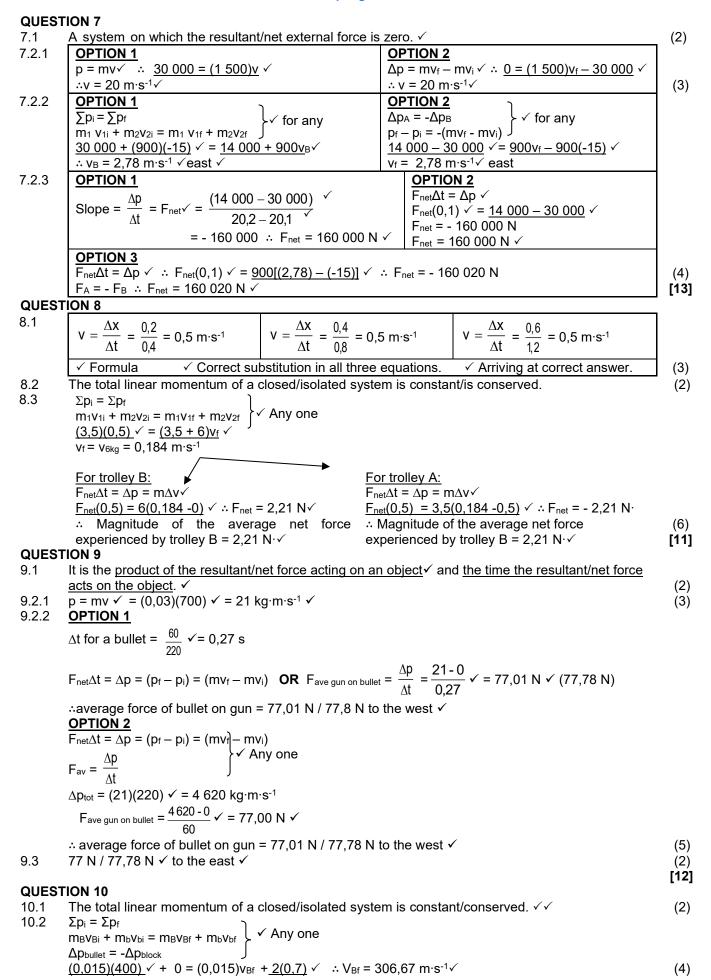
$$(A^{-1} - C)$$

$$(B^{-1} - C)$$

$$(C^{-1} - C)$$

FS/2024

MOMENTUM AND IMPULSE


	TION 1		ND IMPULS	E	
QULU 1.1	$p = mv \checkmark$	OR	$p = mv \checkmark =$	= 50(-5) √ = - 250 kg·m·s⁻¹	٦
	$= 50(5) \checkmark = 250 \text{ kg} \cdot \text{m} \cdot \text{s}^{-1} \checkmark \text{ (downward)}$			m·s ⁻¹ ✓ (downward)	(3
1.2	The product of the net force and the time i				(2
1.3		$\Delta p = F_{net}$		$\Delta p = F_{net} \Delta t \checkmark$	Ì
			= F _{net} (0,2)	$50(0 - (-5)) \checkmark = F_{net}(0,2)$	
	F _{net} = -1 250 N ∴ F _{net} = 1 250 N ✓	F _{net} = 1 2	50 N ✓	F _{net} = 1 250 N ✓	(3
1.4	Greater than ✓				(*
1.5	For the same momentum change, ✓	/.			
	the <u>stopping time (contact time)</u> √ <u>will be s</u>		<u>ss)</u> , ✓		
	\therefore the (upward) force exerted (on her) is g	ireater.			(3 Га
	TION 2				[1]
2.1 2.1	Momentum is the product of an object's m	hass and i	ts velocity. √ √	/	(2
.2	Direction of motion positive:			notion negative:	-` ٦
	$\Delta p = mv_f - mv_i \checkmark$		$\Delta p = mv_f - m$		
	= (175)(0 - (+20)) √ = -3 500 kg·m·s			- (-20)) ✓ = 3 500 kg·m·s ⁻¹ √	
	$\therefore \Delta p = 3500 \text{ kg} \cdot \text{m} \cdot \text{s}^{-1} \text{ opposite to direction}$			kg·m·s ⁻¹ opposite to direction of	
	motion √	r	notion 🗸		(4
.3	Direction of motion positive:	<u> </u>		notion negative:	
	$F_{net}\Delta t = \Delta p \checkmark$		$F_{net}\Delta t = \Delta p$		
	$f(8) = -3500 \checkmark$		f(8) = 3.50		
	$f = -437,5 \text{ N} \checkmark$	n (f = 437		(4
	\therefore f = 437,5 N opposite to direction motio TION 3	¶ ⊻ .	. 1 – 437,5 №	opposite to direction of motion \checkmark	[1
.1	A collision in which both total momentum a	and total	kinetic enerav	are conserved $\sqrt{}$	(2
3.2	OPTION 1		anoto onorgy		(*
	For ball A				
	(E _{mech}) _{top} = (E _{mech}) _{bottom}				
	$(E_{K} + E_{P})_{top} = (E_{K} + E_{P})_{bottom}$	Any one	\checkmark		
	$(\frac{1}{2}mv^{2} + mgh)_{top} = (\frac{1}{2}mv^{2} + mgh)_{bottom}$				
	$\frac{1}{2}(0,2)(0)^2 + (0,2)(9,8)(0,2)_{top} = E_k + m(9,8)$	8)(0) _{bottom}	\checkmark		
	E _k = 0,39 J ✓				
	OPTION 2				
	$\frac{OFTION 2}{W_{nc}} = \Delta E_p + \Delta E_k \checkmark \therefore 0 = mg(h_f - h_i) + \frac{1}{2}$	$/_{m}(v_{f}^{2} - v_{f}^{2})$	⁽²⁾		
	$0 = (0,2)(9,8)(0,2-0) + \frac{1}{2}mv_f^2 - \frac{1}{2}(0,2)(0)$				(3
.3			0,000		``
	$\Sigma E_{\text{Kbefore}} = \Sigma E_{\text{Kafter}}$				
	$E_{KiA} + E_{KiB} = E_{KfA} + E_{KfB}$ Any on	ie			
	$E_{KiA} + E_{KiB} = \frac{1}{2} m_A v_{fA^2} + E_{KfB}$				
	$\underline{0,39+0} \checkmark = \frac{1}{2} (\underline{0.2}) v_{fA}^2 + 0.12 \checkmark \therefore v_{fA} = 1,6$	64 m·s⁻¹ √			(
.4	$E_{\text{Kbefore}} = \frac{1}{2} \text{ mAViA}^2 \therefore 0.39 = \frac{1}{2} (0.2) \text{ ViA}^2 \sqrt{2}$	∴ v _{iA} =	1,98 m·s⁻¹		
	$ \text{Impulse} = m(v_f - v_i) \} \checkmark \text{Any one}$				
	Impulse = $m(v_{iA} - v_{fA}) \int_{-\infty}^{\infty} \frac{1}{(0,2)(1,0,2)} (1,0,2) ($	72 N.o. /			(
$= 0,2(-1,64)$ $\checkmark - (0,2)(1,98)$ $\checkmark = 0,72$ N·s \checkmark			() [1		
DUES	TION 4				
4.1	OPTION 1	OP	TION 2		1
	Take motion to the right as positive.			ne left as positive.	
	$\Sigma p_i = \Sigma p_f$ } J_{\checkmark} Any or	5	=Σ p _f	'}√ Any one	
	$(m_1 + m_2)v_i = m_1v_{f1} + m_2v_{f2}$		ı + m₂)vi = m₁v	$v_{f1} + m_2 v_{f2} \int \frac{1}{2} u_{f1} v_{f1} v_{f1} v_{f2}$	
	$(2 \pm 0.02)(0) \cdot (-(2)(1.4) \pm (0.02))$	1 12	$\pm 0.02(0)$.	$-(2)(1, 4) + (0, 02) y_{12}$	1

 $(3 + 0.02)(0) \checkmark = (3)(-1.4) + (0.02) v_{f2} \checkmark$ v_{f2} = 210 m·s⁻¹ ✓

(4)

 $\begin{array}{l} (3+0,02)(\underline{0}) \checkmark = (\underline{3})(\underline{1},\underline{4}) + (\underline{0},02) v_{f2} \checkmark \\ v_{f2} = -210 \text{ m} \cdot \text{s}^{-1} \quad \therefore \text{ speed} = 210 \text{ m} \cdot \text{s}^{-1} \checkmark \end{array}$

4.2	OPTION 1		OPTION 2		
	$v_{f}^{2} = v_{i}^{2} + 2a\Delta x \checkmark$		$\overline{\Delta \mathbf{x}} = \left(\frac{\mathbf{v}_{i} + \mathbf{v}_{f}}{\mathbf{v}_{f}}\right) \Delta t \mathbf{x}$	$\checkmark \therefore 0,4 = \left(\frac{210+0}{2}\right) \Delta t \checkmark$	
	$\frac{0 = 210^2 + 2a(0,4)}{a = -55 \ 125 \ m \cdot s^{-2}}$				
			∴ ∆t = 0,004 s (0,0		
	$F_{net} = ma \checkmark$		$F_{net}\Delta t = \Delta p = m\Delta v$	\checkmark : $F_{\text{net}} = \frac{(0,02)(0-210)}{0,004} \checkmark$	
	= (0,02)(-55 125) ✓ = -1 102,5 N		= -1 050 N	0,004	
	Magnitude of force = 1 102,5 N	\checkmark	Magnitude of force	e = 1 050 N ✓	(5)
4.3	The same as/equal ✓				(1)
QUEST					[10]
5.1	The total (linear) momentum of an is	olated/(clo	sed system √ is cor	nstant/conserved. ✓	(2)
5.2.1	$\sum p_i = \sum p_f \checkmark$				()
	$m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}$ $(m_1 + m_2)v_i = m_1v_{1f} + m_2v_{2f}$				
	(111 1112)*1 = 111*11 · 112*2				
	$0\checkmark = (0.4)v_{1f} + 0.6 (4)\checkmark$ $v_{1f} = -6 \text{ m/s}^{-1}$				
	v _{1f} = - 6 m⋅s = = 6 m⋅s ⁻¹ to the left/ <i>na links</i> √				
					(4)
5.2.2	$\frac{\text{OPTION 1}}{\Delta p = F_{\text{net}} \Delta t}$	$\frac{OPTION}{v_f = v_i + v_i}$		$\frac{\text{OPTION 3}}{\Delta p = F_{\text{net}} \Delta t} \checkmark$	
	$[(0,6)(4) - 0] \checkmark = F_{net}(0,3) \checkmark$	4 = 0 + a		$[(0,4)(6) - 0] \checkmark = F_{net} (0,3) \checkmark$	
	F _{net} = 8 N✓	a = 13,33	3 m·s ⁻²	F _{net} = 8 N✓	
	<u>OR/<i>OF</i></u>	F _{net} = ma		<u> OR/<i>OF</i></u>	
	$m(v_f - v_i) = F_{net} \Delta t \checkmark$ 0,6(4 - 0) \sqrt{ = } F_{net}(0,3)		a 6(13,33)	$m(v_f - v_i) = F_{net} \Delta t \checkmark$	
	$F_{net} = 8 N \checkmark$	Fnet = 81		$0,4(6-0)\checkmark = F_{net}(0,3)\checkmark$ $F_{net} = 8 N\checkmark$	(4)
5.3	No √	•			(1)
OUEST					[11]
QUEST 6.1	The total (linear) momentum of an is	olated/clos	sed svstem √ is con	stant/conserved. √	(2)
6.2.1	OPTION 1		OPTION 2		
	$\sum p_i = \sum p_f$		$\Delta p_{5kg} = -\Delta p_{3kg}$		
	$ \left\{ \begin{array}{l} m_1 \ v_{1i} + m_2 v_{2i} = m_1 \ v_{1f} + m_2 v_{2f} \\ m_1 \ v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f \end{array} \right\} \checkmark \text{ ar} $	ny one	$mV_f - mV_i = mV_i$	/f - mvi = <u>3vf – (3)(0)</u> √	
	$\frac{(5)(4) + (3)(0)}{(5)(4) + (3)(0)} \checkmark = \frac{(5+3)v_f}{(5+3)v_f} \checkmark \therefore v =$	2,5 m·s ⁻¹ √			(4)
6.2.2	<u>OPTION 1</u> $F_{net}\Delta t = \Delta p = (p_f - p_i)$		nv _i) √ ∴ <u>F_{net}(0,3)</u> √		
			$\therefore F_{net} = -66$	$5,67 \text{ N} \therefore \text{ F}_{\text{net}} = 66,67 \text{ N} \checkmark$	
	$\frac{\text{OPTION 2}}{m(y_1 - y_2)} = 9(0)$		<u>OPTION 3</u> /r = vi + a∆t ∴ 0 = 2.5	5 + a(0,3) √ ∴ a = - 8,333 m·s ⁻²	
	$\overline{F_{\text{net}} = ma} \checkmark = \frac{m(v_{f} - v_{i})}{\Delta t} = \frac{8(0 - v_{i})}{0}$	$\frac{1}{2}$	$F_{net} = ma \sqrt{= 8} (-8,3)$		
	Δt 0, = - 66,67 N ∴ F _{net} = 66,67 N ✓	5	∴ F _{net} = 66,67 N ✓		(4) [10]
					[10]

, _			
10.3	OPTION 1		
	$\overline{F_{net}\Delta t} = \Delta p$ $\rightarrow \checkmark$ Any one		
	$\Delta p = mv_f - mv_i$	_	
	For bullet:	For block: A = -(2)(0, 7, 0)	
	$\Delta p = (0,015)(306,666 - 400) \checkmark$ = -1,4 kg·m·s ⁻¹	$\Delta p = (2)(0,7 - 0) \checkmark$ = 1,4 kg·m·s ⁻¹	
	$F_{net}(0,002) = -1,4$ \therefore $F_{net} = -700$ N	$F_{net}(0,002) = 1,4$: $F_{net} = 700 \text{ N}$	
		♦	
	$W_{net} = \Delta E_k$ F _{net} \Delta x cos θ = ¹ / ₂ m(v _f ² - v _i ²)	F _{net} = ma -700 = (0,015)a OR 700 = (0,015)a	
	$(700)\Delta x \cos 180^\circ = \frac{1}{2}(0,015)(306,67^2-400^2)$	$a = -46\ 666, 67\ OR\ 46\ 665\ m \cdot s^{-2}$	
	$\Delta x = 0.71 \text{ m} \checkmark$		
		$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$	
		$= (400)(0,002)\sqrt{\frac{1}{2}(-466666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-46666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-46666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-46666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-46666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666,67)(0,002)^2}\sqrt{\frac{1}{2}(-4666666666666666666666666666666666666$	
		= 0,71 m (0,70667) m√	
		OR vf ² = vi ² + 2a∆x	
		$(306,67)^2 \checkmark = (400)^2 + 2(-46,666,67)\Delta x \checkmark$	
		$\Delta x = 0.71 \text{ m} (0.70667 \text{ m}) \checkmark$	
	OPTION 2		
	$v_f = v_i + a\Delta t \checkmark \therefore 306,666 = 400 + a(0,002) \checkmark$	∴ a = -46 667 m·s ⁻²	
			(5)
	v _f ² = v _i ² + 2a∆x ∴ (306,666) ² \checkmark = 400 ² + 2(-4	<u>667) $\Delta x \checkmark \Delta x = 0,71 \text{ m} (0,706 \text{ m}) \checkmark$</u>	[11]
QUEST			$\langle \mathbf{O} \rangle$
11.1	The total linear momentum of a closed/isolated s	ystem remains constant/is conserved.√ ✓	(2)
11.2	$\sum p_i = \sum p_f$ m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f} any one		
	For the system cat-skate board A		
	$(3,5)(0) + (2,6)(0) \checkmark = (3,5)v_{\text{skateboard}} + (2,6)(3) \checkmark$	∴ V _{skateboard} = 2,23 m·s ⁻¹ \checkmark to the left \checkmark	(5)
11.3	<u>OPTION 1</u>	OPTION 2	()
	$F_{net}\Delta t = \Delta p = mv_f - mv_i \checkmark$	$F_{net}\Delta t = \Delta p = mv_f - mv_i \checkmark$	(3)
	= (3,5)(1,28 – 0) ✓ = 4,48 N·s ✓	= (2,6)(1,28 – 3) ✓ = - 4,48 N·s ✓	[10]
QUEST			
12.1	$E_{\text{(mech top)}} = E_{\text{(mech bottom)}}$		
	$(E_p + E_k)_{top/bo} = (E_p + E_k)_{bottom}$ $(mgh + \frac{1}{2} mv^2)_{top} = (mgh + \frac{1}{2} mv^2)_{bottom}$	лу	
	$\frac{(1,5)(9,8)(2) + 0}{(1,5)(2)} \checkmark = \frac{0 + \frac{1}{2}}{(1,5)(2)} \times v = 6,26 \text{ m}$	·s-1 √	(4)
12.2	The total linear momentum of a closed/isolated s		(2)
12.3	$\Sigma p_i = \Sigma p_f$		()
	$m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}$ for any		
	$m_1v_{1i} + m_2v_{2i} = (m_1 + m_2)v$		
	$(1,5)(6,26) + 0 \checkmark = (1,5+2)v_f \checkmark \therefore v_f = 2,68 \text{ m}\cdot\text{s}^{-1}$		(4)
12.4	$\frac{\text{OPTION 1}}{\text{Av} = v(At (= (2, 60)/2))}$	OPTION 2	
	$\Delta x = v\Delta t \checkmark = (2,68)(3) \checkmark$ $= 8.04 \text{ m} \checkmark$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	
	- 8,04 11 *	$= (2,68)(3) + \frac{1}{2} (0)(3)^2 \checkmark$	(3)
		= 8,04 m ✓ (Range 8,04 – 8,05)	[13]
			$\langle 0 \rangle$
13.1 13.2	Momentum is the product of the mass of an object To the left \checkmark Newton's third law \checkmark	ct and its velocity. V V	(2) (2)
	For QUESTIONS 13.3 and 13.4 motion to the ri	oht has been taken as positive	(2)
13.3	OPTION 1		
10.0	$\frac{\nabla r_i}{\sum p_i} = \sum p_f$		
	$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{2f} + m_2 v_{2f}$		
	mass of girl is m		
	$\frac{\{(m+2)(0)\} + \{8(0)\}}{\sqrt{2}} = \{(m+2)(-0,6)\} + (8)(4)$		
	OPTION 2	OPTION 3	
	$\sum p_i = \sum p_f$	$\Delta p_{\text{girl}} = -\Delta p_{\text{parcel}} \checkmark$	
	$ \begin{array}{c} m_1 v_{1i} + m_2 v_{2i} = m_1 v_{2f} + m_2 v_{2f} \\ 0 = m_1 v_{1f} + m_2 v_{2f} \end{array} $	$m(v_f - v_i) = -m(v_f - v_i)$ (m + 2)(-0,6 - 0) \checkmark = -8(4 - 0) \checkmark	
	$ \begin{array}{c} 0 - 111111 + 1112121 \\ 0 \sqrt{} = (8)(4) \sqrt{} + m_2(-0,6) \sqrt{} \end{array} $	$m = 51,33 \text{ kg} \checkmark$	
	\therefore m ₂ = 53,33 kg \therefore m _{girl} = 53,33 – 2 = 51,33 kg \checkmark	.	(5)
		1	

13.4	Impulse = Δp = m(v _f – v _i) ✓ = <u>(51,33 + 2)(-0,6 – 0)</u> ✓ = -32 N·s/kg·m·s ⁻¹ Magnitude of impulse is 32 N·s /32 kg·m·s ⁻¹ ✓	
	OR	
	Impulse = Δp_{parcel} = m(v _f - v _i) \checkmark = (8)(4 - 0) \checkmark = 32 kg m·s ⁻¹ $\therefore \Delta p_{girl}$ = 32 kg m·s ⁻¹ \checkmark	(3)
13.5	32 kg·m·s ⁻¹ \checkmark to the right/opposite direction \checkmark	(2)

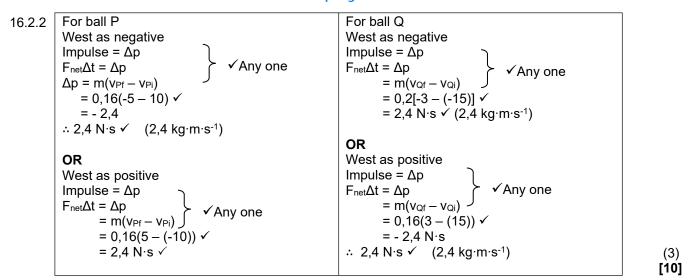
QUESTION 14

The total (linear) momentum in a isolated/closed system remains constant/is conserved. 14.1 (2) 14.2 **OPTION 1** $\sum p_i = \sum p_f$ $m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}$ Any one $m_1v_{1i} + m_2v_{2i} = (m_1 + m_2)v_f$ $\{0,45(9) + 0,20(0)\}$ \checkmark = (0,45 + 0,20)v \checkmark \therefore v = 6,23 m·s⁻¹ \checkmark OR $\Delta p_{\text{ball}} = -\Delta p_{\text{cont}} \checkmark : 0.45(v-9) \checkmark = -0.2(v-0) \checkmark : v = 6.23 \text{ m} \cdot \text{s}^{-1} \checkmark$ (4) 14.3 $K = \frac{1}{2} mv^2 \checkmark$ Total kinetic energy before collision: $\frac{1}{2}(0,45)(9)^2 + 0 \checkmark = 18,225 \text{ J}$ Total kinetic energy after collision: $\frac{1}{2}(0.45 + 0.20)(6.23)^2 \checkmark = 12,614 \text{ J}$ $\sum K_{before} \neq \sum K_{after}$.: Collision is inelastic. $\checkmark \checkmark$ (5) [11]

QUESTION 15

- Isolated system is a system on which the resultant/net external force is zero. 15.1 (2) 15.2.1 p = mv ✓
 - 24 = m (480) √

	m = 0,05 kg √		(3)
15.2.2	OPTION 1	OPTION 2	
	$F_{net}\Delta t = \Delta p$ \checkmark Any one	v _f = v _i + a∆t	
	$F_{net}\Delta t = (p_{bullet})_f - (p_{bullet})_i$	$80 = 480 + a(0,01) \checkmark$	
	$F_{net}\Delta t = (mv_{bullet})_{f} - (mv_{bullet})_{i}$	$a = -40\ 000\ m\cdot s^{-2}$	
	$F_{net}(0,01) \checkmark = (0,05)(80) - 24 \checkmark$		
	F _{net} = -2 000 N	F _{net} = ma √	
	F _{net} = 2 000 N ✓ west ✓	= (0,05)(-40 000) ✓	
		= - 2 000 N	
		F _{net} = 2 000 N ✓ west ✓	(5)
			[10]

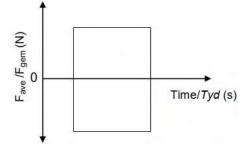

QUESTION 16

1 (Linear) momentum (of an object) is the product of mass and velocity. $\checkmark \checkmark$	
2.1 OPTION 1	
East as positive	
$\sum p_i = \sum p_f$ \checkmark Any one	
$m_{p}v_{pi} + m_{Q}v_{Qi} = m_{p}v_{pf} + m_{Q}v_{Qf} $	
$(0,16)(10) + (0,2)(-15) \checkmark = (0,16)(-5) + (0,2)v_{Qf} \checkmark$	
$v_{Qf} = -3 \text{ m} \cdot \text{s}^{-1}$	
$v_{Qf} = 3 \text{ m} \cdot \text{s}^{-1} \checkmark \text{ west } \checkmark$	
OPTION 2	
West as positive	
$\sum p_i = \sum p_f$ \checkmark Any one	
$m_{p}v_{pi} + m_{Q}v_{Qi} = m_{p}v_{pf} + m_{Q}v_{Qf}$	
$(0,16)(-10) + (0,2)(15) \checkmark = (0,16)(5) + (0,2)Q_{Nf} \checkmark$	
$v_{\rm Qf} = 3 \text{ m} \cdot \text{s}^{-1} \checkmark \text{ west } \checkmark$	
OPTION 3	
$\Delta p_p = -\Delta p_Q \checkmark$	
$(0,16)(-5-10) \checkmark = -(0,2)(v-(-15)) \checkmark$	
$v = -3 \text{ m} \cdot \text{s}^{-1}$	
= 3 m·s ⁻¹ \checkmark west \checkmark	
$IF: \Delta p_p = \Delta p_Q: \frac{0}{r}$	
···	(!

FS/2024

[14]

(**a**)


QUESTION 17

17.1 The total (linear) momentum of an isolated system remains constant (is conserved). ✓ ✓ OR

The total (linear) momentum before a collision is equal to the total linear momentum after collision in an isolated system.

17.2 **UPWARDS AS POSITIVE** $\sum p_i = \sum p_f \checkmark OR/OF$ $(m_1 + m_2)v_i = m_1v_{2f} + m_2v_{Bf}$ $(2m + 3m)v \checkmark = (3m)(-\frac{1}{3}v) + 2mv_{Bf} \checkmark$ $v_{Bf} = 3v \checkmark upwards \checkmark$

17.3 Impulse 17.4 ▲

(2) [10] **QUESTION 18** 18.1 A collision in which both the total momentum and total kinetic energy are conserved. \checkmark (2) 18.2 EAST + $\Sigma E_{ki} = \Sigma E_{kf} \checkmark$ 1 $\frac{1}{2}(10)(2^2) + \frac{1}{2}(2)v_i^2\checkmark = 0 + 36\checkmark$ $v_v = 4 \ m \cdot s^{-1} \checkmark west \checkmark$ (5) **OPTION 1** 18.3 **OPTION 2**

8.3 $\begin{array}{c} \underbrace{OP \Pi ON 1}_{EAST + \text{ for } Y} \\ F_{net} \Delta t = \Delta p \checkmark \\ F_{net}(0,1) = 2(6 - (-4)) \checkmark \\ F_{net} = 200 N \\ Magnitude \text{ of } F_{net} = 200 \text{ N} \checkmark \end{array}$ $\begin{array}{c} \underbrace{OP \Pi ON 2}_{EAST + \text{ for } X} \\ F_{net} \Delta t = \Delta p \checkmark \\ F_{net}(0,1) = 10(0 - 2) \checkmark \\ F_{net} = -200 N \\ Magnitude \text{ of } F_{net} = 200 \text{ N} \checkmark \end{array}$ (3)

[10]

(2)

(5)

(1)

QUESTION 19

19.1 A system on which the resultant/net external force is zero. $\checkmark\checkmark$

19.2.1 According to Newton 3" Law ✓ the rocket exerts a force on the toy cart to the left / opposite to direction of motion. ✓ **OR**

The toy cart exerts a force on the rocket to the right \checkmark and the rocket exerts a force on the toy cart to the left / opposite to direction of motion. \checkmark **OR**

The rocket experiences a change in momentum to the right \checkmark ; the toy cart experiences a change in momentum to the left. \checkmark **OR**

 $\Delta p_{toy cart} = -\Delta p_{rocket} \checkmark \checkmark \mathbf{OR}$

Total momentum is conserved / remains constant. \checkmark The momentum of the rocket increases. Therefore, the momentum of the toy cart must decrease. \checkmark **OR**

The rocket experiences an impulse to the right. \checkmark Therefore, the toy cart experiences an impulse to the left. \checkmark OR

Impulserocket = -Impulsetoy cart 🗸 🗸

^{19.2.2} **OPTIO**

OPTION 1	OPTION 2	
RIGHT AS POSITIVE	RIGHT AS POSITIVE	
$\Sigma p_i = \Sigma p_f \checkmark$	$\Delta p_{cart} = -\Delta p_{rocket} \checkmark$	
$(20 + m_{rocket})2,5 \checkmark = (20)(0,6) \checkmark + m_{rocket}(30) \checkmark$	$(20)\checkmark(0,6-2,5)\checkmark = -m_{rocket}(30-2,5)\checkmark$	
$m_{rocket} = 1,38 \ kg \checkmark$	$m_{rocket} = 1,38 \ kg \checkmark$	(5)

QUESTION 20

20.1 In an isolated/closed system the total (linear) momentum is conserved/remains constant. VV

20.2.1

 $\begin{array}{l} \underline{\text{OPTION 1}} \\ \overline{\text{EAST AS POSITIVE}} \\ \Sigma p_i &= \Sigma p_f \checkmark \\ m_x v_{ix} + m_y v_{iy} &= m_x v_{fx} + m_y v_{fy} \\ (1,2)(8)\checkmark + (0,5)(0) &= (1,2)(4) + (0,5) v_{fy} \checkmark \\ v_{fy} &= 9,6 \ m \cdot s^{-1} \checkmark \end{array}$

WEST AS POSITIVE

$$\begin{split} \Sigma p_i &= \Sigma p_f \checkmark \\ m_x v_{ix} + m_y v_{iy} &= m_x v_{fx} + m_y v_{fy} \\ (1,2)(-8)\checkmark + (0,5)(0) &= (1,2)(-4) + (0,5) v_{fy} \checkmark \\ v_{fy} &= -9.6 \ m \cdot s^{-1} \\ \therefore v_{fy} &= 9.6 \ m \cdot s^{-1} \checkmark \end{split}$$

OPTION 2

OPTION 1

EAST AS POSITIVE $\Delta p_x = -\Delta p_y \checkmark$ $m_x(v_{fx} - v_{ix}) = -m_y(v_{fy} - v_{iy})$ $(1,2)(4-8)\checkmark = -(0,5)(v_{fy} - 0)\checkmark$ $v_{fy} = 9.6 \ m \cdot s^{-1} \checkmark$

WEST AS POSITIVE $\Delta p_x = -\Delta p_y \checkmark$ $m_x (v_{fx} - v_{ix}) = -m_y (v_{fy} - v_{iy})$ $(1,2) (-4 - (-8)) \checkmark = -(0,5) (v_{fy} - 0) \checkmark$ $v_{fy} = -9.6 \ m \cdot s^{-1}$ $\therefore v_{fy} = -9.6 \ m \cdot s^{-1} \checkmark$

20.2.2

FOR Y: EAST AS POSITIVE $F_{net}\Delta t = \Delta p \checkmark$ $F_{net}\Delta t = m_x (v_f - v_i)$ $F_{net}(0,1) = (0,5)(9,6-0) \checkmark$ $F_{net on Y} = +48 N \checkmark$ \therefore Magnitude of $F_{net on Y} = 48 N \checkmark$

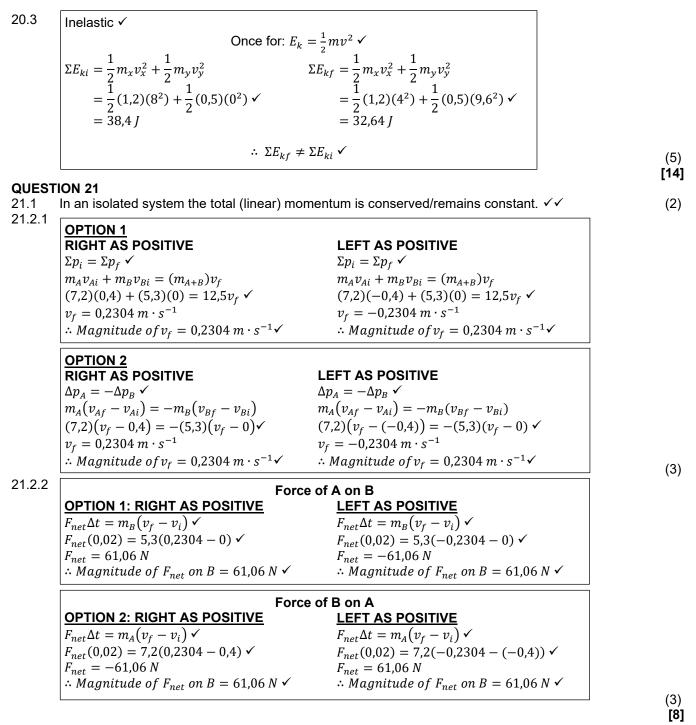
OPTION 2 FOR X: EAST AS POSITIVE $F_{net}\Delta t = \Delta p \checkmark$ $F_{net}\Delta t = m_x(v_f - v_i)$ $F_{net}(0,1) = (1,2)(4 - (+8)) \checkmark$ $F_{net on X} = -48 N$ $F_{net on Y} = +48 N \checkmark$ \therefore Magnitude of $F_{net on Y} = 48 N \checkmark$

FOR Y: WEST AS POSITIVE

 $F_{net}\Delta t = \Delta p \checkmark$ $F_{net}\Delta t = m_x (v_f - v_i)$ $F_{net} (0,1) = (0,5)(-9,6-0) \checkmark$ $F_{net on Y} = -48 N$ $\therefore Magnitude of F_{net on Y} = 48 N \checkmark$

FOR X: WEST AS POSITIVE $F_{net}\Delta t = \Delta p \checkmark$ $F_{net}\Delta t = m_x(v_f - v_i)$ $F_{net}(0,1) = (1,2)(-4 - (-8))\checkmark$ $F_{net on X} = +48 N$ $F_{net on Y} = -48 N$ \therefore Magnitude of $F_{net on Y} = 48 N \checkmark$

(3)


(2)

(2)

[9]

(2)

(4)

Physicaceandread afrom Stanmorephysics.com

(1)

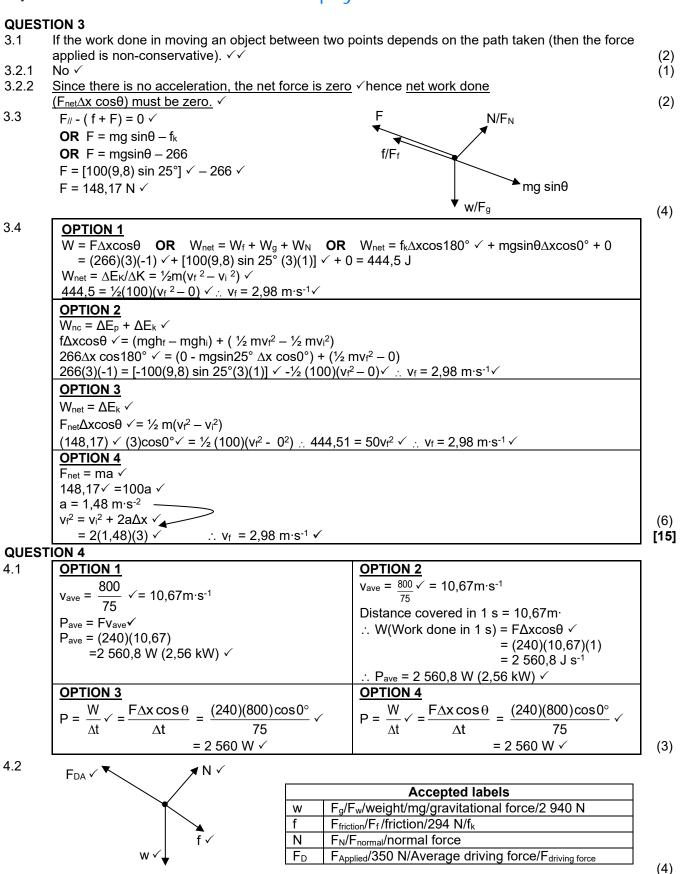
QUESTION 22

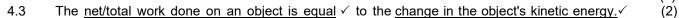
22.1 591 N to the right \checkmark

22.2

22.3 22.4 $\begin{array}{c} \hline \textbf{OPTION 1} \\ \hline \textbf{RIGHT AS POSITIVE} \\ F_{net}\Delta t = m\Delta p \checkmark \\ F_{net}\Delta t = mv_f - mv_i \\ (-591)(0,02) \checkmark = (0,03)(0) - (0,03)v_i \checkmark \\ v_i = 394 \ m \cdot s^{-1} \\ Magnitude \ of \ velocity = 394 \ m \cdot s^{-1} \checkmark \end{array}$

LEFT AS POSITIVE $F_{net}\Delta t = m\Delta p \checkmark$ $F_{net}\Delta t = mv_f - mv_i$ $(+591)(0,02) \checkmark = (0,03)(0) - (0,03)v_i \checkmark$ $v_i = -394 \text{ m} \cdot \text{s}^{-1}$ Magnitude of velocity = $394 \text{ m} \cdot \text{s}^{-1} \checkmark$

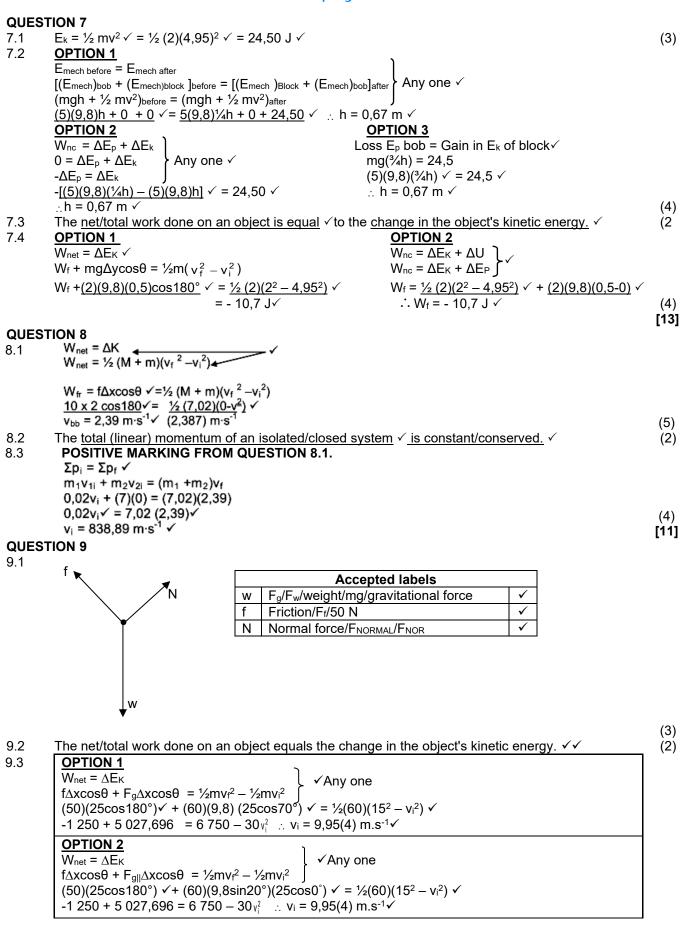

OPTION 2 RIGHT AS POSITIVE $F_{net} = ma$ $-591 = (0,03)a \checkmark$ $a = -19\ 700\ m \cdot s^{-2}$	LEFT AS POSITIVE $F_{net} = ma$ $+591 = (0,03)a \checkmark$ $a = +19\ 700\ m \cdot s^{-2}$	
$\begin{aligned} v_f &= v_i + a\Delta t \checkmark \\ 0 &= v_i + (-19\ 700)(0.02) \checkmark \\ v_i &= 394\ m \cdot s^{-1} \\ Magnitude\ of\ velocity &= 394\ m \cdot s^{-1} \checkmark \end{aligned}$	$\begin{aligned} v_f &= v_i + a\Delta t \checkmark \\ 0 &= v_i + (+19\ 700)(0,02) \checkmark \\ v_i &= -394\ m \cdot s^{-1} \\ Magnitude\ of\ velocity &= 394\ m \cdot s^{-1} \checkmark \end{aligned}$	(4
n an isolated/closed system the total (linear) mo	omentum is conserved/remains constant. $\checkmark\checkmark$	(2
RIGHT AS POSITIVE $\Sigma p_i = \Sigma p_i \checkmark$ $(0,03)(394) + (2,7)(-3) \checkmark = (0,03 + 2,7)v_f \checkmark$	LEFT AS POSITIVE $\Sigma p_i = \Sigma p_i \checkmark$ $(0,03)(-394) + (2,7)(+3) \checkmark = (0,03 + 2,7) v_f \checkmark$	


 $\Sigma p_i = \Sigma p_i \checkmark$ (0,03)(394) + (2,7)(-3) \sigma = (0,03 + 2,7)v_f \sigma $v_f = 1,36 \ m \cdot s^{-1}$ Magnitude of velocity = 1,36 m \cdot s^{-1} \sigma

$$\begin{split} \Sigma p_i &= \Sigma p_i \checkmark \\ (0,03)(-394) + (2,7)(+3) \checkmark &= (0,03+2,7) v_f \checkmark \\ v_f &= -1,36 \ m \cdot s^{-1} \\ Magnitude \ of \ velocity &= 1,36 \ m \cdot s^{-1} \checkmark \end{split}$$

WORK, ENERGY AND POWER

QUES 1.1.1	ΓΙΟΝ 1 In an isolated/closed system, ✓ the total mechanic	al energy is conserved/remains constant. ✓	(2)
1.1.2	No \checkmark		(1)
1.1.3	OPTION 1	OPTION 2	
	Along AB	Along AB	
	$E_{mech at A} = E_{mech at B}$	$W_{net} = \Delta E_k \checkmark$	
	$(E_p + E_k)_A = (E_p + E_k)_B$	$F_{g}\Delta h \cos\theta = \frac{1}{2} m(v_{f}^{2} - v_{i}^{2})$	
	$(mgh + \frac{1}{2} mv^2)_A = (mgh + \frac{1}{2} mv^2)_B$	$(10)(9,8)(4)\cos^{00} = \frac{1}{2}(10)(v_{f}^{2} - 0)$	
	$(10)(9,8)(4) + 0 = 0 + \frac{1}{2}(10) v_f^2 \sqrt{10}$	v _f = 8,85 m⋅s ⁻¹	
	$v_f = 8,85 \text{ m} \cdot \text{s}^{-1}$		_
	Substitute 8,85 m·s ⁻¹ in on		
		Along BC	
	$W_{\text{net}} = \Delta K \checkmark \therefore f \Delta x \cos \theta = \Delta K$	$W_{nc} = \Delta K + \Delta U \checkmark :: f \Delta x \cos \theta = \Delta K + \Delta U$	
	$\frac{f(8)\cos 180^{\circ}}{f - 48.05} = \frac{1}{2} (10)(0 - 8.85^{\circ}) \checkmark$	$\frac{f(8)\cos 180}{f = 48,95} \sqrt[4]{ = \frac{1}{2} (10)(0 - 8,85^2) + 0} \sqrt{1}$	(6)
101	$f = 48,95 \text{ N } \checkmark$ $f_k = \mu_k \text{N } \checkmark = \mu_k \text{mgcos}\theta = (0,19)(300)(9,8) \cos 25^\circ$		(6)
1.2.1 1.2.2	$F = \mu k I V = \mu k I I g cos \theta = (0, 19 (300)(9,8) cos 25)$	= 500,20 N $= 0.5$	(3)
1.2.2	$F_{app} \neq F_N \qquad F_{net} = 0 \text{ OI}$	$R = \frac{F_{app} + (-F_{g}sin\theta) + (-f) = 0}{9,8} \sqrt{9,8} + \frac{1}{2} \sqrt{50,26} \sqrt{50,26} \sqrt{50} = 0$	
	$ F_{app} = 1748$	8 76 N	
		\checkmark = 1748,76 x 0,5 \checkmark = 874,38 W \checkmark	
	/ f		
	/ θ		
	′ ∀ F _g		(6)
	Ū.		[18]
QUEST	ΓΙΟΝ 2		
2.1	ΔU +ΔK = 0√		
	$(5)(9,8)(5) + 0\checkmark + (0 + \frac{1}{2}(5v_f^2)\checkmark = 0$		
	$v_f = \sqrt{2 \times 9.8 \times 5}$		
	= 9,90 m·s⁻¹✓ (9,899 m·s⁻¹)		(4)
2.2	No friction/zero resultant force \checkmark and thus no loss	in energy. ✓	
	OR Only conservative forces are present. OR M		(2)
2.3	The force for which the work done is path depende		(2)
2.4	OPTION 1		
	$W_{nc} = \Delta U + \Delta K \checkmark$		
	$F \Delta x \cos \theta = \Delta U + \Delta K$	o?\ <	
	$(18 \Delta x \cos 180 \checkmark) = (5) (9,8) (3-0) \checkmark + \frac{1}{2} (5) (0-9,90)$	0²)✓	
	$\Delta x = 5,4458m\checkmark$		
	$\theta = \sin^{-1} \frac{3}{5,4458} \checkmark$		
	θ =33,43°√		
	$\frac{\text{OPTION 2}}{W_{\text{net}} = W_f + W_G}$		
	$W_{net} = f \Delta x \cos \theta + mg \sin \theta \Delta x \cos \theta$		
	=[(18) $\Delta x \cos 180^{\circ}$) + 5 (9,8) $\frac{3}{\Delta x}(\Delta x) \cos 180^{\circ}$] \checkmark		
	= -18∆x - 147		
	$W_{net} = \Delta K \checkmark$		
	$\Delta K = \frac{1}{2} (5) (0 - 9,90^2) \checkmark$		
	= -245,025		
	-18∆x – 147 = -245,025		
	∆x = 5,4458 m√		
	$\theta = \sin^{-1} \frac{3}{5,4458} \checkmark$		
	θ =39,43°√		(7)
			[15]



4.4 **OPTION 1** $W_{nc} = \Delta U + \Delta K \checkmark : W_f + W_D = \Delta U + \Delta K$ $(f \Delta x \cos \theta + F_D \Delta x \cos \theta = mg(h_f - h_i) + \frac{1}{2} m(v_f^2 - v_i^2)$ $(294)(450)(\cos 180^{\circ}) \checkmark + (350)(450)\cos 0^{\circ} \checkmark = (300)(9,8)(5-0) \checkmark + \frac{1}{2}(300)(v_{f}^{2}-0) \checkmark \therefore v_{f} = 8,37 \text{ m} \cdot \text{s}^{-1} \checkmark$ **OPTION 2** $W_{net} = \Delta K \checkmark : W_{net} = W_D + W_g + W_f + W_N = (F_D \Delta x \cos \theta) + (mg \sin \alpha) \Delta x \cos \theta) + (f \Delta x \cos \theta) + 0$ $W_{net} = [350(450)](\cos 0^{\circ})\checkmark + (300)(9,8) \left(\frac{5}{450} (450)(\cos 180^{\circ})\checkmark + 294(450)(\cos 180^{\circ})\land + 294(450)(\cos 180^{\circ})\circ + 294(450)(\cos 180^{\circ})\circ + 294(650)(\cos 18$ = 157 500 - 14 700 - 132 300 = 10 500 J W_{net} = ΔK ∴ 10 500 = $\frac{1}{2}(300)(v_f^2 - 0)$ ✓ ∴ v_f = 8,37 m·s⁻¹ ✓ (6) [15] **QUESTION 5** 5.1 It is a ratio of two forces (hence units cancel). ✓ (1)5.2 The <u>net/total work done on an object is equal</u> \checkmark to the <u>change in the object's kinetic energy</u>. (2) 5.3 N /F_N√ w/Fav (4)5.4 Fsin20° + N = mg√ N = mg - Fsin20° $W_{fk} = fk\Delta x \cos \theta = \mu_k N\Delta x \cos \theta \checkmark$ = μ_k (mg - Fsin 20)(3)cos θ = (0,2)[200(9,8) - F sin 20](3)cos180^o√ = (-1176 + 0,205 F) J√ (4) $W_{tot} = [W_q] + W_f + W_F \checkmark$ 5.5 $0 \checkmark = [0] + [(-1176 + 0.205 \text{ F})] + [\text{F} (\cos 20) (3) (\cos 0)] \checkmark$ (4)F = 388,88 N√ [15] **QUESTION 6** The total mechanical energy in an isolated/closed system √remains constant/is conserved. ✓ (2) 6.1 $W = F\Delta x \cos\theta \checkmark = (30)(\frac{5}{\sin 30^{\circ}})\cos\theta \checkmark = (30)(10)\cos 180^{\circ} = (30)(10)(-1) = -300 \text{ J} \checkmark$ 6.2.1 (3)6.2.2 **OPTION 1** $\frac{W_{nc} = \Delta E_P + \Delta E_K}{W_{nc} = mg(h_f - h_i) + \frac{1}{2}m(v_f^2 - v_i^2)} \right\} \checkmark Any one$ - 300 \checkmark = (20)(9,8)(0 - 5) \checkmark + $\frac{1}{2}$ (20)(v_{f}^{2} -0) \checkmark : v = 8,25 m·s⁻¹ \checkmark **OPTION 2** $W_{net} = \Delta E_{\kappa}$ $W_g + (-300) = \frac{1/2}{2}(20)(v_f^2 - 0) \checkmark$ $[(20)(9,8)\sin 30^{\circ}\frac{5}{0.5}\cos 0^{\circ}] \checkmark + (-300) \checkmark = 10v_{f}^{2} \therefore v_{f} = 8,25 \text{ m} \cdot \text{s}^{-1} \checkmark$ (5) $F = w_{ll} + f = (100)(9.8)\sin 30^\circ + 25 \checkmark = 515 \text{ N}$ 6.3

$$P_{\text{ave}} = Fv_{\text{ave}} \checkmark = (515)(2) \checkmark = 1\ 030\ \text{W} \checkmark$$
(4)
[14]

FS/2024

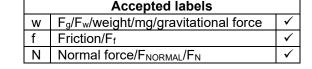
FS/2024

∴W = 94,08 J ✓

(3)

= 94,08 J√

 $W_{net} = (0,4)(4)(9,8)(1,6)\cos 180^{\circ} \checkmark + 94,08 + 0 = 68,992 \text{ J}$


 $f\Delta x \cos\theta = (m_1 gh_f - m_1 gh_i) + (\frac{1}{2}m_1 v_f^2 - \frac{1}{2}m_1 v_i^2) + (\frac{1}{2}m_2 v_f^2 - \frac{1}{2}m_2 v_i^2)$

✓Any one

✓Any one

∴ v = 3,71 m·s⁻¹ ✓

OPTION 3 $W_{net} = \Delta E_K \checkmark$ For the 4 kg mass: $T(1,6)\cos^{\circ} + [(0,4)(9,8)(4)](1,6)\cos^{1}80^{\circ} \checkmark = \frac{1}{2}(4)v^2 - 0$ For the 6 kg mass: $(6)(9,8)(1,6) \cos^{\circ} + T(1,6) \cos^{1} 80^{\circ} \sqrt{100} = \frac{1}{2}(6)(v^2 - 0)$ Adding the two equations : $68,992 = \frac{1}{2}(4)v^2 + \frac{1}{2}(6)v^2 \checkmark$ **QUESTION 12** The total mechanical energy in a closed/isolated system is constant/conserved. $\checkmark\checkmark$ 12.1 12.2 $E_{mech P} = E_{mech Q} \mathbf{OR} (E_p + E_k)_{Pe} = (E_p + E_k)_Q \mathbf{OR} W_{net} = \Delta E_K \mathbf{OR} W_{con} = \Delta E_K \mathbf{OR}$ $(mgh + \frac{1}{2} mv^2)_P = (mgh + \frac{1}{2} mv^2)_Q \checkmark$ $(50)(9,8)3 + 0 \checkmark = 0 + \frac{1}{2}(50)v^2 \checkmark \therefore v = 7,67 \text{ m} \cdot \text{s} \checkmark$ 12.3 N ► f ⊧ Accepted labels

 $\therefore \ 68,992 \checkmark = \frac{1}{2}(4)(v_f^2 - 0) + \frac{1}{2}(6)(v_f^2 - 0) \checkmark \therefore v = 3,71 \text{ m} \cdot \text{s}^{-1} \checkmark$

 $(0,4)(4)(9,8)(1,6)\cos 180^{\circ} \checkmark = [0 - (6)(9,8)(1,6)] \checkmark + (\frac{1}{2}(6)v_{f}^{2} + \frac{1}{2}(4)v_{f}^{2} - 0) \checkmark \therefore v = 3,71 \text{ m} \cdot \text{s}^{-1} \checkmark$

POSITIVE MARKING FROM QUESTION 5.4/POSITIEWE NASIEN VANAF 12.5 VRAAG 5.4

 $W = F_{net}\Delta x \cos\theta$ ✓1 mark for any one/ $W_{net} = W_f + W_w + W_N$ 1 punt vir enige van die drie $W_{net} = W_f + (-\Delta E_P) + W_N$ $W_{net} = f_k \Delta x \cos 180^\circ + mgsin\theta \Delta x \cos 0 + 0$ $W_{net} = \Delta E_K / \Delta K$

W_{net} = [33,948)(5)(-1)] ✓ + [(50)(9,8) (5)sin 30° + 0] ✓ = 1055, 26 (1055,259) $1055,259 = \frac{1}{2}(50)(v_f^2 - 7,668^2)$

$v_f = 10,05 \text{ m} \cdot \text{s}^{-1} \checkmark$ **QUESTION 13** 13.1

Т

W

11.4

OPTION 1

OPTION 2 $W_{nc} = \Delta E_p + \Delta E_k$

 $W_{net} = F_{net} \Delta x \cos \theta$

 $W_{net} = W_f + W_g + W_N$

 $W_{net} = \frac{1}{2}m(v_f^2 - v_i^2)$

 $W_{net} = \Delta E_K / \Delta K = \frac{1}{2} m (v_f^2 - v_i^2)$

 $= \mu_k N \Delta x \cos \theta + W_a + W_N$

	Accepted labels
W	F _g /F _w /weight/mg/gravitational force/N/19,6 N
Т	Tension/F _T / F _A /

13.2 Tension ✓ OR Fapplied

(2)(1)

(5)

[17]

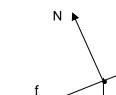
(5)

[12]

(2)

(4)

(3)


(3)

13.3	$W = F\Delta x \cos\theta$		
	$W_w = mg\Delta x \cos\theta$ \forall any one		
	$= \frac{75(9,8)}{(12)\cos 180^{\circ}} \checkmark = -8820 \text{ J} \checkmark$		
	OR $W_w = -\Delta E_p \checkmark = -(mgh - 0) = -(75)(9,8)(12)$		(3)
13.4	The net work done on an object is equal to the	$\frac{1}{2}$ <u>change</u> in the object's kinetic energy. $\sqrt{2}$	(2)
13.5	OPTION 1		
	$ W_{net} = \Delta K F_{net} \Delta x \cos \theta = (\frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2) $ any one		
	$F_{\text{net}\Delta XCOS \theta} = (\frac{1}{2} \text{ mv}_{f}^{2} - \frac{1}{2} \text{ mv}_{f}^{2})^{2}$ $(75)(0,65)(12) \checkmark \cos^{\circ} \checkmark = \frac{1}{2}(75)(\text{v}_{f}^{2} - 0) \checkmark$		
	$\frac{(75)(0,05)(12)}{(15)(0)} = 0.000 0 = 72(75)(0) = 0.000$ $\therefore V_{\rm f} = 3,95 \text{ m} \cdot \text{s}^{-1} \checkmark$		
	OPTION 2		
	$W_{\text{net}} = \Delta K$	$M_{1} = (1/m_{1}, 2, 1/m_{2}, 2) + (m_{2}, m_{3}, m_{3}, m_{3})$	
	$W_{nc} = \Delta K + \Delta U > \sqrt{any one}$	$W_{nc} = (\frac{1}{2} \text{ mv}_{f}^{2} - \frac{1}{2} \text{ mv}_{i}^{2}) + (\text{mgh}_{f} - \text{mgh}_{i})$ 9405 $\checkmark = (\frac{1}{2} (75) \text{v}_{f}^{2} - 0) \checkmark + (75)(9,8)(12 - 0) \checkmark$	
	$W_T + W_g = \Delta K$	$v_f = 3.95 \text{ m} \cdot \text{s}^{-1} \checkmark$	
	T – mg = ma	vi = 0,80 m·s ·	
	T – 75(9,8) = 75(0,65) ✓ ∴ T = 783,75 N		
	$W_T = 783,75 (12) \cos^2 0^{10} = 9405 J$		(5)
011507	$9405 - (8820) = \frac{1}{2} (75)(v_f^2 - 0) \checkmark \therefore v_f = 3,95$	o m·s⁻¹ ✓	[13]
QUEST 14.1	ION 14	abiaat batwaan two nainta dananda an tha nath	
14.1	taken. $\checkmark \checkmark$	object between two points <u>depends on the path</u>	(2)
14.2	No ✓		(1)
14.3	OPTION 1	OPTION 2	(.)
	$P = \underline{W} \checkmark$		
	Δt	$\Delta \mathbf{x} = \left(\frac{\mathbf{v}_{\mathrm{f}} + \mathbf{v}_{\mathrm{i}}}{2}\right) \Delta \mathbf{t}$	
	$=\frac{4,8\times10^6}{(90)}\checkmark$		
		$=\left(\frac{0+25}{2}\right)(90) = 1\ 125\ m$	
	= 53 333,33 W		
	= 5,33 x 10 ⁴ W (53,33 kW) ✓	W _F = FΔxcosθ 4,80 x 10 ⁶ = F(1 125)cos0° ∴F = 4 266,667 N	
		$P_{ave} = Fv_{ave} \checkmark = (4\ 266,667)(12,5) \checkmark$	
		= 53 333, 33 W ✓	(3)
14.4	The <u>net/total work done</u> on an object is <u>equal t</u>		(2)
14.5	OPTION 1		()
	$\overline{W_{net}} = \Delta K \checkmark OR W_w + W_f + W_F = \frac{1}{2} mv_f^2 - \frac{1}{2}$	mvi ² OR	
	mg∆xcosθ + W _f + W _F = $\frac{1}{2}$ mv _f ² - $\frac{1}{2}$ mv _i ²		
	$\therefore (1500)(9,8)200\cos 180^{\circ} \checkmark + W_{\rm f} + 4.8 \times 10^{6}$		
	$-2 940 000 + W_f + 4.8 \times 10^6 = 468 750$ $\therefore W$	f = -1 391 250 J = -1,39 x 10° J ✓	
	OR W _{net} = $\Delta K \checkmark OR W_w + W_f + W_F = \frac{1}{2} mv_f^2 - \frac{1}{2} mv_f^2$	$n_{1/2} \cap R$ AEn + M_{1} + M_{2} = $\frac{1}{4} m_{1/2} = \frac{1}{4} m_{1/2}^{2}$	
	$\frac{1}{10000000000000000000000000000000000$		
	$-2 940 000 + W_f + 4.8 \times 10^6 = 468 750$ W		(5)
	OPTION 2		(-)
		+ mgh _f - mgh _i = $\frac{1}{2}$ m (v _f ² - v _i ²) + mg(h _f - h _i) OR	
	$W_{nc} = \frac{1}{2} mv_{f}^{2} + mgh_{f} - \frac{1}{2} mv_{i}^{2} - mgh_{i} OR W_{f}$	0 0	
	$\therefore \frac{W_{f} + 4.8 \times 10^{6}}{W_{f} + 4.8 \times 10^{6}} \checkmark = \frac{1}{2} (1500)(25)^{2} + -0] \checkmark + [$	<u>(1 500)(9,8)(200) - 0]√</u>	
	$\therefore W_{f} = -1,39 \times 10^{6} \text{ J} (-1,40 \times 10^{6} \text{ J}) \checkmark$		
	OR	$1 - mab_{1} - mab_{2} - 1(m(w^{2} + w^{2}) + m - (b - b) OD$	
	$W_{nc} = \Delta K + \Delta U \checkmark OR W_{nc} = \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2$ $W_{nc} = \frac{1}{2} mv_f^2 + mgh_f - \frac{1}{2} mv_i^2 - mgh_i$	+ mgh _f - mgh _i = $\frac{1}{2}$ m (v _f ² - v _i ²) + mg(h _f - h _i) OR	
	$W_{nc} = \frac{1}{2} \prod_{i=1}^{n} \frac{1}{2} \prod_{i=1}$)(9 8)(200) √1 - [0 + 0]	(5)
	$\therefore W_{f} = -4.8 \times 10^{6} + 3.4 \times 10^{6} = -1.39 \times 10^{6} J$		[13]
		\ ' /	

QUESTION 15

- 15.1 Tension ✓
- 15.2 There is friction/tension in the system. ✓
- OR Friction/tension is a non-conservative force/ The system is not isolated because there is friction/tension. 15.3

(1)

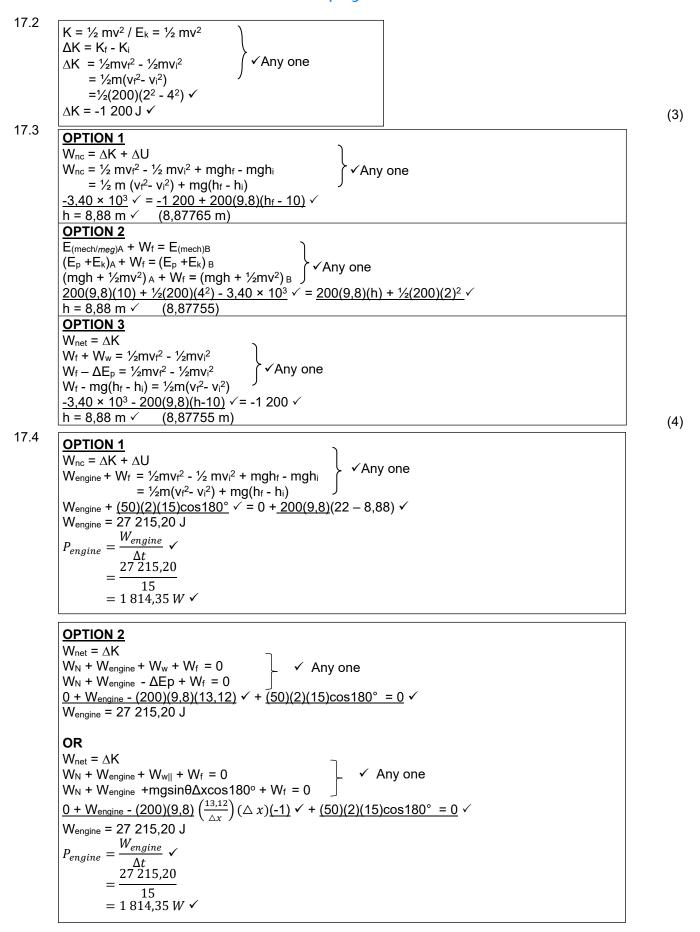
		Accepted labels	
		w F _g /F _w /weight/mg/gravitational force	\checkmark
		f Friction/F _f /f _k /178,22 N	\checkmark
		N Normal (force)/F _{normal} /F _N /F _{reaction}	\checkmark
	f	T F _T /F _A /F _{applied/} /700 N/Tension	\checkmark
	w		
	★		(4)
15.4	W = F∆xcosθ ✓		
	$W_f = [178,22(4)\cos 180^\circ] \checkmark$		
	= - 712,88 J ✓		(3)
15.5	OPTION 1		
	$W_{net} = \Delta E_K$		
	$W_f + W_g + W_T = \Delta K$		
	$W_f + mgsin\theta \Delta xcos\theta + W_T = \Delta K$		
	-712,88 + (70)(9,8) (sin 30°)(4) cos 180° ✓ + ($700 \times 4 \times \cos 0^{\circ}) \checkmark = \frac{1}{2} 70 (v_{f}^{2} - 0) \checkmark$	
	$v_f = 4,52 \text{ m} \cdot \text{s}^{-1} \checkmark$		
	OPTION 2		
	$W_{nc} = \Delta E_{K} + \Delta E_{p} \checkmark$		
	$W_T + W_f = \Delta E_K + \Delta E_p$		
	$(700)(4) \cos 0^{\circ}) \checkmark + (-712,88) = [(70)(9,8) 4(s)$	in 30°) 0 1 \checkmark + $\frac{1}{2}$ 70($v_f^2 - 0$) \checkmark	
	$v_{\rm f} = 4,52 {\rm m}\cdot{\rm s}^{-1}\checkmark$	····	
	OPTION 3		
	$F_{\text{net}} = F_{\text{T}} - [\text{mgsin}\theta + f_k]$		
	$= \frac{700 - [(70)(9,8\sin 30^\circ) + 178,22]}{\sqrt{300}}$		
	$= \frac{100 - 1(10)(3,0300) + 110,221}{178,78 \text{ N}}$		
	$W_{net} = \Delta E_K \checkmark$		
	$F_{\text{net}} \Delta x \cos \theta = \Delta E_K$		
	$\frac{(178,78)(4)\cos^{\circ}}{\sqrt{12}} = \frac{1}{2} \frac{70(v_{f}^{2} - 0)}{\sqrt{12}} \therefore v_{f} = \frac{1}{2} \frac{1}{$	4 52 m·s ⁻¹ √	(5)
15.6	2(-712,88) = -1425,76 J ✓	1,02 11 0	(0)
1010	2(112,00)		[15]
QUEST	ION 16		[]
16.1	A conservative force is a force for which the we	ork done in moving an object between two po	oints is
	independent of the path taken. $\checkmark \checkmark$	· · ·	(2)
16.2	Gravitational (force) ✓		(1)
16.3	No \checkmark There is friction \checkmark (between the of	bject and the track).	(2)
16.4	$E_P = mgh \checkmark = (1,8)(9,8) (1,5) \checkmark = 26,46 J \checkmark$		(3)
16.5	OPTION 1	OPTION 2	

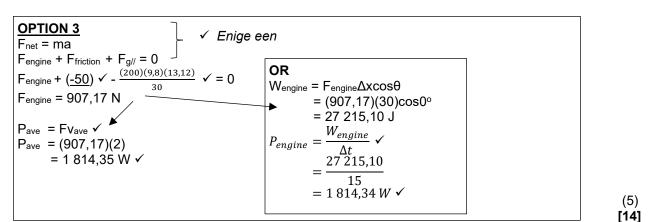
Accepted labels

16.4	$E_P = mgh \checkmark = (1,8)(9,8) (1,5) \checkmark$	✓ = 26,46 J ✓			(3)
16.5	OPTION 1		OPTION 2		
	$W_{nc} = \Delta K + \Delta U$	∽ Any one	$W_{net} = \Delta K$		
	$W_f = \frac{1}{2}m(v_f^2 - v_i^2) + mg(h_f - h_i)$)	$W_{f} + W_{g} = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2}$	∽ √ Anv one	
	$= \frac{1}{2}(1,8)(4^2-0,95^2) \checkmark + (0)$	<u>- 26,46)</u> ✓	$W_f + mgh = \frac{1}{2}m(v_f^2 - v_i^2)$		
	= -12,87 J ✓		$W_f + mgh = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$		
			$W_f + 26,46 \sqrt{= \frac{1}{2}(1,8)[(4)^2}$	- (0,95)²] ✓	
			$W_f = -12,87 J (-12,872 J)$	((4)
16.6	(W _{net} =) 0 J / zero √				(1)

QUESTION 17

17.1 A force is non-conservative if the work it does on an object (which is moving between two points) depends on the path taken. VV OR A force is non-conservative if the work it does on an object depends on the path taken. OR A force is non-conservative if the work it does in moving an object around a closed path is non-zero.


FS/2024


[13]

(2)

Physicacean Physic

FS/2024

QUESTION 18

18.1 The rate at which work is done/energy is expended. $\checkmark\checkmark$ 18.2 W W

$$P = \frac{W}{\Delta t} \checkmark \qquad P = \frac{W}{\Delta t} \checkmark \qquad P_{ave} = Fv_{ave} \checkmark \qquad P_{ave} = \frac{Fv_{ave}}{60} \checkmark \qquad P_{ave} = \frac{(1\ 250)(9,8)(5,8)}{60} \checkmark \qquad = 1\ 184,17\ W \checkmark \qquad = 1\ W \land \qquad$$

- 18.3 A conservative force is a force for which the work done (in moving an object between two points) is independent of the path taken. ✓✓ OR
- A conservative force is a force for which the work done in moving an object in a closed path is zero. (2) 18.4 Non-conservate (1)
- 18.5 (Gravitational) potential energy to kinetic energy (1) 18.6 From R to the wall: $(E_p + E_k)_R = (E_p + E_k)_{Bottom/Onder} & Into the wall \\
 (E_p + E_k)_R = (E_p + E_k)_{Bottom/Onder} & W_{net} = \Delta K \checkmark \\
 (mgh + \frac{1}{2} mv^2)_R = (mgh + \frac{1}{2} mv^2)_{Bottom/Onder} & F_{wall/muur} \Delta x \cos\theta = K_f - K_i \\
 (1 250)(9,8)(5,8) + 0 = 0 + E_k \checkmark & F_{wall/muur} (0,25)(\cos 180^\circ) \checkmark = 0 - 71\ 050 \checkmark \\
 E_k = 71\ 050\ J & F_{wall/muur} = 284\ 200\ N \checkmark$ (5)

QUESTION 19

19.1 The total mechanical energy in an isolated system remains constant / the same. ✓✓ OR The sum of the kinetic and gravitational potential energies in an isolated system remains constant/the same. (2)

19.2
$$(E_p + E_k)_p = (E_p + E_k)_p \checkmark$$

$$(2)(9,8)(5) + 0 = 0 + \frac{1}{2}(2)v_f^2$$

$$v_f = 9,90 \text{ m} \cdot \text{s}^{-1} \checkmark$$

19.3

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array} \\
\end{array} \\
\end{array} \\
f(10)\cos 180^{\circ} \checkmark = \frac{1}{2}(2)(4^{2} - 9,90^{2}) \checkmark \\
f = 8,2 N \checkmark
\end{array}
\end{array}$$

$$\begin{array}{c}
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$$

(3)

(3)

(3)

(3)

(4)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(4)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(5)

(2)

[14]

19.4
RIGHT +

$$F_{net}\Delta t = m(v_f - v_i)\checkmark$$

 $-14 = 2(v_f - 4)\checkmark$
 $v_f = -3 \text{ m} \cdot \text{s}^{-1}$
 $\Delta E_k = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\checkmark$
 $= \frac{1}{2}(2)[(-3)^2 - 4^2]\checkmark$
 $= -7 \text{ J}\checkmark$

LEFT +
 $F_{net}\Delta t = m(v_f - v_i)\checkmark$
 $14 = 2(v_f - (-4))\checkmark$
 $v_f = 3 \text{ m} \cdot \text{s}^{-1}$
 $\Delta E_k = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\checkmark$
 $= \frac{1}{2}(2)[3^2 - (-4)^2]\checkmark$
 $= -7 \text{ J}\checkmark$

(5)

QUESTION 20

- 20.1 The net/total work done on an object is equal to the change in the object's kinetic energy. \checkmark (2)
- 20.2 F_{net} is opposite to the direction of the displacement Δx . \checkmark **OR**

ΔK is negative. **OR** The final K is zero. OR Kinetic energy decreases. OR

 $W_{net} = F_{net} \Delta x \cos \theta$ and $\theta = 180^{\circ}$.

20.3

$$\underbrace{\text{OPTION 1}}_{W_{net} = \Delta K} \checkmark \\
 W_w + W_f = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \\
 mgsin\Theta\Delta x \cos\Theta + W_f = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \\
 (30\ 000)(9,8)(sin28^\circ)(\Delta x)(cos180^\circ) \checkmark + (31\ 000)(\Delta x)(cos180^\circ) \checkmark = \frac{1}{2}(30\ 000)(0^2 - 33^2) \checkmark \\
 \Delta x = 96,64\ m \checkmark \\
 \underbrace{\text{OPTION 2}}_{W_{nc} = \Delta K} + \Delta U \checkmark$$

 $W_f = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 + mgh_f - mgh_i$ $(31\,000)(\Delta x)(\cos 180^\circ) \checkmark = \frac{1}{2}(30\,000)(0^2 - 33^2) \checkmark + (30\,000)(9,8)(\Delta x \sin 28^\circ - 0) \checkmark$ $\Delta x = 96,64 \ m \checkmark$

20.4 Ascending ✓

For ascending: $F_{wl/}$ and f are both in the opposite direction as the direction of displacement. For descending: Only *f* is in the opposite direction as the direction of displacement. The net force on the truck for ascending is greater than net force for descending. ✓

QUESTION 21

21.1 A force is non-conservative if the work done by the force on an object (which is moving between two points) depends on the path taken. $\checkmark \checkmark \mathbf{OR}$

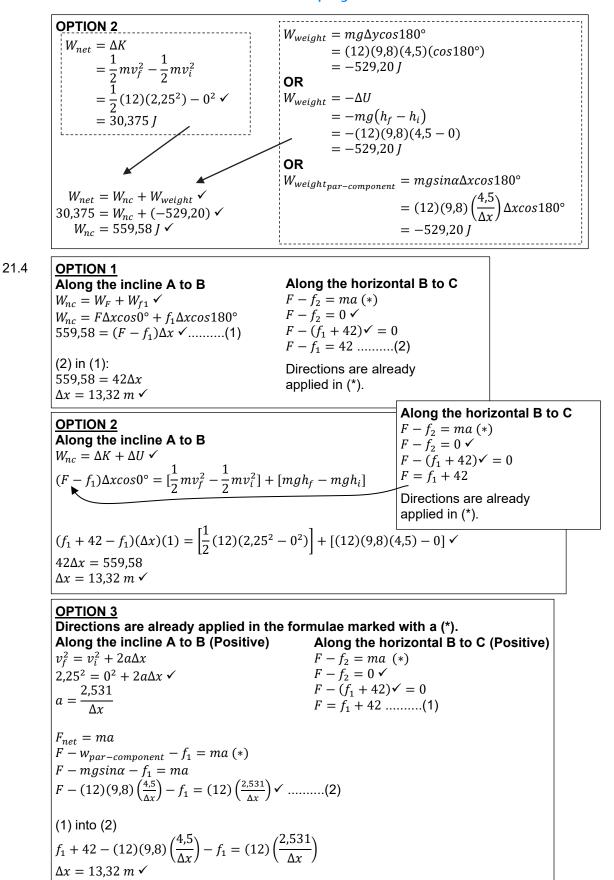
A force is non-conservative if the work it does in moving an object around a closed path is non-zero. (2)

21.2

Fx	F Acceptable labels		
	w	F _g /mg/weight/F _w /F _{Earth on block} /gravitational force/117,6 N	✓
<u> </u>	F	F _A /Applied force/T/F⊤	\checkmark
	f	F _f /f _k /(kinetic) friction/frictional force/kinetic frictional force	~
w	Ν	F _N /Normal/F _{normal} /normal force	✓

21.3

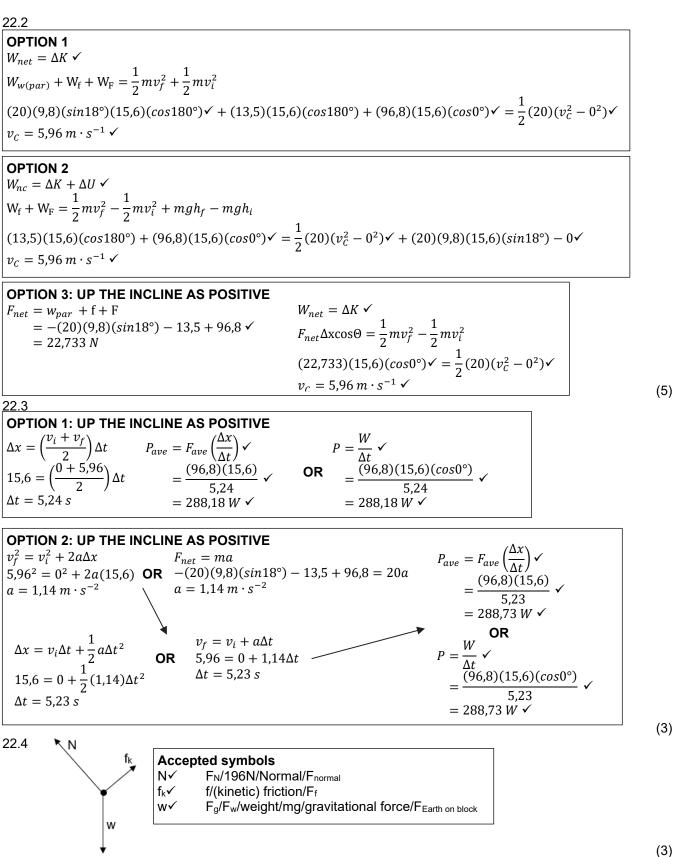
$$\frac{\text{OPTION 1}}{W_{nc}} = \Delta K + \Delta U \checkmark \\
= \frac{1}{2}m(v_f^2 - v_i^2) + mg(h_f - h_i) \\
= \frac{1}{2}(12)(2,25^2 - 0^2) \checkmark + (12)(9,8)(4,5 - 0) \checkmark \\
= 559,58 J \checkmark$$

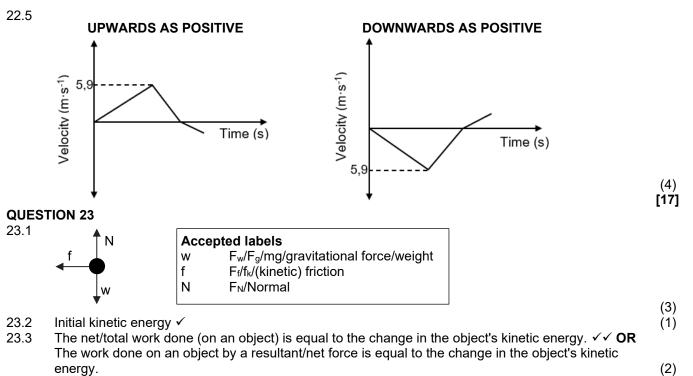

(4)

(5)

(3) [11]

(1)


(4)



(5) [**15**]

QUESTION 22

- 22.1 A force is non-conservative if the work it does on an object which is moving between two points depends on the path taken. ✓✓ **OR**
 - A force is non-conservative if the work it does in moving an object around a closed path is non-zero. (2)

23.4

energy.	
OPTION 1 $W_{net} = \Delta K \checkmark$ $f \Delta x \cos 180^\circ = K_f - K_i$ $-f(4,5) \checkmark = 0 - 18 \checkmark$ OR - f(3) = 0 - 12 OR - f(1,5) = 0 - 6 f = 4 N	$f_k = \mu_k N \checkmark$ $4 = (0,18)(m)(9,8) \checkmark$ $m = 2,27 \ kg \checkmark$
OPTION 2 Gradient = $\frac{\Delta x}{\Delta E_{ki}} = \frac{1}{f} \checkmark$ $\therefore \frac{1}{f} = \frac{4.5 \checkmark}{18 \checkmark} \begin{bmatrix} \mathbf{OR} & \frac{3}{12} & \mathbf{OR} & \frac{1.5}{6} \\ f = 4 & N \end{bmatrix}$	$f_{k} = \mu_{k} N \checkmark$ $4 = (0,18)(m)(9,8) \checkmark$ $m = 2,27 \ kg \checkmark$

(6) **[12]**

FS/2024

DOPPLER EFFECT

	DOPF	LEK EFFE	:C1		
QUES	TION 1				
1.1.1	<u>An apparent change in</u> observed/detected <u>fr</u> motion between a source and an observer/li		<u>h/wavelength</u> √	as a result of the <u>relative</u>	(2)
1.1.2	Towards ✓ Observed/detected frequency is greater that				(2)
			equency.		(2)
1.1.3	$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \text{ OR } f_{L} = \frac{v}{v - v_{s}} f_{s} \checkmark$				
	$\therefore 1\ 200 \checkmark = \frac{\sqrt{343}}{343 - v_s} (1130) \checkmark \therefore v_s = 20,0$	01 m·s⁻¹ √			(5)
1.2	The star is approaching the earth./The earth	n and the star	are approaching	g (moving towards) each	
	other \checkmark The spectral lines in diagram 2 are shifted to	owards the bl	ue end/are blue	shifted. ✓	(2)
QUES	TION 2				[11]
2.1.1	$v = f\lambda \checkmark$				
	$\lambda = \frac{340}{520}$				
	020				(-)
040	$= 0.65 \text{ m} \checkmark \text{V} = \text{f}$				(2)
2.1.2	$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \checkmark$				
	9				
	$f_{L} = \frac{340}{(340-15)} (520) \checkmark$				
	f _L = 544 Hz				
	$v = f\lambda$				
	$\lambda = \frac{340}{544} \checkmark$				
	544 = 0,63m√				(6)
2.2	The wavelength in QUESTION 2.1.2 is shor	ter because t	he waves are co	moressed as they approac	(6) ch
2.2	the observer. $\sqrt{}$				(2)
2.3	The red shift occurs when the spectrum of a	ı distant star r	noving away fro	m the earth is shifted towa	
	the red end of the spectrum. \checkmark				(2)
					[12]
	TION 3		h/wayalanath (as a requit of the relative	
3.1	A <u>n apparent change in</u> observed/detected <u>fr</u> _motion between a source and an observer/		n/wavelengtn v	as a result of the <u>relative</u>	(2)
					(2)
3.2	$f_L = \frac{v \pm v_L}{v \pm v_s} f_s$ OR $f_L = \frac{v}{v - v_s} f_s \checkmark$ The fol	lowing values	are obtained us	sing other points:	
	$825 \checkmark = \frac{V}{V - V_{c}} (800) \checkmark$	_{Vs} (m·s ⁻¹)	Frequencies	v (m·s ⁻¹)	
	$V - V_s$	$v_{s} = 20$	850	310	
	(1,03125)(v − 10) ✓ = v	$v_s = 20$	845	375,56	
		vs =30	880	330	
		40	910	331	
2.2	-	www.doorooo.co			(5)
3.3	Straight line with negative gradient / frequen		s (iiiieaiiy). × ✓		

(2) **[9]**

QUESTION 4

- Frequency (of sound detected by the listener (observer). \checkmark 4.1.1
- An apparent change in observed/detected frequency/pitch/wavelength ✓ as a result of the relative 4.1.2 motion between a source and an observer/listener. . . .

4.1.3 Away
$$\checkmark$$
 Detected frequency of source decreases. \checkmark

4.1.4
$$\begin{bmatrix}
EXPERIMENT 2 \\
f_L = \frac{v \pm v_L}{v \pm v_s} f_s \text{ OR } f_L = \frac{v}{v + v_s} f_s \checkmark$$

$$= \frac{V \checkmark}{v + v_s} f_s \text{ OR } f_L = \frac{v}{v \pm v_L} f_s \text{ OR } f_L = \frac{v}{v + v_s} f_s \checkmark$$

$$= \frac{V \checkmark}{v + 10} (900) \checkmark \therefore v = 336,15 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V \checkmark}{v + 20} (900) \checkmark \therefore v = 340 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V \pm v_L}{v \pm v_s} f_s \text{ OR } f_L = \frac{v}{v + v_s} f_s \checkmark$$

$$= \frac{V \checkmark}{v \pm v_s} f_s \text{ OR } f_L = \frac{v}{v + v_s} f_s \checkmark$$

$$= \frac{V \checkmark}{v + 20} (900) \checkmark \therefore v = 340 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V \checkmark}{v + 20} (900) \checkmark \therefore v = 340 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V \checkmark}{v + 20} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

$$= \frac{V}{v + 30} (900) \checkmark \therefore v = 339,86 \text{ m·s}^{-1} \checkmark$$

QUESTION 5

5.1	$v = \hbar \sqrt{2}$	
	= (222 x 10 ³)(1,5 x 10 ⁻³)✓	
	$= 333 \text{ m.s}^{-1} \checkmark$	(3)
5.2.1	Towards the bat. \checkmark	(1)

5.2.2
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \text{ OR/OF } f_{L} = \frac{v}{v - v_{s}} f_{s} \checkmark$$

$$230,3 = \frac{333}{333 - v_s} (222) \checkmark$$

$$76689,9 - 230,3 v_s = 73926$$
(6)

$$v = 12 \text{ m.s}^{-1} \checkmark \text{ (towards bat/na die vlermuis toe)}$$
 [10]

QUESTION 6 6.1 X √

6.2 As ambulance approaches the hospital the waves are compressed \checkmark or wavelengths are shorter. Since the speed of sound is constant \checkmark the observed frequency must increase. \checkmark Therefore the hospital must be located on the side of X (from $v = f\lambda$) **OR:** <u>The number of wave fronts per second reaching the observer are more at X.</u> $\sqrt{\checkmark}$. For the same constant speed, this means that the observed frequency increases \checkmark therefore the

hospital must be located on the side of X. (from v =
$$f\lambda$$
) (3)

6.3
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$$
 OR $f_{L} = \frac{v}{v - v_{s}} f_{s} \checkmark \therefore f_{L} = \frac{340}{340 - 30} (400) \checkmark \therefore f_{L} = 438,71 \text{ Hz} \checkmark$ (5)

6.4
$$v = f\lambda \checkmark \therefore \underline{340} = \underline{400\lambda} \checkmark \therefore \lambda = 0.85 \text{ m} \checkmark$$

QUESTION 7

An apparent change in observed/detected frequency/pitch/wavelength ✓ as a result of the relative 7.1.1 motion between a source and an observer/listener. ✓ (2) 7.1.2 $v = f\lambda \checkmark :: 340 = f(0.28) \checkmark :: f_s = 1.214.29 \text{ Hz} \checkmark$ (3)

7.1.3

$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \quad \mathbf{OR} \quad f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} \times \frac{v}{\lambda_{s}} \quad \mathbf{OR} \quad f_{L} = \frac{v}{v - v_{s}} f_{s} \checkmark$$

$$f_{L} = \left(\frac{340}{340 \checkmark 30}\right) 1214,29 \checkmark \quad \mathbf{OR} \quad f_{L} = \left(\frac{340}{340 - 30}\right) \times \frac{340}{0,28} \quad \therefore f_{L} = 1\ 331,80\ \text{Hz} \checkmark$$
(5)
7.1.4 Decreases \checkmark
(5)

7.1.4 Decreases ✓

The spectral lines of the star are/should be shifted towards the lower frequency end, \checkmark which is the 7.2 red end (red shift) of the spectrum. \checkmark (2)

(1)

 $\langle \mathbf{n} \rangle$

[11]

(1)

(3)[12]

[13]

QUESTION 8

- Speed ✓ 8.1
- 8.2 3 m·s⁻¹ √
- (1) An apparent change in observed/detected frequency/pitch/wavelength ✓ as a result of the relative 8.3.1 motion between a source and an observer/listener. ✓ (2)
- 8.3.2 345 m·s⁻¹ √

8.3.3
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s}^{\checkmark} = \left(\frac{345 + 0}{345 \le 57,5}\right) \left(\frac{1000}{1}\right) = 1200 \text{ Hz}^{\checkmark}$$

- 8.3.4 295 √ (K)
- 8.4.1 Diagram 3 √
- 8.4.2 1√ The source is stationary. ✓

QUESTION 9

An apparent change in observed/detected frequency/pitch/wavelength </ as a result of the relative 9.1.1 motion between a source and an observer/listener. ✓ (2)

9.1.2
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$$
 OR $f_{L} = \frac{v}{v - v_{s}} f_{s}$ \checkmark
 $365 = \frac{(340 + 0)}{(340 - v_{s})} \checkmark x 330 \checkmark \qquad \therefore v_{s} = 32,60 \text{ m} \cdot \text{s}^{-1} \checkmark \qquad (5)$

9.2 According to the Doppler Effect if the star moves away \checkmark from the observer a lower frequency/longer wavelength \checkmark is detected. This lower frequency/ longer wavelength corresponds to the the red end \checkmark of the spectrum. (3)

[10] **QUESTION 10** 10.1.1 Doppler effect ✓ (1)10.1.2 Measuring the rate of blood flow. ✓ **OR:** Ultrasound (scanning) (1)

10.1.3
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$$
 OR $f_{L} = \frac{v}{v - v_{s}} f_{s}$ **OR** $f_{L} = \frac{v}{v + v_{s}} f_{s}$

$$2600 = \frac{340}{(340 - v_{s})} f_{s}$$

$$1750 = \frac{340}{(340 + v_{s})} f_{s} \checkmark 2600(340 - v_{s}) = 1750(340 + v_{s}) \checkmark \therefore v_{s} = 66,44 \text{ m} \cdot \text{s}^{-1} \checkmark$$
(6)

- 10.2.1 The spectral lines (light) from the star are shifted towards longer wavelengths. ✓✓
- 10.2.2 Decrease ✓

QUESTION 11

An apparent change in observed/detected frequency/pitch/wavelength </ as a result of the relative 11.1 motion between a source and an observer/listener. (2)(1) 11 2 1 170 Hz 🗸

$$\begin{array}{c} (1) \\ 11.2.2 \quad 130 \text{ Hz }\checkmark \\ 11.3 \quad f_{L} = \frac{V \pm V_{L}}{f_{s}} \checkmark \end{array}$$

1.3
$$T_{L} = \frac{1}{v \pm v_{s}} T_{s} \sqrt{170} = \frac{1}{(340 + 0)} \times f_{s}$$

 $170 = \frac{1}{(340 - v_{s})} \times f_{s}$
 $130 = \frac{1}{(340 - 0)} \times f_{s}$
 $v_{s} = 45,33 \text{ m} \text{ s}^{-1} \sqrt{10}$
 $(45,33 - 45,45 \text{ m})$

s = 45,33 m·s⁻¹ √	(45,33 – 45,45 m·s⁻¹)	(6)
		[10]

(1)

(1) (4)

(1)

(1)

(2)

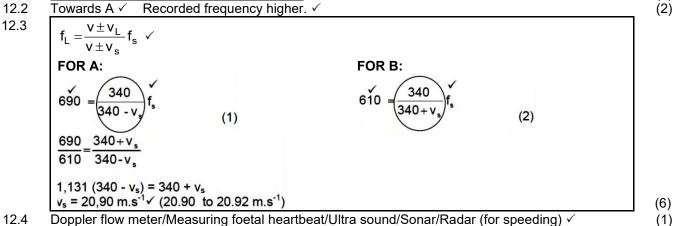
[13]

(1)

(2)

(1) [13]

Physicaceandream Stanmorephysics.com


[11]

(2)

(2) (2) (3)

QUESTION 12

An apparent change in observed/detected frequency/pitch/wavelength ✓ as a result of the relative 12.1 motion between a source and an observer/listener. ✓ (2)12.2 Towards A ✓ Recorded frequency higher. ✓

12.4 Doppler flow meter/Measuring foetal heartbeat/Ultra sound/Sonar/Radar (for speeding) √

QUESTION 13

An apparent change in observed/detected frequency/pitch/wavelength ✓ as a result of the relative 13.1 motion between a source and an observer/listener. ✓

QUESTION 14

14.1 An apparent change in observed/detected frequency/pitch/wavelength \checkmark as a result of the relative motion between a source and an observer/listener. ✓

14.3
$$V = f_{L} \checkmark \therefore 340 = f(0,34) \checkmark \therefore f = 1\ 000\ \text{Hz} \checkmark$$
14.4
$$\boxed{\frac{\text{OPTION 1}}{f_{L} = \frac{V \pm V_{L}}{V \pm V_{s}} f_{s} \checkmark \text{OR } f_{L} = \frac{V}{V - V_{s}} f_{s}} \qquad \boxed{\frac{\text{OPTION 2}}{f_{L} = \frac{V \pm V_{L}}{V \pm V_{s}} f_{s} \checkmark \text{OR } f_{L} = \frac{V}{V - V_{s}} \left(\frac{V}{\lambda_{s}}\right)}$$

$$\begin{array}{c} \sqrt{2} + \sqrt{2} & \sqrt{2} + \sqrt{2} \\ 950 = \underbrace{340 - v_{L}}_{340 + 0} & 1\ 000 & \therefore v_{L} = 17\ \text{m}\cdot\text{s}^{-1} \\ \text{Distance } x = v\Delta t = (17)(10) & \checkmark = 170\ \text{m}\cdot\checkmark \end{array} \qquad \begin{array}{c} \sqrt{2} + \sqrt{2} & \sqrt{$$

QUESTION 15

15.1.1 $\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$ OR

$$v = \frac{d}{t} = \frac{300}{10}$$
 $\checkmark = 30 \text{m} \cdot \text{s}^{-1} \checkmark$

300 = v_i (10) ✓ $v_i = 30 \text{ m} \cdot \text{s}^{-1} \checkmark$

(2) 15.1.2 The change in frequency (or pitch) (of the sound) detected by a listener because the source and the listener have different velocities relative to the medium of sound propagation. (2)(2)15.1.3 Car/source (just) passes observer. ✓✓

15.1.4
$$f_{L} = \frac{V \pm V_{L}}{V \pm V_{s}} f_{s} \checkmark \mathbf{OR}$$
 $f_{L} = \frac{V}{V - V_{s}} f_{s}$
 $932 \checkmark = \frac{340}{340 - 30} \checkmark f_{s} \qquad \therefore f_{s} = 849,76 \text{ Hz} \checkmark$ (4)

15.2 ANY TWO:

> Doppler / Blood flow meter/Measuring the heartbeat of a foetus/Radar/Sonar/Used to determine whether stars are receding or approaching earth.

(2) [12]

Physicaceandream Stanmorephysics.com

QUESTION 16

- 16.1 Doppler effect ✓
- 16.2 P registers a shorter period/higher frequency./Q registers a longer period/lower frequency. ✓ (1)

16.3
$$f = \frac{1}{T} \checkmark = \frac{1}{17 \times 10^{-4}} \checkmark = 5,88 \times 10^{2} = 588,24 \text{ Hz} \checkmark$$

16.4
$$f = \frac{1}{18 \times 10^{-4}} \checkmark = 5,56 \times 10^2 = 555,56 \text{ Hz}$$

$$f_{L} = \frac{V \pm V_{L}}{V \pm V_{s}} f_{s} \checkmark OR \quad f_{L} = \frac{V}{V + V_{s}} f_{s}$$

$$555,56 = \underbrace{340}_{340 + V} 588,24 \checkmark \qquad \therefore \quad v = 20 \text{ m} \cdot \text{s}^{-1} \checkmark \qquad (6)$$
[11]

QUESTION 17

The change in frequency (or pitch) (of the sound) detected by a listener because the source and 17.1 the listener have different velocities relative to the medium of propagation. ✓ OR An (apparent) change in (observed/detected) frequency (pitch), as a result of the relative motion between a source and an observer (listener). (2) Towards (1)

17.2 17.3

$$f_L = \frac{v \pm v_L}{v \pm v_s} f_s \checkmark$$

$$3 \ 148 \checkmark = \frac{340 + 0}{340 - v_s} f_s \checkmark$$

$$2 \ 073 \checkmark = \frac{340 - 0}{340 + v_s} f_s \checkmark$$
Solve for $v_s: \therefore v_s = 70 \text{ m} \cdot \text{s}^{-1} \checkmark$

17.4

$$\begin{array}{c|c}
 \hline \mathbf{OPTION 1} \\
\Delta t = \frac{\Delta x}{v} \\
\Delta t = \frac{350}{70} \checkmark \\
\Delta t = 5 \, s \,\checkmark
\end{array}$$

$$\begin{array}{c}
 \hline \mathbf{OPTION 2} \\
\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \\
 \underline{350 = 70 \Delta t + 0} \checkmark \\
\Delta t = 5 \, s \,\checkmark
\end{array}$$

$$\begin{array}{c}
 \hline \mathbf{OPTION 3} \\
\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \\
 \underline{350 = \left(\frac{70 + 70}{2}\right)} \Delta t \checkmark \\
 \underline{350 = 5 \, s \,\checkmark}
\end{array}$$

$$(2)$$

$$[11]$$

QUESTION 18

The change in frequency (or pitch) of the sound detected by a listener because the sound source and 18.1 the listener have different velocities relative to the medium of sound propagation. VV OR An (apparent) change in observed/detected frequency (pitch), as a result of the relative motion between a source and an observer (listener). (2)

18.2.1 700 Hz ✓

Learner's speed is zero. / No relative motion between source and listener. / Listener and source are stationary. ✓ (2)(2)

18.2.3
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} \checkmark \qquad f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} \checkmark \qquad f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} \checkmark \qquad f_{S} \checkmark \qquad f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} \intercal \qquad f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} \intercal \qquad f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} \intercal \qquad f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} \intercal \qquad f_{L} = \frac{v$$

(1)

(3)

(6)

(5 [11]

(2)

(1)

(1)

(5) [12]

(2)

(3)

(4)

QUESTION 19

19.1

$v = \lambda f \checkmark$ 340 = 680 $\lambda \checkmark$
$340 = 680\lambda$ \checkmark
$\lambda = 0,5 \ m \checkmark$

(3)19.2 The change in frequency/pitch/wavelength of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation. $\checkmark\checkmark$ OR

An (apparent) change in observed/detected frequency/pitch/wavelength, as a result of the relative motion between a source and an observer (listener).

19.3.1 Decreased ✓

19.3.2 Increased ✓

19.4 $f_{\rm r} = \frac{v}{v}$

$\lambda_L = \lambda_L$
340
$=\frac{1}{0.5-0.05}$
= 755,56 <i>Hz</i>
$f_L = \frac{v \pm v_L}{v \pm v_S} f_S \checkmark$
$v \pm v_s$
$755,56 = \left[\frac{340+0}{340-v_s}\right](680)\checkmark\checkmark$
$v_S = 34 \ m \cdot s^{-1} \checkmark$

QUESTION 20

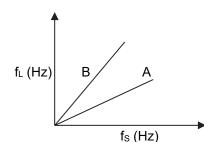
The (apparent) change in frequency (or pitch) (of the sound) detected by a listener because the 20.1 source and the listener have different velocities relative to the medium of propagation. $\checkmark \checkmark \mathbf{OR}$ An (apparent) change in observed/detected frequency/pitch as a result of the relative motion between a source and an observer/listener 20.

20.2

$$\begin{array}{c}
\nu = \lambda f \checkmark \\
340 = \lambda(880) \checkmark \\
\lambda = 0,386 \text{ m} \checkmark
\end{array}$$
20.3

$$f_L = \left(\frac{\nu \pm \nu_L}{\nu \pm \nu_S}\right) f_S \checkmark \\
= \left(\frac{340 + 10}{340}\right) \checkmark (880) \checkmark \\
= 905,882 Hz \checkmark$$

B Frequency (Hz) A


Time (s)

(2) [11]

QUESTION 21 21.1 Doppler effect ✓ (1) 21.2 Measurement of foetal heartbeat. OR Measurement of blood flow. OR Doppler flow meter ✓ (1)21.3 Directly proportional **OR** $f_L \alpha f_S \checkmark$ (1) 21.4 **OPTION 1 OPTION 2** $\overline{f_L = \left(\frac{v \pm v_L}{v \pm v_S}\right) f_S} \checkmark$ $\begin{aligned} Gradient &= \frac{\Delta f_L}{\Delta f_S} & f_L = \left(\frac{v \pm v_L}{v \pm v_S}\right) f_S \checkmark \\ 1,06 \checkmark \checkmark &= \frac{f_L - 0}{f_S - 0} & 1,06f_S \checkmark \checkmark = \left(\frac{340 + v_L}{340}\right) f_S \checkmark \\ f_L &= 1,06f_S & v_L = 20,4 \ m \cdot s^{-1} \checkmark \end{aligned}$ Δf_L $\frac{f_L}{f_S} = \left(\frac{v \pm v_L}{v \pm v_S}\right)$ $1,06 \checkmark \checkmark = \left(\frac{340 + v_L}{340}\right) \checkmark$ $v_L = 20,4 \, m \cdot s^{-1} \checkmark$

 $f_L = 1,06f_S$

(5)

Straight line starting at the origin. \checkmark Gradient of **B** is greater than gradient of **A**. \checkmark

22.1.1 The (apparent) change in frequency (or pitch) (of the sound) detected by a listener because the source and the listener have different velocities relative to the medium of propagation. ✓✓ OR An (apparent) change in observed/detected frequency/pitch as a result of the relative motion between a source and an observer/listener.

22.1.2

21.5

$$\begin{array}{cccc}
f_{L} = \left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \checkmark & f_{L} = \left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \\
= \left(\frac{340 + 22}{340}\right) \checkmark (24\ 000) \checkmark & = \left(\frac{340}{340 - 22}\right) \checkmark (25\ 552,941) \checkmark \\
= 25\ 552,941\ Hz & = 27\ 320,75\ Hz \checkmark
\end{array}$$

22.2 The frequencies of the spectral lines have decreased. $\checkmark\checkmark$

QUESTION 23

23.1.2

$$f_{L} = \left[\frac{v \pm v_{L}}{v \pm v_{S}}\right] f_{S} \checkmark$$

$$512,64 \checkmark = \left[\frac{v}{v + 25}\right] \checkmark (550) \checkmark$$

$$v = 343,04 \ m \cdot s^{-1} \ to \ 332,14 \ m \cdot s^{-1} \checkmark$$

(5)23.1.3 Remains the same. (a) (1)(b) Remains the same. (1)(c) Increases. (1)23.2.1 Away from (1)23.2.2 A lower frequency / longer wavelength \checkmark is detected. This lower frequency / longer wavelength corresponds to the red end of the spectrum \checkmark . (2)

(2)

(6)

(2) [10]

(2) [10]

(2)

[13]

Physicaceandream Stanmorephysics.com

FS/2024

ELECTROSTATICS

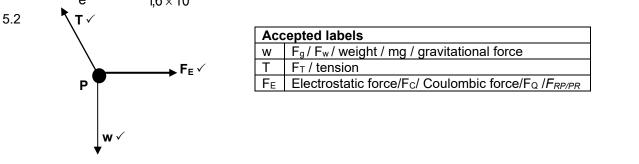
0	ELECTRUSTATICS	
		(1)
1.1	To ensure that charge does not leak to the ground/is insulated. \checkmark	(1)
1.2	Net charge = $\frac{Q_R + Q_S}{2} = \frac{+8 + (-4)}{2} \checkmark = 2 \ \mu C \checkmark$ (2)	
1.3	Criteria for sketch: Correct direction of field lines ✓ +q +q Shape of the electric field ✓ No field line crossing each other / No field lines inside the spheres. ✓	(3)
1.4	T K	
	Fs on T FR on T	(2)
1.5	$F = k \frac{Q_1 Q_2}{r^2} \checkmark$	
	$F_{ST} = \frac{(9 \times 10^9)(1 \times 10^{-6})(2 \times 10^{-6})}{(0,2)^2} = 0,45 \text{ N left } \mathbf{OR} F_{TS} = \frac{1}{4}F_{RT} = \frac{1}{4}(1,8) = 0,45 \text{ N left}$	
	$F_{RT} = \frac{(9 \times 10^9)(1 \times 10^{-6})(2 \times 10^{-6})}{(0,1)^2} = 1.8 \text{ N right } \mathbf{OR} F_{RT} = 4F_{ST} = 4(0,45) = 1.8 \text{ N right } regs$	
	$F_{\text{net}} = F_{\text{ST}} + F_{\text{RT}} = \underline{1,8 + (-0,45)} \checkmark = \underline{1,35 \text{ N}} \text{ or towards sphere S or } \underline{right} S \checkmark$	(6)
1.6	Force experienced ✓ per unit positive charge ✓ placed at that point.	(2)
1.7	$\frac{\text{OPTION 1}}{\text{E} = \frac{\text{F}}{\text{q}}} = \frac{1,35}{1 \times 10^{-6}} = 1,35 \text{ x } 10^{6} \text{ N} \cdot \text{C}^{-1} \checkmark$	
	$\frac{\text{OPTION 2}}{E_{R}} = \frac{kQ}{r^2} \checkmark = \frac{(9 \times 10^9)(2 \times 10^{-6})}{(0,1)^2} \checkmark = 1.8 \text{ x } 10^6 \text{ N} \cdot \text{C}^{-1} \text{ right}$	
	$E_{S} = \frac{kQ}{r^2} = \frac{(9 \times 10^9)(2 \times 10^{-6})}{(0,2)^2} = 4,5 \text{ x } 10^5 \text{ N} \cdot \text{C}^{-1} \text{ left}$	(3)
	$E_{\text{net}} = 1.8 \times 10^6 - 4.5 \times 10^5 = 1.35 \times 10^6 \text{ N} \cdot \text{C}^{-1} \checkmark$	[19]
2.1	The (magnitude of the) <u>electrostatic force exerted by one point charge on another</u> point charge is <u>directly proportional to the product of the (magnitudes of the) charges</u> \checkmark and inversely proportional to the square of the distance between them.	(2)
2.2.1	$F = \frac{KQ_1Q_2}{r^2}$	
	$1,44 \times 10^{-1} = \frac{(9 \times 10^{9})Q^{2}}{(0,5)^{2}}$ Q = 2 x10 ⁻⁶ C <	
		(4)
2.2.2	$Q = ne\sqrt{2}$	
	<u>2 x10⁻⁶ = n(1,6x10⁻¹⁹)</u> ✓ n = 1,25 x10 ¹³ electrons/ <i>elektrone</i> ✓	(3)
2.3.1	Left / West ✓	(1)

Physicaceana Physi

2.3.2 Take right as positive/Neem regs as positief $E_{net} = E_A + E_B \checkmark$ $(3 \times 10^{4}) = -\frac{(9 \times 10^{9})(2 \times 10^{-6})}{(1,5)^{2}} + \frac{(9 \times 10^{9})Q_{\text{final}}}{(1)^{2}}$ $Q_{\text{final}} = 4,22 \times 10^{-6} \text{ C}\checkmark$ Q = ne 4,22 x10⁻⁶ = $n(1.6x10^{-19})$ n_f = 2,64 x10⁻¹³ electrons/elektrone electrons removed/elektrone verwyder = (2,64 x10¹³ +1,25 x10¹³) ✓ = 3,89 x10¹³ electrons/elektrone√ (8)[18] **QUESTION 3** 3.1 The (magnitude of the) electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes of the) charges \checkmark and inversely proportional to the square of the distance between them. (2) $F = k \frac{Q_1 Q_2}{r^2} \checkmark$ 3.2 $F_{31} = \frac{(9 \times 10^9)(5 \times 10^{-6})(6 \times 10^{-6})}{(0,3)^2} = 3 \text{ N to the left}$ $F_{32} = \frac{(9 \times 10^9)(5 \times 10^{-6})(3 \times 10^{-6})}{(0,1)^2} \checkmark = 13,5 \text{ N downwards}$ FR 'F32 $\mathbf{F}_{R} = \mathbf{F}_{31} + \mathbf{F}_{32}$: $\mathbf{F}_{R} = \sqrt{(3)^{2} + (13,5)^{2}} \checkmark = 13,83 \text{ N}$ Can use any trigonometric ratio $\theta = \tan^{-1} \frac{13,5}{3} \checkmark = 77,47^{\circ}$ **OR** $\theta = \tan^{-1} \frac{3}{13.5} \checkmark = 12,53^{\circ}$ \therefore Net force = <u>13,83 N in direction 192,53° / 77,47°</u> \checkmark (7) [9] **QUESTION 4** For object N: $n = \frac{Q}{q_e} \checkmark \therefore Q = (5 \times 10^6)(-1.6 \times 10^{-19}) \checkmark = -8 \times 10^{-13} C \checkmark$ 4.1 (3)

4.2 Charge on M (Q_M) is +8 x 10⁻¹³ C $\checkmark \checkmark$

4.3 The electrostatic force experienced per unit positive charge placed at that point. $\checkmark\checkmark$


(2)

(2)

4.4
$$E = \frac{kQ}{r^{2}} \checkmark$$
$$E_{PM} = \frac{(9 \times 10^{9})(8 \times 10^{-13})}{(0.25)^{2}} = 0,12 \text{ N} \cdot \text{C}^{-1} \text{ to the right}$$
$$E_{PN} = \frac{(9 \times 10^{9})(8 \times 10^{-13})}{(0.1)^{2}} = 0,72 \text{ N} \cdot \text{C}^{-1} \text{ to the left}$$
$$E_{\text{net}} = E_{PM} - E_{PN} \checkmark = 0,12 - 0,72 = -0,60 \text{ N} \cdot \text{C}^{-1} \qquad \therefore \text{ E}_{\text{net}} = \underline{0,60 \text{ N} \cdot \text{C}^{-1} \text{ to the left}} \checkmark \qquad (6)$$

QUESTION 5

5.1 $n = \frac{Q}{e} \checkmark \therefore n = \frac{0.5 \times 10^{-6}}{1.6 \times 10^{-19}} \checkmark = 3,13 \text{ x } 10^{12} \text{ elektrone } \checkmark$

5.3 The (magnitude) of the <u>electrostatic force exerted by one point charge on another</u> point charge is <u>directly proportional to the product (of the magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark (2)</u>

5.4
$$F_{E} = k \frac{Q_{1}Q_{2}}{r^{2}} \checkmark$$
$$\frac{T \sin \theta}{T \cos \theta} = F_{E} \qquad \checkmark$$
$$\therefore \frac{T \sin 7^{\circ}}{T \cos 83^{\circ}} \checkmark = \frac{(9 \times 10^{9})(0.5 \times 10^{-6})(0.9 \times 10^{-6})}{(0.2)^{2}} \quad \therefore T = 0.83 \text{ N} \checkmark$$
(5)
[13]

QUESTION 6

6.1 $E_{X} = E_{2} + E_{(-8)} \checkmark = \frac{kQ_{2}}{r^{2}} + \frac{kQ_{2}}{r^{2}} \text{frect equation}$ $= \frac{(9 \times 10^{9})(2 \times 10^{-5})}{(0,25)^{2}} \checkmark + \frac{(9 \times 10^{9})(8 \times 10^{-6})}{(0,15)^{2}} \checkmark$ $= 2,88 \times 10^{6} + 3,2 \times 10^{6} = 6,08 \times 10^{6} \text{ N} \cdot \text{C}^{-1} \checkmark \text{ to the east/right } \checkmark$ OR $E = \frac{kQ}{2} \checkmark$

$$E_{2} = \frac{(9 \times 10^{9})(2 \times 10^{-5})}{(0,25)^{2}} = 2,88 \times 10^{6} \text{ NC}^{-1} \text{ to the east/right}$$

$$E_{-8} = \frac{(9 \times 10^{9})(8 \times 10^{-6})}{(0,15)^{2}} = 3,2 \times 10^{6} \text{ N} \cdot \text{C}^{-1} \text{ to the east/right}$$

$$E_{X} = E_{2} + E_{(-8)} = (2,88 \times 10^{6} + 3,2 \times 10^{6}) \checkmark = 6,08 \times 10^{6} \text{ N} \cdot \text{C}^{-1} \checkmark \text{ to the east/right} \checkmark (6)$$

.....(3)

(3)

			,,__
6.2	$ \begin{array}{l} \hline \textbf{OPTION 1} \\ F_E = QE \checkmark \\ = (-2 \times 10^{-9}) (6,08 \times 10^6) \checkmark \\ = -12,16 \times 10^{-3} \text{ N} \\ F_E = 1,22 \times 10^{-2} \text{ N} \checkmark \underline{\text{ to the west/left}} \checkmark \end{array} $	$\begin{array}{l} \underbrace{\text{OPTION 2}}{F_{(\text{-2})Q1} = qE_{(2)}} \checkmark \\ &= (2 \times 10^{-9}) \left(2,88 \times 10^{6}\right) \\ &= 5,76 \times 10^{-3} \text{ N to the west/left} \end{array}$ $F_{(\text{-2})Q2} = qE_{(8)} \\ &= (2 \times 10^{-9})(3,2 \times 10^{6}) \\ &= 6,4 \times 10^{-3} \text{ N to the west/left} \end{array}$ $F_{\text{net}} = \underbrace{5,76 \times 10^{-3} + 6,4 \times 10^{-3}}_{= 1,22 \times 10^{-2} \text{ N } \checkmark \text{ to the west/left}}$	(4)
6.3	2,44 x 10 ⁻² N \checkmark / twice / double		(1)
QUEST 7.1 7.2 7.3.1 7.3.2	The magnitude of the charges is equal. \checkmark The (magnitude) of the <u>electrostatic force exerted</u>	by one point charge on another point charge is ides) of the charges ✓ and inversely proportional to	[11] (1) (2) (3)
	$\frac{(9\times10^9)(250\times10^{-9})(250\times10^{-9})}{r^2} \checkmark = 0,356\checkmark$		<i>(</i> _)
QUEST 8.1 8.2	$\therefore r = 0,0397 \text{ m} \checkmark$ TION 8 $E_{Q1} \times OR$ E_{Q2} Vectors E_{Q1} and E_{Q2} in the same direction. $\checkmark \checkmark$		(5) [11] (4)
OUEST	$E_{6 \ \mu C} = k \frac{Q}{r^2} = \frac{(9 \times 10^9)(6 \times 10^{-6})}{(1,3)^2} = 31\ 952,66\ \text{N.C}^{-1}$ $E_P = E_{6 \ \mu C} + E_{\cdot 2,5 \ \mu C} \checkmark$ $= 31\ 952,66\ + \ 250\ 000$ $= 281\ 952,66\ \text{N.C}^{-1} \checkmark \text{to the left/na links } \checkmark$		(6) [10]

QUESTION 9

9.1	$n = \frac{Q}{e} = \frac{-32 \times 10^{-9}}{-1.6 \times 10^{-19}}$	$n = \frac{Q}{e} \checkmark = \frac{32 \times 10^{-9}}{1.6 \times 10^{-19}} \checkmark$	
	= 2 x 10^{11} v electrons	= 2 x 10^{11} \checkmark electrons	(3)

9.2

(3)

Physics Revision Book: Answers

Physicacean Stanmorephysics.com

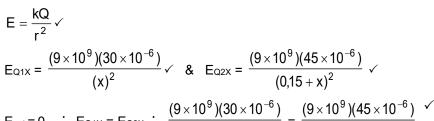
 $F_{\text{net}} = \text{mg} + F_{\text{E}} - T = 0 \therefore \text{mg} + k \frac{Q_1 Q_2}{r^2} - T = 0 \checkmark$ $\therefore (0,007)(9,8) \checkmark + (9 \times 10^9) \frac{(32 \times 10^{-9})(55 \times 10^{-9})}{(0,025)^2} = T \qquad \therefore \quad T = 9,39(4) \times 10^{-2} \text{ N} \checkmark (5)$

Marking guidelines

Arrows point outwards

Correct shape

spheres but not enter spheres


Lines must not cross / Lines must touch the

QUESTION 10

9.3

10.3

10.1 The (electrostatic) force experienced by a unit positive charge (placed at that point). \checkmark

E_{net} = 0 ∴ E_{Q1X} = E_{Q2X} ∴
$$\frac{(9 \times 10^{\circ})(30 \times 10^{\circ})}{(x)^{2}} = \frac{(9 \times 10^{\circ})(45 \times 10^{\circ})}{(0,15 + x)^{2}}$$

∴ x = 0, 67 m ✓ (0,667 m)

11.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes of the) charges ✓ and inversely proportional to the square of the distance between them. ✓
 11.2.1 Negative √√

$$\begin{array}{c} \hline \text{to the square of the distance between them.}} & (2) \\ 11.2.1 \quad \text{Negative } \checkmark & (2) \\ 11.2.2 \quad \text{F} = k \frac{Q_1 Q_3}{r^2} \checkmark & (2) \\ 0,012 = \frac{(9 \times 10^9) Q_1 (2 \times 10^{-6})}{(2,5)^2} \checkmark \therefore Q_1 = 4,17 \times 10^{-6} \text{ C} \checkmark & \text{F}_{Q23} \qquad \text{F}_{Q13} \\ \hline \text{F}_{net} = \text{F}_{Q13} + \text{F}_{Q23} \checkmark & (2) \\ \text{F}_{net} = \text{F}_{Q13} + \text{F}_{Q23} \checkmark & (2) \\ -0,3 \checkmark = 0,012 - \frac{(9 \times 10^9) (Q_2) (2 \times 10^{-6})}{1^2} \checkmark & \text{OR} \quad 0,3 = -0,012 + \frac{(9 \times 10^9) (Q_2) (2 \times 10^{-6})}{1^2} \\ \therefore Q_2 = 1,6 \times 10^{-5} \text{ C} \checkmark & (7) \\ [11] \end{array}$$

QUESTION 12

12.1.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes of the) charges ✓ and inversely proportional to the square of the distance between them. ✓

Slope = $F_E r^2 = kQ_1Q_2 = kQ^2 \checkmark \therefore 4,82 \times 10^{-3} \checkmark = 9 \times 10^9 Q^2 \checkmark \therefore Q = 7,32 \times 10^{-7} C \checkmark$

- 12.1.2 F_E/Electrostatic force √
- 12.1.3 The electrostatic force is inversely proportional to the square of the distance between the charges. \checkmark (1)

12.1.4 Slope =
$$\frac{\Delta F_E}{\Delta \frac{1}{r^2}} \checkmark = \frac{0.027 - 0}{5.6 - 0} \checkmark = 4.82 \text{ x } 10^{-3} \text{ N} \cdot \text{m}^2$$

Criteria for drawing electric field:	
Direction	✓
Field lines radially inward	√

(2)

(6)

(2)

(1)

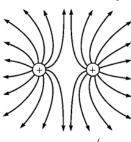
(5) [10]QUESTION 11

(3)

[11]

12.2.2
$$E = \frac{kQ}{r^2} \checkmark$$

Right as positive:


$$E_{PA} = \frac{(9 \times 10^{9})(0.75 \times 10^{-6})}{(0.09)^{2}} \checkmark = 8.33 \text{ x } 10^{5} \text{ N} \cdot \text{C}^{-1} \text{ to the left}$$
$$E_{PB} = \frac{(9 \times 10^{9})(0.8 \times 10^{-6})}{(0.03)^{2}} \checkmark = 8 \text{ x } 10^{6} \text{ N} \cdot \text{C}^{-1} \text{ to the left}$$

 $E_{\text{net}} = E_{\text{PA}} + E_{\text{PC}} = [-8,33 \times 10^5 + (-8 \times 10^6)] \checkmark \checkmark = -8,83 \times 10^6 = 8,83 \times 10^6 \text{ N} \cdot \text{C}^{-1} \checkmark$ **Left as positive:** $E_{\text{net}} = E_{\text{PA}} + E_{\text{PC}} = (8,33 \times 10^5 + 8 \times 10^6) \checkmark \checkmark = 8,83 \times 10^6 \text{ N} \cdot \text{C}^{-1} \checkmark$

QUESTION 13

13.3

13.1 Electric field is a region of space in which an electric charge experiences a force. $\checkmark\checkmark$ 13.2

Marking criteriaCorrect shape as shown.✓Direction away from positive✓Field lines start on spheres and do not cross.✓

(2)

(5) [**17**]

(2)

$E_{PA} = \frac{kQ}{r^2} \checkmark = \frac{(9 \times 10^9)(5 \times 10^{-6})}{(1,25)^2} \checkmark = 2,88 \times 10^4 \text{ N} \cdot \text{C}^{-1} \text{ to the right}$ $E_{PB} = \frac{kQ}{r^2} = \frac{(9 \times 10^9)(5 \times 10^{-6})}{(0,75)^2} \checkmark = 8,00 \times 10^4 \text{ N} \cdot \text{C}^{-1} \text{ to the left}$ $E_{PB} = E_{PA} + E_{PB} = 2.88 \times 10^4 + (-8.00 \times 10^4) = 5.12 \times 10^4 \text{ N} \cdot \text{C}^{-1} \checkmark$

$$E_{\text{net}} = E_{\text{PA}} + E_{\text{PB}} = 2,88 \times 10^4 + (-8,00 \times 10^4) = 5,12 \times 10^4 \text{ N} \cdot \text{C}^{-1} \checkmark$$
⁽⁵⁾
^[10]

QUESTION 14
14.1.1 Removed
$$\checkmark$$
 (1)

14.1.2
$$n = \frac{Q}{e} \checkmark = \frac{6 \times 10^{-6}}{1.6 \times 10^{-19}} \checkmark = 3,75 \times 10^{13} \checkmark \text{electrons}$$
 (3)

14.2.3
$$F = \frac{kQ_1Q_2}{r^2} \checkmark$$

$$F_{1,3x} = \frac{(9 \times 10^9)(2 \times 10^{-6})(6 \times 10^{-6})}{r^2} (\cos 45^\circ) = \frac{(0,0764)}{r^2}$$
(3)

14.2.4
$$F = \frac{KQ_1Q_2}{r^2}$$

$$F_{2,3x} = \frac{(9 \times 10^9)(2 \times 10^{-6})(6 \times 10^{-6})}{r^2} (\cos 45^\circ) = \frac{0,0764}{r^2}$$

$$F_x = F_{1,3x} + F_{2,3x}$$

$$F_x = \frac{0,0764}{r^2} + \frac{0,0764}{r^2} = 2 \frac{0,0764}{r^2} \checkmark \text{ Addition}$$

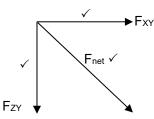
$$(0,12) \checkmark = \frac{0,1528}{r^2} \quad \therefore r = 1,128 \text{ m } \checkmark \qquad (4)$$

Physics Revision Book: Answers

14.3.1 The electric field at a point is the (electrostatic) force experienced v per unit positive charge v placed at that point.

14.3.2
$$\mathsf{E} = \frac{\mathsf{kQ}}{\mathsf{r}^2} \checkmark \therefore 100 = \frac{(9 \times 10^9)\mathsf{Q}}{(0,6)^2} \checkmark \therefore \mathsf{Q} = 4 \times 10^{-9} \mathsf{C}$$

When the electric field strength 50 is $N \cdot C^{-1}$:


$$E = \frac{kQ}{r^2} \therefore 50 = \frac{(9 \times 10^9)(4 \times 10^{-9})}{r^2} \checkmark \quad \checkmark \text{ equation}$$

$$\therefore r = 0.85 \text{ m} \checkmark (0.845) \text{ m}$$

QUESTION 15

The magnitude of the electrostatic force exerted by one point charge on another point charge is 15.1 directly proportional to the product of the (magnitudes of the) charges \checkmark and inversely proportional to the square of the distance between them. ✓ (2)

15.2
$$\overrightarrow{\text{OPTION 1}}_{F = \frac{kQ_{1}Q_{2}}{r^{2}}} \checkmark = \frac{(9 \times 10^{9})(6 \times 10^{-6})(8 \times 10^{-6})}{(0,2)^{2}} \checkmark = 10,8 \text{ N} \checkmark$$

$$\overrightarrow{\text{OPTION 2}}_{Both} \checkmark \begin{cases} E = \frac{kQ}{r^{2}} = \frac{(9 \times 10^{9})(8 \times 10^{-6})}{(0,2)^{2}} = 1,8 \times 10^{4} \text{ N} \cdot \text{C}^{-1} \\ F = \text{Eq} = (1,8 \times 10^{4})(6 \times 10^{-6}) \checkmark = 10,8 \text{ N} \checkmark$$

Marking criteria	
F _{Z op Y} if correct direction	\checkmark
F _{X op Y} if correct direction	\checkmark
Resultant vector	\checkmark

15.4 **OPTION 1**

$$F_{net}^{2} = F_{XY}^{2} + F_{ZY}^{2}$$

$$15,20^{2} = 10,8^{2} + F_{ZY}^{2}$$

$$F_{ZY} = 10,696 \text{ N}$$

$$F_{ZY} = k \frac{Q_{Z}Q_{Y}}{r^{2}} \therefore 10,696 \checkmark = 9 \times 10^{9} \times \frac{8 \times 10^{-6} \times Q_{Z}}{(0,30)^{2}} \checkmark \therefore Q_{Z} = 1,34 \times 10^{-5} \text{ C} \checkmark$$

$$OPTION 2$$

$$\cos\theta = \frac{10,8}{15,2} \therefore \theta = 44,72^{\circ}$$

$$\sin 44,72 = \frac{F_{ZY}}{15,2} \checkmark \text{ OR } \tan 44,72 = \frac{F_{ZY}}{F_{XY}}$$

$$\therefore F_{ZY} = 10,696 \text{ N}$$

$$F_{ZY} = k \frac{Q_{Z}Q_{Y}}{r^{2}}$$

$$\therefore 10,696 \checkmark = 9 \times 10^{9} \times \frac{8 \times 10^{-6} \times Q_{Z}}{(0,30)^{2}} \checkmark$$

$$\therefore Q_{Z} = 1,34 \times 10^{-5} \text{ C} \checkmark$$

FS/2024

(2)

(5)

[21]

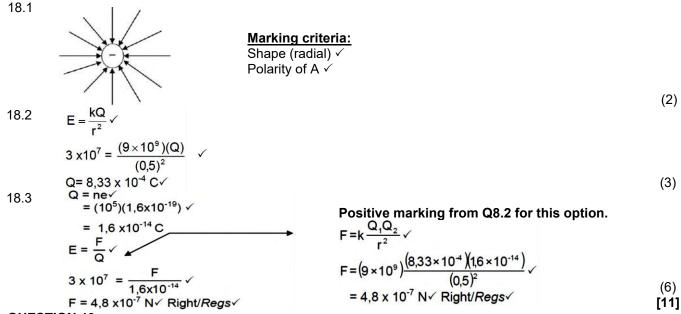
(4)

(3)

(4) [13]

QUESTION 16

16.1 Electric field at a point is the force per <u>unit positive</u> charge placed at that point. $\checkmark \checkmark$


QUESTION 17

17.1 The magnitude of the electrostatic force exerted by one point charge on another point charge <u>is</u> <u>directly proportional to the product of the (magnitudes of the) charges</u> ✓ and <u>inversely proportional</u> <u>to the square of the distance between them.</u> ✓

17.2
$$F_{RS}$$
 R
17.3 To the right as positive:
 $F = k \frac{Q_1 Q_2}{r^2}$ (2)
 $F_{netR} = F_{PR} + F_{SR}$

$$F_{net} = \frac{kQ_1Q_2}{r^2} + \frac{kQ_1Q_2}{r^2} + \frac{kQ_1Q_2}{r^2} + \frac{kQ_1Q_2}{r^2} + \frac{\sqrt{(9 \times 10^9)(15 \times 10^{-9})(Q)}}{(0,3)^2} - \frac{(9 \times 10^9)(2 \times 10^{-9})(Q)}{(0,2)^2} + \frac{(7)}{(0,2)^2} + \frac{1}{10} +$$

QUESTION 18

QUESTION 19

- 19.1 The two forces must be equal in magnitude \checkmark but in opposite directions. \checkmark
- 19.2The magnitude of the electrostatic force exerted by one point charge on another point charge is
directly proportional to the product of the (magnitudes of the) charges \checkmark and inversely proportional
to the square of the distance between them. \checkmark (2)

(2)

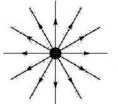
[9]

(2)

(2)

19.3
$$F = \frac{Q_{1}Q_{2}}{r^{2}} \checkmark$$

$$F_{PQ} = \frac{(9 \times 10^{9})(Q)(5 \times 10^{-6})}{(x)^{2}} \checkmark = \frac{45 \times 10^{3}Q}{x^{2}}$$


$$F_{VQ} = \frac{(9 \times 10^{9})(Q)(7 \times 10^{-6})}{(1 - x)^{2}} \checkmark = \frac{63 \times 10^{3}Q}{(1 - x)^{2}}$$

$$(F_{net} = F_{PQ} - F_{VQ} = 0)$$

$$\frac{45 \times 10^{3}Q}{x^{2}} = \frac{63 \times 10^{3}Q}{(1 - x)^{2}} \checkmark = 6,708(1 - x) = 7,937x \therefore x = 0,46 \text{ m away from P}$$

$$(5)$$

QUESTION 20 20.1

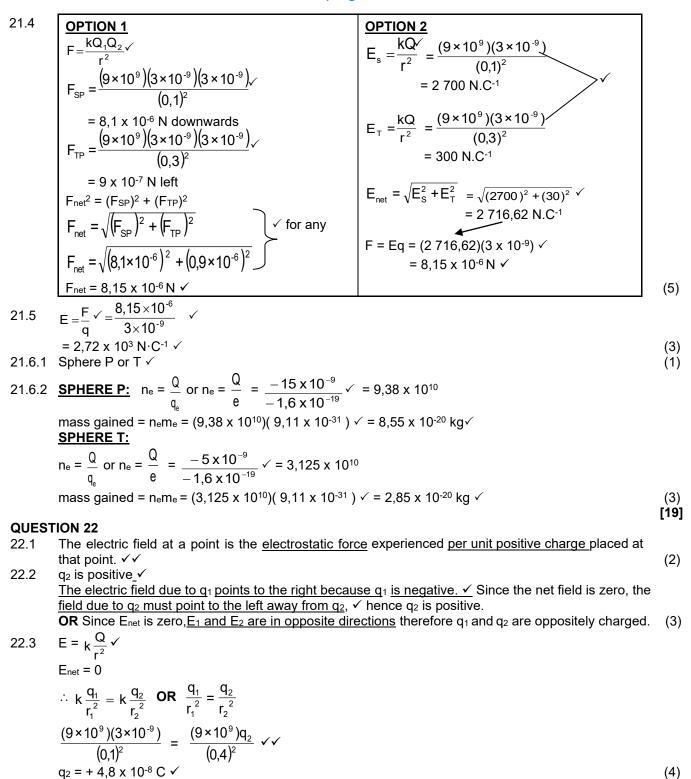
Criteria for sketch	
Lines are directed away from the charge.	✓
Lines are radial, start on sphere and do not cross.	✓

20.2 Q = ne \checkmark = (8 x 10¹³)(-1,6 x10⁻¹⁹) \checkmark or (8 x 10¹³)(1,6 x 10⁻¹⁹) = - 12,8 x 10⁻⁶ C Net charge on the sphere Q_{net} = (+ 6 x 10⁻⁶) + (-12,8 x 10⁻⁶) \checkmark = - 6,8 x 10⁻⁶ C

$$E = \frac{kQ}{r^{2}} \checkmark$$

$$E = \frac{(9 \times 10^{9})(6.8 \times 10^{-6})}{(0.5)^{2}} \checkmark$$

= 2,45 x 10⁵ N·C⁻¹ \checkmark towards sphere \checkmark


QUESTION 21

21.1
$$Q_{net} = \frac{Q_1 + Q_2 + Q_3}{3} \therefore -3 \times 10^{-9} = \underbrace{-15 \times 10^{-9} + Q + 2 \times 10^{-9}}{3} \checkmark \therefore Q = +4 \times 10^{-9} C \checkmark$$
(2)
21.2
$$Correct shape \checkmark Correct shape \checkmark Lines must not cross and must touch spheres \checkmark$$

21.3 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges and inversely proportional to the square of the distance between them.

(2)

(7) **[9]**

22.4 The electrostatic force (of attraction/repulsion) between two point charges is <u>directly proportional to</u> the product of the charges and inversely proportional to the square of the distance between them. $\checkmark \checkmark$ (2)

22.5
$$F = \frac{kQ_1Q_2}{r^2} \checkmark$$

$$F = \frac{(9 \times 10^9)(3 \times 10^{-9})(4,8 \times 10^{-8})}{(0,3)^2} \checkmark$$

$$= 1,44 \times 10^{-5} N \checkmark$$
22.6 Yes \checkmark
Both charges are equal and positive \checkmark
(2)

[16]

Physicaceandread afrom Stanmorephysics.com

OUEST	FION 23		
	Positive ✓		(1)
			(1)
23.1.2	$F = \frac{kQ_1Q_2}{r^2} \checkmark$		
	r ²		
	$a = (9 \times 10^9)(6 \times 10^{-6})Q$		
	$3,05 = \frac{(9 \times 10^9)(6 \times 10^{-6})Q}{0.2^2} \checkmark$		
	,		(-)
	$Q = 2,259 \times 10^{-6} C \checkmark (2,26 \times 10^{-6})$	-6 C)	(3)
23.1.3	T 🗸	Accepted labels	
		$w\checkmark$ F _g /F _w /weight / mg / gravitational force	
	←	$F_{E^{\checkmark}}$ Electrostatic force/ Coulomb force/ F _{E Field}	
	FE		
	-		
	↓ w		(3)
23.1.4	OPTION 1	OPTION 2	
-	$F_{net} = 0$		
	$F_{\rm E} = T \sin 10^{\circ}$	$\frac{T}{\sin 90^{\circ}} = \frac{F_{E}}{\sin 10^{\circ}} \checkmark$	
	$F_E = Tsin10^\circ$ $F_E = T cos80^\circ$	sin90° sin10°	
		т 3.05	
	3,05 = Tsin10° = Tcos80° → Any one	$\frac{T}{1} = \frac{3,05}{\sin 10^{\circ}} \checkmark$	
	$T = 17,56 \text{ N} \checkmark (17,564 \text{ N})$		
		T = 17,56 N ✓	(3)
23.2.1		e (<u>electrostatic) force</u> ✓ experienced <u>per unit positive charg</u>	<u>e placed at</u>
	that point. ✓		(2)
23.2.2	Electric field at M due to A (+2)	(10 ⁻⁵ C):	
	- kQ . (2×10 ⁻⁵)		
	$E_{A} = \frac{kQ}{r^2} \checkmark = 9 \times 10^9 \frac{(2 \times 10^{-5})}{(0,2)^2} \checkmark$	$= 4,5 \times 10^{6} \mathrm{N} \cdot \mathrm{C}^{-1}$ (to the right)	
	$(0,2)^2$		
	Electric field at M due to B (-4 x	10 ⁻⁵ C):	
	_ kQ		
	$E_{B} = \frac{kQ}{r^{2}}$	OR $q_B = 2x q_A$	
	I		
	$= 9 \times 10^9 \frac{(4 \times 10^{-5})}{(0,2)^2} \checkmark$	$E_B = 2x E_A \checkmark$	
	$\frac{9\times10}{(0.2)^2}$		
	= 9 x10 ⁶ N·C ⁻¹ (to the right)	= 9 x 10 ⁶ N·C ⁻¹ (to the right)	
		$+ 9 \times 10^6$) $\checkmark = 1.35 \times 10^7 \text{ N} \cdot \text{C}^{-1} \checkmark$ to the right \checkmark	(6)
	Enet at $W = EA + EB = (4, 3 \times 10^{-4})$	$(9 \times 10^{\circ})^{\circ} = 1,33 \times 10^{\circ} \text{M} \odot ^{\circ} \text{to the light }$	(6) [19]
OUEST	FION 24		[18]
24.1	$n = \frac{Q}{\checkmark}$		
		A negative answer not accepted; substitute so	
	$=\frac{-4x10^{-6}}{-1.6x10^{-19}}\checkmark$	that a positive answer is obtained.	
	$-\frac{1}{-1,6x10^{-19}}$		
	$=2,5x10^{13}$		(2)
04.0			(3)
24.2	$F = \frac{kQ_1Q_2}{r^2} \checkmark$		
	$r = \frac{1}{r^2} \mathbf{v}$		
	$=\frac{(9x10^9)(4x10^{-6})(3x10^{-6})}{0,2^2}$		
	= 0.2 ²	v III	
	$= 2.7 N \checkmark$		(0)
04.0	,		(3)
24.3		e) where (in which) an (<u>electric) charge experiences a (elec</u>	
	force. ✓✓		(2)

24.4 **OPTION 1** Electric field at M due to: -4 x 10⁻⁶ C $E_{AM} = \frac{kQ}{r^2} \checkmark$ $=\frac{(9x10^9)(4x10^{-6})}{0.3^2}\checkmark$ $= 4x10^5 N \cdot C^{-1}$ (to left) Electric field at M due to: +3 x 10⁻⁶ C $E_{BM} = \frac{kQ}{r^2}$ $=\frac{(9x10^9)(3x10^{-6})}{0,1^2}\checkmark$ $= 2,7x10^{6} N \cdot C^{-1} (to right)$ Net electric field at M $E_{net} = E_{BM} + E_{AM}$ = 4,0 x10⁵ - 2,7 x10⁶ \checkmark = 2,3 x10⁶ N·C⁻¹ \checkmark (right) OR Net electric field at M $E_{net} = E_{BM} + E_{AM}$ $= -4,0 \times 10^5 + 2,7 \times 10^6 \checkmark$ = - 2,3 x10⁶ N·C⁻¹ = 2,3 x10⁶ N \cdot C⁻¹ \checkmark (right) **OPTION 2** $\overline{F_{AM}} = \frac{kQ_1Q_2}{r^2}$ $=\frac{(9x10^9)(4x10^{-6})Q}{0,3^2}\checkmark$ $= (4x10^5)(Q)$ $F_{BM} = \frac{\dot{k}Q_1Q_2}{r^2}$ $=\frac{(9x10^9)(3x10^{-6})Q}{0,1^2}\checkmark$ $= (2.7x10^{6})(Q)$ F_{net} = 2.7 x 10⁶Q + (-4 x 10⁵Q) \checkmark = 2.3 x 10⁶Q $E = \frac{F}{Q} \checkmark$ $=\frac{2,3x10^{6}Q}{2}$ Q $= 2.3x10^{6} N \cdot C^{-1} \checkmark (right)$

24.5

Positive

(5) (1)

24.6

$$\begin{aligned}
\left(F_{\text{net}} \right)^{2} &= (F_{\text{AD}})^{2} + (F_{\text{AB}})^{2} & \text{OR} \\
\left(\frac{7,69}{2} = (F_{\text{AD}})^{2} + (2,7)^{2} \checkmark & F_{\text{AD}} = \frac{kQ_{1}Q_{2}}{r^{2}} \\
F_{\text{AD}} &= \frac{kQ_{1}Q_{2}}{r^{2}} & = \frac{(9 \times 10^{9})(4 \times 10^{-6})Q}{0,15^{2}} \checkmark & = \frac{(9 \times 10^{9})(4 \times 10^{-6})Q}{0,15^{2}} \checkmark \\
7,2 &= \frac{(9 \times 10^{9})(4 \times 10^{-6})Q}{0,15^{2}} \checkmark & = 1,6 \times 10^{6} Q \\
Q_{D} &= 4,5 \times 10^{-6} C \checkmark & F_{\text{net}} = \sqrt{(F_{AB}^{2} + F_{AD}^{2})} \\
& 7,69 &= \sqrt{2,7^{2} + (1,6 \times 10^{6}Q)^{2}} \checkmark \\
& Q &= 4,50 \times 10^{-6} C \checkmark
\end{aligned}$$
(3)
[17]

QUESTION 25

25.1 The magnitude of the electrostatic force exerted by one point charge (Q_1) on another point charge (Q_2) is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance (r) between them. \checkmark (2) 25.2 $F = \frac{kO_1 Q_2}{2} \checkmark$ r^2 $1,2 x 10^{-3} = \frac{(9 x 10^9)(6 x 10^{-9})(5 x 10^{-9})}{r^2} \checkmark$ $r = 0,015 \, m \checkmark$ (3) 25.3 N FF (4) W 25.4.1 Up, parallel to the incline, is positive. F_{net} = ma ✓ $T + F_E + w_{II} = ma$ $T - 1,2 \ge 10^{-3} \checkmark - (0,01)(9,8)(\sin 25^{\circ}) \checkmark = 0$ $T = 0.04 \text{ N} \checkmark (0.0426 \text{ N})$ (4) 25.4.2 $E_{net} = E_R + E_S \checkmark$ $E_{net} = \frac{kQ_R}{r^2} + \frac{kQ_S}{r^2}$ $=\frac{(9 x 10^{9})(5 x 10^{-9})}{(0,015 + 0,03)^{2}} \checkmark -\frac{(9 x 10^{9})(6 x 10^{-9})}{0,03^{2}} \checkmark$ $= -37777,78 N \cdot C^{-1}$ $E_{net} = 37777,78 N \cdot C^{-1} \checkmark$ down the incline \checkmark (5) [18] **QUESTION 26** 26.1.1 Added ✓ (1) 26.1.2

$$n = \frac{Q}{q_e} \checkmark$$

= $\frac{-1.95 \times 10^{-6}}{-1.6 \times 10^{-19}} \checkmark$
= $1.22 \times 10^{13} \checkmark$

26.1.3 The (electrostatic) force experienced per unit positive charge placed at that point. \checkmark (2)

26.1.4

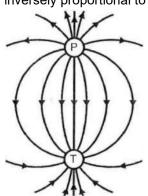
$$E = \frac{kQ}{r^{2}} \checkmark$$

$$= \frac{(9x10^{9})(1,95x10^{-6})}{0,5^{2}} \checkmark$$

$$= 7,02x10^{4} N \cdot C^{-1} \checkmark$$
26.2
WEST +

$$F_{net} = F_{q2} + F_{q1}$$

$$= \left(+ \frac{kQ_{1}Q_{2}}{r^{2}} \right) + \left(- \frac{kQ_{1}Q_{2}}{r^{2}} \right) \checkmark$$


$$1,38 \checkmark = \left(+ \frac{(9x10^{9})(1,95x10^{-6})q_{2}}{0,03^{2}} \right) + \left(- \frac{(9x10^{9})(1,95x10^{-6})q_{2}}{0,05^{2}} \right) \checkmark \checkmark$$

$$q_{2} = 1,11x10^{-7} C \checkmark$$
(3)

QUESTION 27

27.1.2

27.1.1 The magnitude of the electrostatic force exerted by one point charge (Q1) on another point charge (Q₂) is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance (r) between them. \checkmark

(3) 27.1.3 Positive ✓ (1) $\overline{F_{net}^2 = F_{TP}^2 + F_{TS}^2} = \left(\frac{kQ_1Q_2}{r^2}\right)^2 \checkmark + \left(\frac{kQ_1Q_2}{r^2}\right)^2$ 27.1.4 $Q_S = ne$ $4,887x10^{-6} = n(1,6x10^{-19})\checkmark$ $n = 3,05x10^{13}$ electrons \checkmark $10^{2} = \left(\frac{(9x10^{9})(3x10^{-6})(3x10^{-6})}{0,1^{2}}\right)^{2} \checkmark + \left(\frac{(9x10^{9})(3x10^{-6})Q_{2}}{0,15^{2}}\right)^{2}$ √√ $Q_2 = 4,887x10^{-6} C$ (6) 27.2.1 E is directly proportional to $\frac{1}{r^2}$.

OR
E
$$\alpha \frac{1}{r^2}$$

27.2.2

$$\begin{array}{l} 2\\ Gradient = \frac{\Delta E}{\Delta\left(\frac{1}{r^2}\right)} \checkmark\\ 680 \checkmark = \frac{E_A - 0}{\left(\frac{1}{0,04^2}\right) - 0} \checkmark\\ E_A = 4,25 \times 10^5 \ N \cdot C^{-1} \checkmark \end{array}$$

27.2.3 Greater than
$$\checkmark$$

For the same $\frac{1}{r^2}$, *E* is greater for sphere **B**. $\checkmark\checkmark$

(4)

(1)

FS/2024

[14]

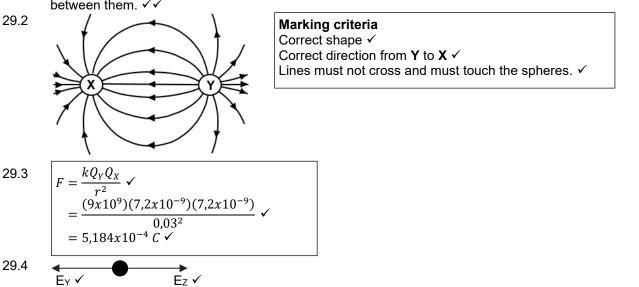
(2)

QUESTION 28

28.1 The magnitude of the electrostatic force exerted by one point charge on another is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance between them. $\checkmark\checkmark$

28.2 28

square of the distance between them.
$$\checkmark \checkmark$$
 (2)
28.2 Negative \checkmark (1)
28.3 $F_E \qquad Acceptable labels
 $w \checkmark F_g/F_w/w/weight/mg/ gravitational force /gravity
 $W \checkmark F_g/F_w/w/weight/mg/ gravitational force /gravity
 $F_E \checkmark F_{electrostatic}/F/F_{M on N} / Electrostatic force$ (2)
28.4 $F = \frac{kQ_MQ_N}{r^2} \checkmark (2,04x10^{-3})(9,8) \checkmark \checkmark = \frac{(9x10^9)(Q_M)(8,6x10^{-8})}{0,3^2} \checkmark (Q_M = 2,33x10^{-6} C \checkmark$$$$


Equal **OR** The same \checkmark 28.5.1 28.5.2

28.6

$$\begin{array}{c}
 \underline{OPTION \ 2}: \ DOWNWARDS \ POSITIVE \\
 \overline{E}_{net} = E_M + E_N \\
 \overline{E}_{net} = \frac{kQ_M}{r^2} + \frac{kQ_N}{r^2} \\
 = -\frac{(9x10^9)(2,33x10^{-6})}{0,4^2} \checkmark + \frac{(9x10^9)(8,6x10^{-8})}{0,1^2} \checkmark \\
 = -5,37x10^4 \ N \cdot C^{-1} \\
 \overline{E}_{net} = 5,37x10^4 \ N \cdot C^{-1} \checkmark; upwards \checkmark
\end{array}$$

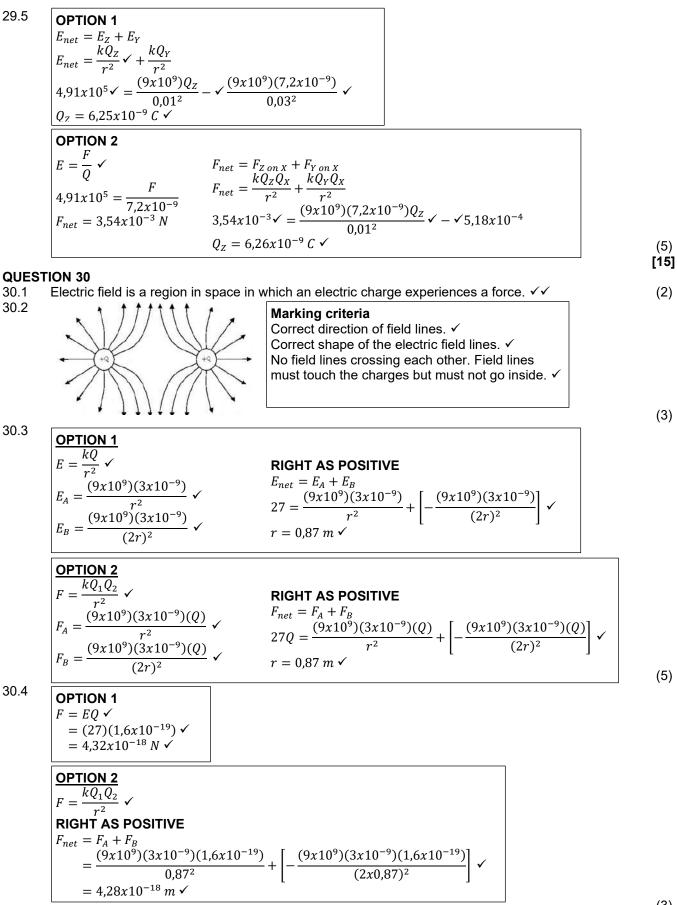
QUESTION 29

29.1 The magnitude of the electrostatic force between two point charges is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance between them. </

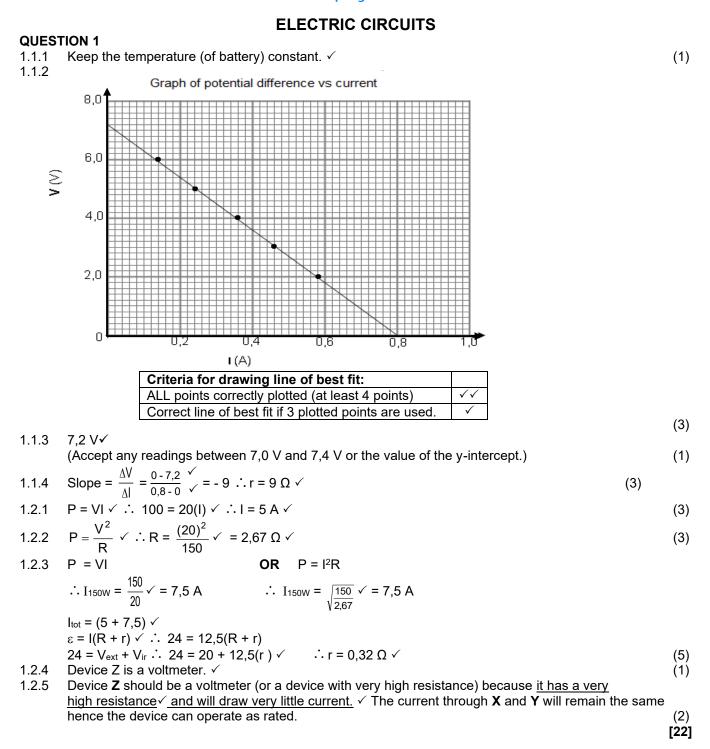
(5) [17]

(2)

(3)


(3)

(2)


(5)

(1)

(1)

(3) [**16**]

QUESTION 2

- 2.1.1 Same length of wires. ✓ Same thickness/cross-sectional area of wires. ✓
- 2.1.2 Wire A (Resistor A)/Draad A ✓

$$R = \frac{\Delta V}{\Delta I} \checkmark$$

$$R_{A} = \frac{4.4}{0.4} \checkmark = 11 \,\Omega \checkmark$$

$$R_{B} = \frac{2.2}{0.4} \checkmark = 5.5 \,\Omega \checkmark$$

$$E = I^{2} R\Delta t \checkmark$$

Accept any correct coordinates chosen from the graph Aanvaar enige korrekte koördinate van die grafiek gekies.

For the same time and current, the heating in A will be higher because its resistance is higher than that of B. \checkmark

2.2.1	OPTION 1/OPSIE 1 $I_{5,5\Omega} : I_{11\Omega}$ 2 : 1 $I_{5,5\Omega} = (0,2)(2) \checkmark \checkmark$ $= 0,4 ~ A \checkmark$	OPTION 2/OPSIE 2 V = IR $V_{11 \ \Omega} = 0.2 \times 11$ $=2.2 \ V \checkmark$ $V_{5,5} = V_{11} = 2.2 \ V \checkmark$ $I_{5,5} = \frac{2.2}{5.5}$ $= 0.4 \ A \checkmark$	(3)
2.2.2	$\frac{\text{OPTION 1/OPSIE 1}}{V = IR}$ $I_{tot} = (0,4 + 0,2) \checkmark$ $= 0,6 \text{ A}$ $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \checkmark$ $\frac{1}{R_p} = \frac{1}{11} + \frac{1}{5,5} \checkmark$ $R_P = 3,67 \Omega$ $R_T = R_P + R_A$ $= 3,67 + 11 \checkmark$ $= 14,67\Omega$ $\varepsilon = I(R + r) \checkmark$ $9 = 0.6(14,67 + r) \checkmark$ $r = 0,33 \Omega \checkmark$	$\frac{\text{OPTION 2/OPSIE 2}}{I_{tot} = (0,4 + 0,2) \checkmark}$ = 0,6 A $V_{ext} = V_{11 \Omega} + V_{//} \checkmark$ = [I_{tot} (R_{11}) + 2,2] = 0,6 (11) \checkmark + 2,2 = 8,8V \checkmark $\mathcal{E} = V_{ext} + I_{tot}(r) \checkmark$ 9 = 8,8 + 0,6r \lambda r = 0,33 \Omega \lambda	(7)
2.2.3	Decrease \checkmark The total resistance increases. \checkmark		(2)
QUEST			[22]
3.1	Negative ✓		(1)
3.2	$I_{2\Omega} = \frac{V}{R} \checkmark = \frac{1,36}{\sqrt{4+2}} \checkmark = 0,23 \text{ A} \checkmark$		(3)
3.3	$\begin{array}{l} \hline \textbf{OPTION 1} \\ I_{3\Omega} = \frac{V}{R} = \frac{1,36}{3} \checkmark = 0,45 \text{ A} \\ I_{T} = I_{2} + I_{3} = 0,23 + 0,45 \checkmark = 0,68 \text{ A} \\ V_{\text{int/"lost"}} = \epsilon \cdot V_{\text{ext}} \checkmark = 1,5 - 1,36 \checkmark = 0,14 \text{ V} \\ V_{\text{int/"lost"}} = Ir \checkmark \\ 0,14 = (0,68)r \checkmark \therefore r = 0,21 \Omega \checkmark \end{array}$	$\begin{array}{l} \hline \textbf{OPTION 2} \\ I_3 = \frac{V}{R} = \frac{1,36}{3} \checkmark = 0,45 \text{ A} \\ I_T = I_2 + I_3 = 0,23 + 0,45 \checkmark = 0,68 \text{ A} \\ \frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} \checkmark \therefore \frac{1}{R_p} = \frac{1}{6} + \frac{1}{3} \checkmark \therefore R_P = 2 \Omega \\ \epsilon = I(R + r) \checkmark \therefore 1,5 = 0,68(2 + r) \checkmark \therefore r = 0,21 \Omega \checkmark \end{array}$	(7)
3.4		llele circuit decreases. ✓ Terminal poetantial differenc	
	decreases. ✓ Resistance in ammeter branch r	remains constant. ✓	(4) [15]

(2)

(8)

QUESTION 4

4.1 The potential difference across a conductor is directly proportional to the current √in the conductor at constant temperature. ✓ (2)

4.2	OPTION 1	OPTION 2	(2)
	$V_8 = IR \checkmark = (0,5)(8) = 4 V = V_{16}$	$V_8 = IR \checkmark = (0,5)(8) \checkmark = 4 V$	
	$I_{16} = \frac{V}{R} = \frac{4}{16} = 0,25 \text{ A}$	$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} = \frac{1}{8} + \frac{1}{16} \checkmark \therefore R = 5,33 \Omega$	
	$I_{tot//} = I_{A1} = (0,5 + 0,25) \checkmark = 0,75 A \checkmark$	$I_{tot//} = \frac{4}{5,33} = I_{A1} = 0,75 \text{ A} \checkmark$	(4)
4.3	OPTION 1	OPTION 2	
	V _{20Ω} = IR =(0,75) (20) ✓ = 15 V	1 1 1 1 1 1 1	
	$V_{m} = (15 \pm 4) \cdot (-10) V_{m}$	$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} = \frac{1}{8} + \frac{1}{16} \checkmark \therefore R = 5,33 \Omega$	
	$V_{//tot} = (15 + 4) \checkmark = 19 V$ $V_{R} = 19 V$	$R_{1/2} + R_{20} = (5,33 + 20) \checkmark = 25,33 \Omega$	
	$P = VI \checkmark$	$V_{l/tot} = I(R_{l/l} + R_{20}) = (0,75)(25,33) = 19 V$	
	$\therefore 12 = (19)I_R \checkmark$	$P = VI \checkmark \therefore 12 = (19)I_R \checkmark$	
	\therefore I _R = I _{A2} = 0,63 A \checkmark	\therefore I _R = I _{A2} = 0,63 Å \checkmark	(5)
4.4	OPTION 1	OPTION 2	()
	$\overline{\epsilon} = I(R + r) \checkmark = V_{/tot} + V_{int}$	$\overline{V_{int}} = Ir = (0,75 + 0,63)(1) \checkmark = 1,38 V$	
	= 19 + (0,75 + 0,63)(1) ✓ = 20,38 V ✓	$\epsilon = V_{//tot} + V_{int} \checkmark = 19 + 1,38 = 20,38 V \checkmark$	(3)
			[14]

QUESTION 5

- V = IR√ 5.1.1 = (0,2)(<u>4+8</u>)√

= 2,4 V√

	= 2,4 VV		(3)
5.1.2	V = IR	OR	(-)
	2,4 =I₂(2) ✓	$I_2 = 6 \times 0.2 \checkmark$	
	$I_{2\Omega} = 1,2 \text{ A} \checkmark$	I ₂ = 1,2 A√	
	$I_T = I_2 + 0.2 \text{ A} \checkmark$	I _T = I ₂ + 0,2 ✓	
	= 1,4 A√	= 1,4 A√	(4)
5.1.3	OPTION 1	OPTION 2	
	$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \checkmark$ $\frac{1}{R_{p}} = \frac{1}{12} + \frac{1}{2}$ $R_{p} = 1.72 \ \Omega \checkmark$ $\epsilon = I(R+r) \checkmark$ $= 1.4(1.72+0.5) \checkmark$ $= 3.11 \ V \checkmark$	$V_{int} = Ir \checkmark$ =(1,4)(0,5) = 0,7 V \checkmark $\varepsilon = V_{ext/eks} + V_{int} \checkmark$ = 2,4 +0,7 = 3,1 V	(5)
52		resistance of the circuit $$ Thus otal current decreases	

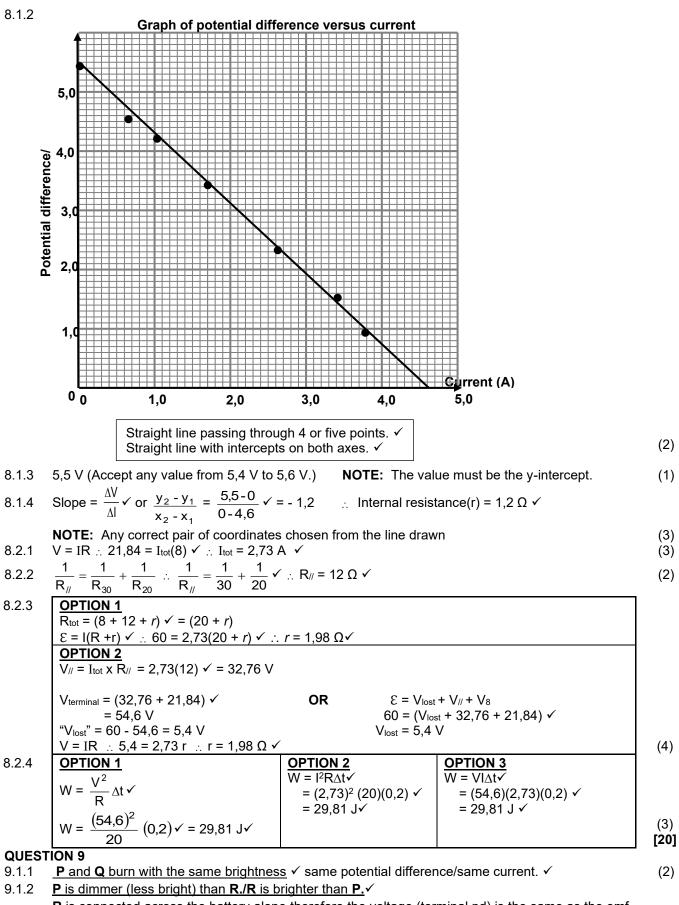
Removing the 2 Ω resistor increases the total resistance of the circuit. \checkmark Thus otal current decreases, 5.2 decreasing the V_{int} (V_{lost}). ✓ Therefore the voltmeter reading V increases. ✓ (3)

QUESTION 6

~~=~				_
6.1.1	OPTION 1	OPTION 2	OPTION 3]
	$P = \frac{V^2}{R} \checkmark$	P = VI 4 = I(12) I = 0,33A	P = V I 4 = I(12) ∴ I = 0,33A P = I ² R ✓	
	$4 = \frac{V^2}{R} = \frac{(12)^2}{R} \checkmark R = 36 \ \Omega \checkmark$		$4 = (0,33^2) \mathbb{R} \checkmark$ $\therefore \mathbb{R} = 36,73 \ \Omega \checkmark$	(3)
6.1.2 6.1.3 6.2.1	Increase No change ✓ Same potential difference ✓ (and resistance)			
	$V_{\text{"lost"}} = \text{Ir}$ OR $1 = (0.83)\text{r}^{\checkmark}$ $r = 1.20 \ \Omega^{\checkmark}$	$\epsilon = I(R + r)$ 6 = (0,83)(6 + r) \checkmark r = 1,23 Ω \checkmark		(4)
6.2.2	Maximum work done (or energy	provided) ✓ by a cell per <u>unit char</u>	<u>ege</u> passing through it. ✓	(2)

Physics Revision Book: Answers

[15]


Physicacean and the stanmore has sice com

6.2.3 **OPTION 1 OPTION 2** $V_{"lost"} = Ir$ $V_{"lost"} = Ir$ 1,5 ✓ = I(1,2) ∴ I = 1,25 A $1,5^{\checkmark} = I(1,2)$ I = 1,25 A $V_{\parallel} = I_p R_p$ 4,5 = (1,25)R_p ✓ $V_{\parallel} = I_6 R_6$ $R_{p} = 3,6 \Omega$ $\frac{1}{R_{//}} = \frac{1}{Rx} + \frac{1}{R_6} \quad \checkmark$ $4,5 = I_6(6)$ $I_6 = 0,75 A$ $\frac{1}{R_{//}} = \frac{1}{Rx} + \frac{1}{6} \checkmark$ V_x = IR_x ✓ $4,5 = (1,25 - 0,75)R_x \checkmark$ $\therefore R_{//} = \frac{6R_x}{R_x + 6} = 3.6$ Rx = 9 Ω √ ∴ R_X = 9 Ω √ (5) [17] **QUESTION 7** Maximum work done (or energy transferred) by a battery per unit charge passing through it. $\checkmark\checkmark$ 7.1.1 (2) 7.1.2 12 V √ (1) 7.1.3 0 V / Zero ✓ (1) 7.1.4 **OPTION 1 OPTION 2** V = IR ✓ $\epsilon = I(R + r)$ **OR** $\epsilon = V_{ext} + V_{int} \checkmark$ $0,3 = I_{tot}(0,2) \checkmark$ 12 = 11.7 + IrItot = 1.5 A ✓ $0.3 = I_{tot}(0.2) \checkmark :: I_{tot} = 1.5 A \checkmark$ (3) $\frac{1}{10} + \frac{1}{15}$ 1 1 7.1.5 ✓ ∴R = 6Ω ✓ (2) = $R_p R_1 R_2$ **OPTION 1** 7.1.6 **OPTION 2** V = IR ✓ V = IR √ 11,7√ = <u>1,5(6 + R)</u> √ 11.7 = 1,5R ✓ R = 1,8 Ω ✓ R = 7,8 Ω and $R_R = 7,8 - 6 \checkmark \checkmark = 1,8 \ \Omega \checkmark$ (4) 7.2.1 **OPTION 1 OPTION 2 OPTION 3** $P_{ave} = Fv_{ave} \checkmark = mg(v_{ave})$ $\mathsf{P} = \frac{\mathsf{W}}{\Delta t} \checkmark = \frac{\Delta \mathsf{E}_{\mathsf{p}}}{\Delta t}$ $\mathsf{P} = \frac{\mathsf{W}_{\mathsf{nc}}}{\mathsf{A}^{\mathsf{t}}} \checkmark = \frac{\Delta \mathsf{E}_{\mathsf{k}} + \Delta \mathsf{E}_{\mathsf{p}}}{\mathsf{A}^{\mathsf{t}}}$ = (0,35)(9,8)(0,4) </ = 1,37 W ✓ = (0,35)(9,8)(0,4) $\frac{0+(0,35)(9,8)(0,4-0)}{2}$ 1 1 = 1,37 W ✓ = 1,37 W √ (3) 7.2.2 **OPTION 2 OPTION 1** P = VI $P = \frac{V^2}{R}$ 1.37 = (3)I = 0,46 A✓ Any one Any one $1,37 = \frac{3^2}{5} \checkmark$ R $\epsilon = V_{ext} + V_{int}$ $R = 6,57 \Omega$ $= V_T + V_X + V_{int}$ $12 = V_T + 3 + (0,2)(0,46) \checkmark$ P = VI VT = 8,91 V <u>1,37 = (3)I</u> ✓ I = 0,46 A V⊤ = IR⊤ $\varepsilon = I(R + r)$ (5) 8,91 = (0,46)R_T < ∴ R_T = 19,37 Ω < $12 = 0,46(6,57 + R_T + 0,2) \checkmark \therefore R_T = 19,38 \Omega \checkmark$ [21]

QUESTION 8

8.1.1 The potential difference across a conductor is directly proportional to the current in the conductor \checkmark at constant temperature. \checkmark (2)

Physicacean and the stanmore has sice com

R is connected across the battery alone therefore the voltage (terminal pd) is the same as the emf source (energy delivered by the source).

OR: The potential difference across **R** is twice (larger/greater than) that of **P**./The current through **R** is twice (larger/greater than) that of **P**. (2)

Physicacean Stanmorephysics.com

9.1.3 T does not light up at all. \checkmark R is brighter than T. \checkmark Reason: The wire acts as a short circuit. \checkmark OR: The potential difference across T / current in T is zero.✓ (2) $\frac{1}{R_{//}} = \frac{1}{R_5} + \frac{1}{R_{10}} \quad \checkmark = \quad \frac{1}{5} + \frac{1}{10} \quad \therefore \ R_{//} = 3,33 \ \Omega \quad (3,333 \ \Omega)$ 9.2.1 **NR** $R_{\text{H}} = \frac{R_5 R_{10}}{R_5 + R_{10}} \checkmark = \frac{(5)(10)}{(5+10)} \checkmark = 3.33 \ \Omega \qquad (3,333 \ \Omega)$ $R_{tot} = R_8 + R_{//} + r = (8 + 3,33 + 1) \checkmark$ = 12,33 Ω $\mathbf{\hat{R}} = \mathbf{R}_8 + \mathbf{R}_{//} = 8 + 3,33 = 11.33 \,\Omega$ $I_{tot} = \frac{V}{R} \checkmark = \frac{20}{12.33} \checkmark = 1,62 \text{ A}$ $\varepsilon = I(R + r) \checkmark$ 20 = I[(11,33 + 1)]I = 1.62 A ✓ ∴ I₈ = 1,62 A ✓ (6)**OPTION 1** 9.2.2 **OPTION 2** $V_{||} = IR_{||} ✓$ = (1,62)(3,33) ✓✓ = 5,39 V ✓ $R_{//} = \frac{(5)(10)}{(5+10)} = 3,33 \,\Omega$ $V_{R/l} = \frac{R_{ll}}{R_{ret}} \times V_{tot} \checkmark \therefore V_{R/l} = \frac{(3,33)}{(12.33)} (20) \checkmark \checkmark = 5,41 V \checkmark$ **OPTION 2** 9.2.3 **OPTION 1** P = IV ✓ $P = I^2 R \checkmark$ $P_{tot} = P_{8\Omega} + P_{//} + P_{1\Omega}$ = (1,62)(20) ✓ $= I^{2}(R_{8} + R_{//} + R_{1})$ (3) = 32,4 W ✓ $= (1,62)^{2}[8+3,33+1] \checkmark = 32,36 \text{ W} \checkmark$ [19] **QUESTION 10** 10.1.1 The potential difference (voltage) across a conductor is directly proportional to the current in the conductor at constant temperature. ✓✓ (1) 10.1.2 Equivalent resistance √ (1) 10.1.3 Gradient = $\frac{\Delta V}{\Delta I} = \frac{2 - 0}{0.5 - 0} \checkmark = 4 (\Omega) \checkmark$ NOTE: Any correctly chosen pair of coordinates. (2) 10.1.4 **OPTION 1 OPTION 2** For graph X: $R_1 + R_2 = 4 \checkmark(1)$ In parallel $\frac{R_1R_2}{R_1+R_2}$ = 1 $\Omega \checkmark \checkmark$ (2) For graph Y: $\frac{1}{R_{\mu}} = \frac{1}{R_1} + \frac{1}{R_2}$ $R_1R_2 = 4 \Omega$ $\left\{ \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \left(\frac{1}{1}\right) \right\} \checkmark \checkmark (2)$ \therefore R₁ = R₂ = 2 $\Omega \checkmark$ $R_1^2 - 4R_1 + 4 = 0 :: R_1 = 2 \Omega \checkmark$ (4) 10.2.1 $I = \frac{V}{R} \checkmark = \frac{5}{(R_M + R_N)} = \frac{5}{(6)} \checkmark = 0.83 \text{ A} \checkmark$ (3)**OPTION 2** 10.2.2 **OPTION 1** $\overline{\mathcal{E} = I(R + r)} \checkmark = 0.83[(6 + 1.5) \checkmark + 0.9 \checkmark]$ $\mathcal{E} = (V_s + V_{//} + V_r) \checkmark / V_{ext} + V_{int}$ = $[5 + (0.833 \times 1.5) \checkmark + (0.9 \times 0.833)] \checkmark \checkmark$ $= 6,997 V = 7(,00) V \checkmark (6,972 - 7,00 V)$ $= 6,999 V = 7(,00) V \checkmark (6,972 - 7,00 V)$ (4)10.2.3 The resistance R_N will be 3 $\Omega \checkmark$ The voltage divides (proportionately) in a series circuit. Since the voltage across **M** is half the total voltage, it means the resistances of **M** and **N** are equal. \checkmark (2)

(2) [18]

Downl from Stanmorphysics com -

Physica	iceanance and the second se	Stanmorephy	ysics.com		FS/2024
QUEST	'ION 11				
	The potential difference across	s a conductor is <u>dire</u>	<u>ectly</u> proportional	to the current in the conducto	r at
11 1 0	<u>constant temperature</u> .	abt line (needing thr	ough the origin) t	harafara natantial difference i	(2)
11.1.2	<u>Graph X.</u> \checkmark <u>Graph X is a strai</u> directly proportional to current	. 🗸		nereiore potential difference is	<u>s</u> (2)
11.2.1	$\frac{1}{R_{\mu}} = \frac{1}{R_{10}} + \frac{1}{R_{15}} \qquad \begin{array}{c} R = \\ = \end{array}$	10 + 6 + 2 √ 18 Ω	$R = \frac{V}{\sqrt{2}}$		(-)
		18 Ω	`		
	$\frac{1}{R_{\mu}} = \frac{1}{10} + \frac{1}{15} \checkmark$		6		
	11	I	= <mark>6</mark>		
44.0.0	R _{//} = 6 Ω	1	= 0,33 A ✓		(5)
11.2.2	Decrease \checkmark The total resistance of the circ	uit increases √			(2)
11.2.3	Increase √				(1)
11.2.4_	The total resistance in the extern	ernal circuit increase	<u>es,</u> √		
	<u>Current decreases</u> √ "Lost" volts decreases √				(3)
					[15]
QUEST	ION 12 The potential difference across	s a conductor is dire	actly proportional	to the current in the conducto	or at
12.1.1	constant temperature.		<u>ectiy</u> proportional		i at
	OR The ratio of potential diffe		ductor to the curre	ent in the conductor is <u>constar</u>	
1212	provided the <u>temperature remains</u> V ₁ = IR \checkmark = (0,6)(4) \checkmark = 2,4 V				(2) (3)
12.1.2	<u>OPTION 1</u>	OPTION 2		OPTION 2	
	$\overline{I_{6\Omega}} = \frac{V}{R} = \frac{2,4}{6} \checkmark = 0,4 \text{ A} \checkmark$	$\frac{\text{OPTION 2}}{\frac{6}{10}(l) = 0.6}$		$\begin{array}{c} \textbf{OPTION 2} \\ \hline V_{4\Omega} = V_{6\Omega} \therefore I_{4\Omega}R_1 = I_{6\Omega}R_2 \\ \hline \end{array}$	
	R = 6	10		$\frac{(0,6)(4) = I_{6\Omega}(6)}{I_{6\Omega} = 0.4 \text{ A }} \checkmark$	
1011	1/(-1) = (0.4 + 0.6)(5.9) (-1)	$\therefore I = 1 A \therefore I_{\theta}$	_{6Ω} = 0,4 A ✓	1012 0, 177	(2)
12.1.4	$V_2 = IR = (0,4 + 0,6)(5,8) \checkmark = 8$ OPTION 1	5,6 V ¥	OPTION 2		(2)
	$\overline{V_{\text{ext}}} = (5,8 + 2,4) \checkmark = 8,2 \text{ V}$			1,15	
	V_{int} = Ir = (1) (0,8) ✓ = 0,8 V		$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$	$= \frac{1}{6} + \frac{1}{4} = \frac{5}{12} \qquad \therefore R_{\rm p} = 2,4 \ \Omega$	
	= (1)(0,0) = 0,8 = 0.0		$R_{ext} = (2,4+5,$		
				= 1 (8,2 + 0,8) ✓ = 9 V ✓	(3)
12.1.6	$\frac{\text{OPTION 1}}{W = V \mid \Delta t} \checkmark$	<u>OPTION 2</u> W = I ² R ∆t ✓			
	= (0,8)(1) (15) ✓	$= (1)^2 (0,8)(15)$	\checkmark W = $\frac{V}{\Box}$	$\Delta t = \frac{0.8^2 (15)}{0.8} \checkmark = 12 \text{ J} \checkmark$	
	= 12 J √	= 12 J ✓		0,0	(3)

12.2.1
$$R = \frac{\sqrt{1-2}}{1} = \frac{2.8}{0.7} \checkmark = 4 \ \Omega \checkmark$$
 (2)
12.2.2 Increases \checkmark
Total resistance decreases, \checkmark current/power increases, \checkmark motor turns faster (3)
[20]

QUESTION 13

The battery supplies <u>12 J per coulomb</u>/per unit charge. $\checkmark \checkmark$ **OR** The potential difference of the battery in an open circuit is 12 V. 13.1

	OR The potential difference of the battery in an open circuit is <u>12 V.</u>				
13.2	OPTION 1	OPTION 2	OPTION 3		
	$V_{\text{lost}} = \text{Ir } \checkmark = (2)(0,5) = 1 \text{ V}$	$\epsilon = I(R + r) \checkmark$	$\epsilon = I(R + r) \checkmark \checkmark$		
	$V_{ext} = Emf - V_{lost} = (12 - 1) \checkmark = 11 V \checkmark$	$12 = V_{ext/eks} + (2)(0,5) \checkmark$	12 = 2(R + 0,5)		
		V _{ext/eks} = 11 V√	R = 5,5 Ω		
			V = IR = 2(5,5) ✓		
			= 11 V 🗸	(3)	
13.3	OPTION 1	OPTION 2	OPTION 3/OPSIE 3		
		0,5 : R = 1:11 ✓	1_11		
	$R = \frac{\sqrt{1}}{1} = \frac{11}{2} = 5,5 \Omega \checkmark$	R = 5,5 Ω ✓	$\frac{1}{0.5} = \frac{1}{R}$		
			R = 5,5 Ω√		
			10 0,0 12	J	

OPTION 4	OPTION 5	
V _{total} = IR _{total}	$\overline{\epsilon = I(R + r)}$	
$12 = (2)R_{total}$	12 = 2(R + 0.5)	
$R_{total} = 6 \Omega$	R = 5,5 Ω ✓	
$R = 6 - 0.5 \checkmark$		
= 5,5 Ω <		(2)

13.4 Decreases √

Total resistance decreases. ✓

Current increases. ✓

"Lost volts" increases, \checkmark emf the same **OR** in ε = V_{ext} + Ir, Ir increases \checkmark , ε is constant External potential difference decreases \therefore V_{ext/eks} decreases

QUESTION 14

14.3

14.1 Temperature ✓

14.2 $r = 3 \Omega \checkmark \checkmark$

OPTION 2	OPTION 3	
3	$\overline{\epsilon} = I(R + r) \checkmark$	
$R = -r \cdot r \checkmark$	= 0,5(11 + 3) ✓	
1	$\epsilon = 7 \vee \checkmark$	
7,5 = 1,5ε - 3 [•]		
	$\frac{\text{OPTION 2}}{\text{R} = \frac{\varepsilon}{\text{I}} - r \checkmark}$ $7.5 = 1.5\varepsilon - 3 \checkmark$ $\varepsilon = 7 \text{ V }\checkmark$	$R = \frac{\varepsilon}{I} - r \checkmark$ $\varepsilon = I(R + r) \checkmark$ $\varepsilon = 0.5(11 + 3) \checkmark$ $\varepsilon = 7 \lor \checkmark$

QUESTION 15

15.1.1 The rate at which (electrical) energy is converted (to other forms) (in a circuit). ✓✓
 OR: The rate at which energy is used./Energy used per second.
 OR: The rate at which work is done.

	OR: The rate at which work is	•••	eu pe			(2)
15.1.2		W= $\frac{V^2 \Delta t}{R}$		P = VI 6 = (12)(I)	P = VI ✓ 6 = (12)(I)	
	$P = \frac{V^2}{R} \checkmark$ $6 = \frac{(12)^2}{R} \checkmark$	$6 = \frac{(12)^2(1)}{R}$		P = I²R ✓	$\therefore I = 0,5 \text{ A}$ V = IR	
	R = 24 Ω ✓	R=24 Ω ✓		6 = (0,5) ² R ✓ R = 24 Ω ✓	12 = (0,5)R ✓ R = 24 Ω ✓	(3)
15.1.3	$\frac{\text{OPTION 1}}{\frac{1}{R_{P}}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$		Rext	TION 2 = (R _s + R _{//})		. (0)
	$ \begin{array}{c} R_{P} & R_{1} & R_{2} \\ & = \frac{1}{24} + \frac{1}{24} \checkmark \end{array} $		$\frac{1}{R_{P}}$	$=\frac{1}{R_1}+\frac{1}{R_2}$		
	24 24 R// = 12 Ω			$=\frac{1}{24}+\frac{1}{24}\checkmark$: $R_{1/}=2$	12 Ω	
	$R_{ext} = (R_s + R_{l/})$		Rext	= (24 + 12) ✓ = 36	Ω	
	R _{ext} = (24 +12) ✓ = 36 Ω		$P = I^2 R = \frac{V^2}{R}$			
	$V = IR OR \qquad \varepsilon = I(R + r) \checkmark$					
	12 = I(36 + 1) I = 0.32 A	2) ✓ ✓ (0,316 A)		$I^{2}(36+2)=\frac{(12)^{2}}{38}$		
		(0,01011)		0,32 A ✓ (0,316)		(5)
15.1.4	<u>OPTION 1</u> V = IR		<u>OP</u> V =	<u>FION 2</u> IR		
	$V = I(R_A + r)$		-	the parallel portion (or from 8.1.3):	
	= 0,316(26) ✓		1	$\frac{1}{R_1} + \frac{1}{R_2} OR R = \frac{R_1 R_2}{(R_1 + R_2)}$	+	
	= 8,216 V (8,32 V))	
	V∥ = (12 – 8,216) ✓		R	$=\frac{(24)(24)}{48}=12\Omega$		
	= 3,784 V(3,68 V) ∴ V _C = 3,78 V (3,68 V) ✓			48 = Vc ✓		
	$v_{\rm C} = 3,76 v (3,06 v) v$			IR//= (0,316)(12) ✓ :	= 3.79 V (3,84 V)√	
	$\frac{\text{OPTION 3}}{I_A = I_B + I_C} = 2 I_B$					
	$1_{A} - 1_{B} + 1_{C} - 2_{B}$ 0,316 = 21 _B \checkmark					
	I _B = 0,158 A					
	V = 0,158 (24) ✓ = 3,79 V✓					(3)

(4) [**11**]

(1)(2)

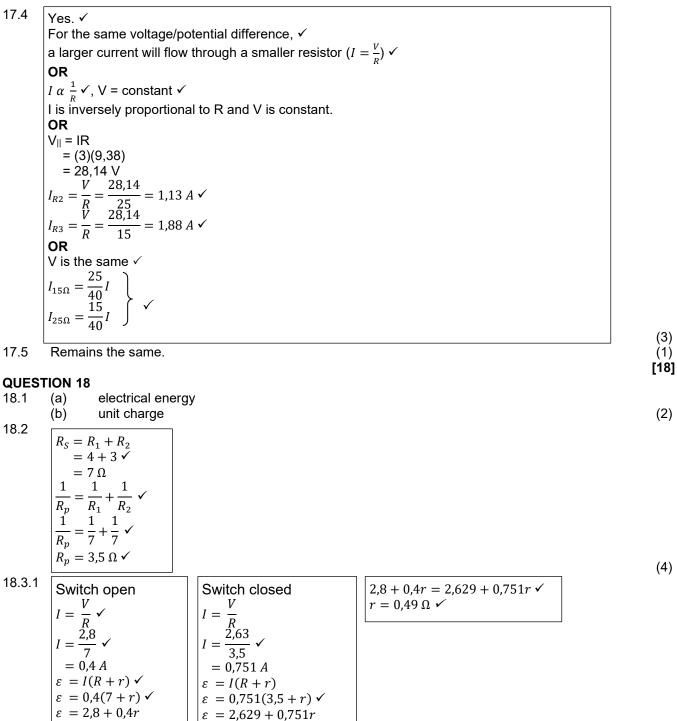
Physicacean and the stanmore has sice com

15.1.5 <u>OPTION 1</u> $P = \frac{V^{2}}{R} OR For a given resistance, power is directly proportional to V2. \checkmarkSince the potential difference across light bulb C is less than the operating voltage, \checkmarkthe output/power will be less. \checkmarkOPTION 2P = 1^{R} O R For a given resistance, power is directly proportional to 12. \checkmarkIn the circuil, the current in light bulb C is less than the optimum current required (0.5 A). \checkmarkThe output power will be less. \checkmarkOPTION 3P = 1^{V} O R Power is directly proportional/equal to product of V and 1. \checkmarkThe output power will be less. \checkmarkOPTION 3P = 1^{V} O R Power is directly proportional/equal to product of V and 1. \checkmarkThe output power will be less. \checkmarkOPTION 3P = 1^{V} O R Power is directly proportional/equal to product of V and 1. \checkmarkThe output power will be less. \checkmarkOPTION 3P = 1^{V} O R Power is directly proportional/equal to product of V and 1. \checkmarkThe output power will be less. \checkmarkOPTION 3P = 1^{V} O R Power is directly proportional/equal to product of V and 1. \checkmarkThe output power will be less. \checkmarkOPTION 411111111$	Physica		ysics. Culli F	5/2024		
Since the potential difference across light bulb C is less than the operating voltage, \checkmark the output/power will be less. \checkmark OPTION 2 $P = I^{2} R \ OR \ For a given resistance, power is directly proportional to I^{2}, \checkmarkIn the circuit, the current in light bulb C is less than the optimum current required (0.5 A), \checkmarkThe output power will be less. \checkmarkOPTION 3P = I^{1} R \ OR \ For a given resistance, power is directly proportional/equal to product of V and I. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmark(2)15.2.1 The total current passes through resistor \Lambda. \checkmark For the parallel portion, the current branches,therefore only a portion of the total current passes through resistor \Lambda. \checkmark(2)16.2.1 The total current passes through resistor \Lambda. \checkmark(2)CUESTION 1616.3.1 R = \frac{V}{I} \land : 5.6 = \frac{10.5}{1} \checkmark : I = 1.88 \ A \checkmark (1.875 \ A)16.3.2 \frac{\text{OPTION 1}}{P = V (\Lambda \lor (19,688 \ W))} = \frac{1}{1,.79 \ W \checkmark (19,688 \ W)} = \frac{1}{1,.79 \ W \checkmark (19,688 \ W)} = \frac{1}{1,.88} \ (1.802 \ (1.802 \ C) \ A = 1.88 \ (5.6 \ h^{2}) \ A = 1.97.9 \ W \checkmark (19,688 \ W)}16.4.1 Decreases \checkmarkVoltant acatured internal volts increase \checkmark16.4.2 \frac{\text{OPTION 1}}{R_{\text{res}}} = \frac{1}{R_{\text{t}}} + \frac{1}{R_{\text{c}}} \ \frac{1}{R_{\text{t}}} = \frac{1}{R_{\text{c}}} + \frac{1}{R_{\text{c}}} \ $	15.1.5	OPTION 1				
Since the potential difference across light bulb C is less than the operating voltage, \checkmark the output/power will be less. \checkmark OPTION 2 $P = I^{2} R \ OR \ For a given resistance, power is directly proportional to I^{2}, \checkmarkIn the circuit, the current in light bulb C is less than the optimum current required (0.5 A), \checkmarkThe output power will be less. \checkmarkOPTION 3P = I^{1} R \ OR \ For a given resistance, power is directly proportional/equal to product of V and I. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmarkThe voltage across light bulb C, as well as the current in the bulb are less than the optimum values. \checkmark(2)15.2.1 The total current passes through resistor \Lambda. \checkmark For the parallel portion, the current branches,therefore only a portion of the total current passes through resistor \Lambda. \checkmark(2)16.2.1 The total current passes through resistor \Lambda. \checkmark(2)CUESTION 1616.3.1 R = \frac{V}{I} \land : 5.6 = \frac{10.5}{1} \checkmark : I = 1.88 \ A \checkmark (1.875 \ A)16.3.2 \frac{\text{OPTION 1}}{P = V (\Lambda \lor (19,688 \ W))} = \frac{1}{1,.79 \ W \checkmark (19,688 \ W)} = \frac{1}{1,.79 \ W \checkmark (19,688 \ W)} = \frac{1}{1,.88} \ (1.802 \ (1.802 \ C) \ A = 1.88 \ (5.6 \ h^{2}) \ A = 1.97.9 \ W \checkmark (19,688 \ W)}16.4.1 Decreases \checkmarkVoltant acatured internal volts increase \checkmark16.4.2 \frac{\text{OPTION 1}}{R_{\text{res}}} = \frac{1}{R_{\text{t}}} + \frac{1}{R_{\text{c}}} \ \frac{1}{R_{\text{t}}} = \frac{1}{R_{\text{c}}} + \frac{1}{R_{\text{c}}} \ $		P = $\frac{V^2}{R}$ OR For a given resistance, power is directly proportional to V ² . \checkmark				
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		Since the potential difference across light bulb C is less than the operating voltage,				
$\begin{array}{c} \overline{P} = i^{2} R \ \overline{O} R \ \text{ for a given resistance, power is directly proportional to } i^{2} \cdot \checkmark \\ \hline \text{In the current in light bulb C is less than the optimum current required (0.5 A), } \\ \hline \text{The output power will be less.} \\ \hline \text{OPTION 3} \\ \overline{P} = iV \ \overline{OR} \ \text{Power is directly proportional/equal to product of V and I. } \\ \hline \text{The voltage across light bulb C, as well as the current in the bulb are less than the optimum values } \\ \hline \text{Hence power is less.} \\ \hline \text{An order power is less.} \\ \hline An order power is$		the output/power will be less. ✓		<u> </u>		
In the circuit, the current in light bulb C is less than the optimum current required (0.5 A). The output power will be less. OPTION 3 $P = IV OR Power is directly proportional/equal to product of V and I. The voltage across light bulb C, as well as the current in the bulb are less than the optimum values. Hence power is less 4 and brightness is less. (3) 15.2.1 The total current passes through resistor A. For the parallel portion, the current branches, therefore only a portion of the total current passes through resistor C. (2) 15.2.2 The current in B is equal. V to the current passes through resistor C. (2) 16.1 Maximum work done (or energy provided) \checkmark by a battery per unit charge passing through it.(2)16.2 13 V \checkmark (1)16.3.1 R = \frac{V}{1} \checkmark .5.6 = \frac{10.5}{1} \checkmark .1 = 1.88 A \checkmark (1.875 A) (3)16.3.2 \frac{OPTION 1}{P = V A} = \frac{10.5}{1.6} \checkmark .1 = 1.88 A \checkmark (1.875 A) (3)16.3.3 \frac{OPTION 1}{P = V A} = \frac{10.5}{5.6} \checkmark = 19.79 W \lor (19.688 W) = 19.79 W \checkmark (19.688 W) (3)16.4.1 Decreases \checkmarkV_{internal evidance/Internal volts increase \checkmarkV_{internal evidance/Internal volts incre$			athy proparticulate 12			
$\begin{array}{c} \hline \text{The output power will be less.}^{\prime} \\ \hline \textbf{OPTION 3} \\ P = IV OR Power is directly proportional/equal to product of V and I. <^{\prime} \\ \hline \text{The voltage across light bulb C, as well as the current in the bulb are less than the optimum values.}^{\prime} \\ \hline \text{Intervelope power is less.}^{\prime} \text{and brightness is less.} \\ \hline \text{Solution 16} \\ \hline Solution $				A). ✓		
$P = IV OR Power is directly proportional/equal to product of V and I. \checkmark$ The voltage across light bulb C, as well as the current in the bulb are less than the optimum values. (3) $factor power is less. \checkmark and brightness is less. (3) for the total current passes through resistor C. \checkmark (2) for the total current passes through resistor C. \checkmark (2) for the total current passes through resistor C. \land (2) for total current passes through resistor C. \land (2) for the total current passes through resistor C. \land (2) for the total current passes through resistor C. \land (2) for the total current passes through resistor C. \land (2) for the total current passes through resistor C. \land (2) for the total current passes through resistor C. \land (2) for the total current passes through resistor C. \land (1) for the total current passes through resistor C. \land (2) f$		T <u>he output power will be less.</u> ✓	1 X - X - X - X - X - X - X - X - X - X			
The voltage across light bulk C, as well as the current in the bulk are less than the optimum values \checkmark hence power is less \checkmark and brightness is less. (3) 15.2.1 The total current passes through resistor C, \checkmark (2) 15.2.2 The current in B is equal \checkmark to the current in A. The circuit becomes a series circuit. \checkmark (2) 15.2.2 The current in B is equal \checkmark to the current in A. The circuit becomes a series circuit. \checkmark (2) 15.2.1 The transmitter of the total current passes through resistor C, \checkmark (2) 15.2.2 The current in B is equal \checkmark to the current in A. The circuit becomes a series circuit. \checkmark (2) 16.1 Maximum work done (or energy provided) \checkmark by a battery per unit charge passing through it. \checkmark (1) 16.3.1 R = $\frac{V}{1} \checkmark :5.6 = \frac{10.5}{1} \checkmark :1 = 1.88 \text{ A} \checkmark (1.875 \text{ A})$ (3) 16.3.2 $\boxed{\frac{\text{OPTION 1}}{P = VI \checkmark} = (10.5)(1.88) \checkmark = 19.79 \text{ W} \checkmark (19.688 \text{ W}) = 19.79 \text{ W} \checkmark (19.688 \text{ W}) = 19.79 \text{ W} \checkmark (19.688 \text{ W}) = 19.79 \text{ W} \checkmark (19.688 \text{ W})$ (3) 16.3.3 $\boxed{\frac{\text{OPTION 1}}{R} = \frac{V}{R} \checkmark = \frac{10.5^2}{5.6} \checkmark = 19.79 \text{ W} \checkmark (19.688 \text{ W}) = \frac{V^2}{r} = \frac{2.5}{1.88} \checkmark = 1.33 \Omega \checkmark$ (3) 16.4.1 Decreases \checkmark $V_{\text{thermal residue}/Internal volts increase \checkmarkV_{\text{thermal residue}/Internal volts increase \checkmark13.4 (Rest = 1.31) \checkmarkRest = 1.94 \Omega (1.92 \Omega)Rest = 1.94 \Omega (2.92 \Omega)X = \frac{1}{2}(2.97) \checkmarkX = \frac{1}{2}(2.97) \checkmark$			product of V and L			
$\begin{array}{c} \underline{\text{hence power is less}}{\text{not orightness is less.}} \\ 15.2.1 The total current passes through resistor A, ~ F or the parallel portion, the current branches, therefore only a portion of the total current passes through resistor C, ~ (2) \\ 15.2.2 The current in B is equal ~ to the current in A. The circuit becomes a series circuit. ~ (2) \\ 15.2.1 The current in B is equal ~ to the current in A. The circuit becomes a series circuit. ~ (2) \\ 15.2.2 The current in B is equal ~ to the current in A. The circuit becomes a series circuit. ~ (2) \\ 16.3.1 R = \frac{V}{V} ~ (.5,6 = \frac{10.5}{1} ~ (.1 = 1.88 \text{ A} < (1.875 \text{ A}) \\ 16.3.1 R = \frac{V}{V} ~ (.5,6 = \frac{10.5}{1} ~ (.1 = 1.88 \text{ A} < (1.875 \text{ A}) \\ 16.3.2 \boxed{\frac{\text{OPTION 1}}{P = VI ~}} \\ = (10.5)(1.88) ~ (19.688 \text{ W}) \\ = 19.74 \text{ W} ~ (19.688 \text{ W}) \\ \hline \frac{\text{OPTION 2}}{R} ~ = \frac{10.5^2}{56} ~ (.1 = 1.9.79 \text{ W} ~ (19.688 \text{ W}) \\ \hline \frac{\text{OPTION 2}}{R} ~ (.19.688 \text{ W}) \\ \hline \frac{13 = 1.88}{5.6 + r) ~ (r} \\ \frac{13 = 1.88}{5.6 + r) ~ (r)} \\ \frac{13 = 1.88}{5.6 + r) ~ (r)} \\ \frac{13 = 1.88}{5.6 + r) ~ (r)} \\ \hline \frac{13 = 4(Rex + 1.31) ~ (r)}{Rex = 1.94 ~ \Omega} \\ \hline \frac{13 = 4(Rex + 1.31) ~ (r)}{Rex = 1.94 ~ \Omega} \\ \hline \frac{1}{194} = \frac{1}{5.6} + \frac{1}{R_2} \\ \hline \frac{1}{R_2} = \frac{1}{2}, \frac{1}{R_2} ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, \frac{1}{R_2} ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, \frac{1}{R_2} ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~ \Omega) \\ \hline \frac{1}{R_2} = \frac{1}{2}, (2.97) ~ (2.92 ~$				\checkmark		
therefore only a portion of the total current passes through resistor C, \checkmark (2) 15.2.2 The current in B is equal \checkmark to the current in A. The circuit becomes a series circuit. \checkmark (2) (2) QUESTION 16 16.1 Maximum work done (or energy provided) \checkmark by a battery per unit charge passing through it. \checkmark (2) 16.2 13 \lor (1) 16.3.1 R = $\frac{V}{I} \checkmark .5.6 = \frac{10.5}{I} \checkmark .1 = 1.88 \text{ A} \checkmark (1.875 \text{ A})$ (3) 16.3.2 $\boxed{\frac{\text{OPTION 1}}{P = \text{VI} \checkmark}}_{= (10.5)(1.88) \checkmark} = (1.88)^{2}(5.6) \checkmark}_{= 19.79 \text{ W} \checkmark (19.688 \text{ W})} = (1.68)^{2}(5.6) \checkmark}_{= 19.79 \text{ W} \checkmark (19.688 \text{ W})}$ $P = \frac{V^{2}}{R} \checkmark = \frac{10.5^{2}}{5.6} \checkmark = 19.79 \text{ W} \checkmark (19.688 \text{ W})}$ (3) 16.3.3 $\boxed{\frac{\text{OPTION 1}}{2 = I(R + r) \checkmark}}_{I = 1.38 (5.6 + r) \checkmark} = 19.79 \text{ W} \checkmark (19.688 \text{ W})}$ 16.4.1 Decreases \checkmark Votematresistance/Internal volts increase \checkmark Votematresistance/Internal volts increase \checkmark 16.4.2 $\boxed{\frac{\text{OPTION 1}}{2 = I(R + r) \checkmark}}_{I_{n}} = \frac{1}{I_{n}} + \frac{1}{R_{2}}}_{I_{n}} = \frac{1}{I_{n}} + \frac{1}{R_{2}}}_{R_{n}} = \frac{1.94 \Omega (1.92 \Omega)}{I_{1} J_{2}} = \frac{1}{I_{0}} + \frac{1}{R_{2}}$ $= \frac{1}{I_{1}J_{4}} = \frac{1}{I_{5}} + \frac{1}{R_{2}}$ $= \frac{1}{I_{1}J_{4}} = \frac{1}{I_{5}} + \frac{1}{R_{2}}$ $R_{2} = 2.97 \Omega (2.92 \Omega)}_{X} = \frac{1}{2}(2.97) \checkmark$ $X = \frac{1}{2}(2.97) \checkmark$		hence power is less \checkmark and brightness is less.	·	_		
15.2.2 The current in B is <u>equal</u> \checkmark to the current in A. The circuit becomes a <u>series</u> circuit. \checkmark [2] [21] QUESTION 16 16.1 <u>Maximum work done (or energy provided)</u> \checkmark by a battery per <u>unit charge</u> passing through it. \checkmark [2] 16.2 $13 \lor \checkmark$ (1) 16.3.1 $R = \frac{V}{I} \checkmark .5,6 = \frac{10,5}{I} \checkmark .1 = 1,88 \land \checkmark (1,875 \land)$ (3) 16.3.2 <u>OPTION 1</u> $P = VI \checkmark$ $= (10,5)(1,88) \checkmark$ $= (1,88)^2(5,6) \checkmark$ $= (1,88)^2(5,6) \checkmark$ $= (1,88)^2(5,6) \checkmark$ $= 19,79 \lor \checkmark (19,688 \lor)$ (3) 16.3.3 <u>OPTION 1</u> $P = \frac{V^2}{R} \checkmark = \frac{10,5^2}{5,6} \checkmark = 19,79 \lor \checkmark (19,688 \lor)$ (3) 16.4.1 Decreases \checkmark $V_{reternal restatance/Internal volts increase \checkmark$ (2) 16.4.2 <u>OPTION 1</u> $E = I(R + r) \checkmark$ $\frac{13 = 4(R_{ext} + 1,31) \checkmark}{I_{3} = 4(R_{ext} + 1,31) \checkmark}$ $R_{ext} = 1,94 \Omega (1,92 \Omega)$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ $\frac{1}{194} = \frac{1}{5,6} + \frac{1}{R_{2}} \checkmark$ $1,94 = \frac{56 R_{2}}{56 + R_{2}}$ $\frac{1}{R_{2}} = 2,97 \Omega (2,92 \Omega)$ $X = \frac{1}{2}(2,97) \checkmark$ $X = \frac{1}{2}(2,97) \checkmark$	15.2.1			(2)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.2.2					
16.1 <u>Maximum work done (or energy provided)</u> \checkmark by a battery per <u>unit charge passing through it.</u> \checkmark (2) 16.2 $13 \lor \checkmark$ (2) 16.3.1 $R = \frac{V}{I} \checkmark5, 6 = \frac{10.5}{I} \checkmark1 = 1,88 \land \checkmark (1,875 \land)$ (3) 16.3.2 $\underbrace{\begin{array}{ c c } \hline OPTION 1 \\ P = VI \checkmark \\ = (10.5)(1.88) \checkmark \\ = 19.74 \lor \checkmark (19.688 W) \\ \hline OPTION 3 \\ P = \frac{V^2}{R} \checkmark = \frac{10.5^2}{5,6} \checkmark = 19,79 \lor \checkmark (19,688 W) \\ \hline OPTION 3 \\ P = \frac{V^2}{R} \checkmark = \frac{10.5^2}{5,6} \checkmark = 19,79 \lor \checkmark (19,688 W) \\ \hline OPTION 2 \\ r = 1,31 \ \Omega \checkmark \\ \hline 1 = 1.88 (5.6 + r) \checkmark \\ r = 1,31 \ \Omega \checkmark \\ \hline 1 = 1.88 (5.6 + r) \checkmark \\ r = 1,31 \ \Omega \checkmark \\ \hline 1 = 1.88 (1.6 + r) \checkmark \\ \hline 1 = 1.48 (1.92 \ \Omega) \\ R_{ext} = 1.94 \ \Omega (1,92 \ \Omega) \\ R_{ext} = 1.94 \ \Omega (1,92 \ \Omega) \\ R_{ext} = 1.94 \ \Omega (1,92 \ \Omega) \\ R_{ext} = 1,94 \ \Omega (1,92 \ \Omega) \\ R_{ext} = 1,94 \ \Omega (1,92 \ \Omega) \\ R_{ext} = 1,94 \ \Omega (1,92 \ \Omega) \\ R_{ext} = 1,94 \ \Omega (1,92 \ \Omega) \\ R_{ext} = \frac{1}{1.94} = \frac{1}{1.5} + \frac{1}{R_2} \\ R_{2} = 2.97 \ \Omega (2.92 \ \Omega) \\ X = \frac{1}{2} (2.97) \checkmark \\ \hline X = \frac{1}{2} (2.97) \checkmark \\ \hline X = \frac{1}{2} (2.97) \checkmark $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			battery per unit charge passing through it	(2)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			battery per <u>unit charge</u> passing through it.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1631	$P = V_{4} \cdot 56 = \frac{10,5}{4} \cdot 1 = 1.88 \text{ A}_{4} \cdot (1.875 \text{ A}_{5})$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				(3)		
$\begin{array}{c c} = (10,5)(1,88) \checkmark & = (1,88)^{2}(5,6) \checkmark \\ = 19,74 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 19,79 \text{ W } \checkmark (19,688 \text{ W}) & = (1,88)^{2}(5,6) \checkmark \\ = 1,31 \Omega \checkmark & (1,91 \Omega) \checkmark \\ = 1,31 \Omega \checkmark & (1,91 \Omega) \checkmark \\ \text{Vaternal resistance/Internal volts increase} \checkmark & (2) \\ 16.4.2 \begin{array}{c} \begin{array}{c} OPTION 1 \\ \varepsilon = I(R + r) \checkmark \\ 13 = 4(R_{ext} + 1,31) \checkmark \\ R_{ext} = 1,94 \Omega (1,92 \Omega) \\ 1 \\ R_{ext} = 1,94 \Omega (1,92 \Omega) \\ 1 \\ R_{ext} = 1,94 \Omega (1,92 \Omega) \\ 1 \\ R_{ext} = 1,94 \Omega (1,92 \Omega) \\ R_{e} = \frac{R_{1}, R_{2}}{R_{1}, R_{2}} \\ 1,94 = \frac{5,6 R_{2}}{R_{1}, R_{2}} \checkmark \\ R_{2} = 2,97 \Omega (2,92 \Omega) \\ X = \frac{1}{2}(2,97) \checkmark & X = \frac{1}{2}(2,97) \checkmark \\ X = \frac{1}{2}(2,97) \checkmark \\ \end{array} $	16.3.2					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			= 19,79 W ✓ (19,688 W)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P = \frac{V^2}{V} \checkmark = \frac{10.5^2}{V} \checkmark = 19,79 \text{ W} \checkmark (19,688 \text{ W})$				
$\begin{bmatrix} \overline{\varepsilon} = I(R + r) \checkmark & & \\ \underline{13 = 1.88 (5.6 + r)} \checkmark & \\ r = \underline{V_{internal}} & \checkmark = \frac{2.5}{1.88} \checkmark = 1,33 \Omega \checkmark \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline V_{internal resistance/Internal volts increase} \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline V_{internal resistance/Internal volts increase} \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \land $		R 5,6		(3)		
$\begin{bmatrix} \overline{\varepsilon} = I(R + r) \checkmark & & \\ \underline{13 = 1.88 (5.6 + r)} \checkmark & \\ r = \underline{V_{internal}} & \checkmark = \frac{2.5}{1.88} \checkmark = 1,33 \Omega \checkmark \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline V_{internal resistance/Internal volts increase} \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline V_{internal resistance/Internal volts increase} \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \checkmark & \\ \hline I & = 1,31 \Omega \land $	16 2 2	OPTION 1	OBTION 2	1		
$\begin{array}{c c} 13 = 1.88 (5.6 + r) \checkmark & \qquad \qquad$	10.5.5	$\overline{\varepsilon} = I(R + r) \checkmark$				
$\begin{array}{c c} 16.4.1 & \text{Decreases } \checkmark & (3) \\ \hline 16.4.1 & \text{Decreases } \checkmark & (3) \\ \hline 16.4.2 & \begin{array}{c} 0\text{PTION 1} \\ \overline{\mathcal{E} = I(\mathbb{R} + r) \checkmark} \\ 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (2) \\ \hline 16.4.2 & \begin{array}{c} 0\text{PTION 2} \\ \overline{\mathcal{E} = I(\mathbb{R} + r) \checkmark} \\ 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (3) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (1,32 \ \Omega) & (1,32 \ \Omega) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (1,32 \ \Omega) & (1,32 \ \Omega) & (1,32 \ \Omega) \\ \hline 13 = 4 \left(\text{Rext} + 1,31 \right) \checkmark & (1,32 \ \Omega) & (1,33$		13 = 1.88(5.6 + r)	$r = \frac{1}{1} $			
$ \begin{array}{c c} \text{Vinternal resistance/Internal volts increase } \checkmark (2) \\ \hline \text{16.4.2} & \begin{array}{c} \frac{\text{OPTION 1}}{\mathcal{E} = I(R+r) \checkmark} \\ \frac{13 = 4 (R_{ext} + 1,31) \checkmark}{R_{ext} = 1,94 \ \Omega \ (1,92 \ \Omega)} \\ \frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \\ \frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{R_{2}} \checkmark \\ R_{2} = 2,97 \ \Omega \ (2,92 \ \Omega) \\ \chi = \frac{1}{2}(2,97) \checkmark \\ \end{array} $	16 / 1			(3)		
16.4.2 $\begin{array}{ c c c c c c } \hline OPTION 1 \\ \hline \mathcal{E} = I(R + r) \checkmark \\ \hline 13 = 4 (R_{ext} + 1,31) \checkmark \\ \hline R_{ext} = 1,94 \ \Omega & (1,92 \ \Omega) \\ \hline \frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \\ \hline \frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{R_{2}} \checkmark \\ \hline R_{2} = 2,97 \ \Omega & (2,92 \ \Omega) \\ \hline X = \frac{1}{2}(2,97) \checkmark \end{array} \qquad \begin{array}{ c c c } \hline OPTION 2 \\ \hline \mathcal{E} = I(R + r) \checkmark \\ \hline \frac{13 = 4(R_{ext} + 1,31)}{R_{ext} = 1,94 \ \Omega & (1,92 \ \Omega) \\ \hline R_{ext} = 1,94 \ \Omega & (1,92 \ \Omega) \\ \hline R_{p} = \frac{R_{1} R_{2}}{R_{1} + R_{2}} \\ \hline 1,94 = \frac{5,6 R_{2}}{5,6 + R_{2}} \checkmark \\ \hline R_{2} = 2,97 \ \Omega & (2,92 \ \Omega) \\ \hline X = \frac{1}{2}(2,97) \checkmark \qquad \begin{array}{ c c } \hline R_{2} = 2,97 \ \Omega & (2,92 \ \Omega) \\ \hline X = \frac{1}{2}(2,97) \checkmark \end{array}$	10.4.1			(2)		
$\frac{13 = 4 (R_{ext} + 1,31) \checkmark}{R_{ext} = 1,94 \Omega (1,92 \Omega)}$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ $\frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{R_{2}} \checkmark$ $R_{2} = 2,97 \Omega (2,92 \Omega)$ $X = \frac{1}{2}(2,97) \checkmark$ $\frac{13 = 4 (R_{ext} + 1,31) \checkmark}{R_{ext} = 1,94 \Omega (1,92 \Omega)}$ $R_{p} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$ $1,94 = \frac{5,6 R_{2}}{5,6 + R_{2}} \checkmark$ $R_{2} = 2,97 \Omega (2,92 \Omega)$ $X = \frac{1}{2}(2,97) \checkmark$ $X = \frac{1}{2}(2,97) \checkmark$	16.4.2	OPTION 1	OPTION 2			
$R_{ext} = 1,94 \Omega (1,92 \Omega)$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ $R_{p} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}$ $\frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{R_{2}} \checkmark$ $R_{2} = 2,97 \Omega (2,92 \Omega)$ $X = \frac{1}{2}(2,97) \checkmark$ $R_{2} = 2,97 \Omega (2,92 \Omega)$ $X = \frac{1}{2}(2,97) \checkmark$ $R_{2} = 2,97 \Omega (2,92 \Omega)$						
$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ $\frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{R_{2}} \checkmark$ $R_{p} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}$ $1,94 = \frac{5,6R_{2}}{5,6+R_{2}} \checkmark$ $R_{2} = 2,97 \Omega (2,92 \Omega)$ $X = \frac{1}{2}(2,97) \checkmark$ $X = \frac{1}{2}(2,97) \checkmark$ $X = \frac{1}{2}(2,97) \checkmark$		$\frac{13 = 4 (\text{Rext} + 1, 31)}{\text{Rext} = 1.94 \text{ O} (1.92 \text{ O})}$				
$\frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{R_2} \checkmark \qquad \qquad 1,94 = \frac{5,6 R_2}{5,6 + R_2} \checkmark \qquad \qquad R_2 = 2,97 \Omega \qquad (2,92 \Omega) \qquad \qquad R_2 = 2,97 \Omega \qquad (2,92 \Omega) \qquad \qquad X = \frac{1}{2} (2,97) \checkmark \qquad X = \frac{1}{2} (2,97) \checkmark \qquad \qquad X = \frac{1}{2} (2,97) \lor \qquad \qquad X = \frac{1}{2} (2$						
$ \begin{array}{l} R_2 = 2,97 \ \Omega & (2,92 \ \Omega) \\ X = \frac{1}{2} (2,97) \checkmark & \\ \end{array} \qquad \qquad$		$\overline{R_{P}} - \overline{R_{1}} + \overline{R_{2}}$	$R_p = \frac{R_1 + R_2}{R_1 + R_2}$			
$ \begin{array}{l} R_2 = 2,97 \ \Omega & (2,92 \ \Omega) \\ X = \frac{1}{2} (2,97) \checkmark & \\ \end{array} \qquad \qquad$		$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} \checkmark$	$1.94 = \frac{5.6 \text{ R}_2}{1.94}$			
$X = \frac{1}{2}(2,97)$ \checkmark $X = \frac{1}{2}(2,97)$ \checkmark		-				
ζ ζ			· · · · ·			
$= 1, 49 \ \Omega \checkmark (1,46 - 1,49 \ \Omega) = 1,49 \ \Omega \checkmark (1,46 - 1,49 \ \Omega)$		$X = \frac{1}{2}(2,97)$	$X = \frac{1}{2}(2,97)$			
		= 1, 49 Ω ✓ (1,46 – 1,49 Ω)	= 1,49 Ω ✓ (1,46 – 1,49 Ω)			

FS/2024

OPTION 3	OPTION 4	
$\overline{\varepsilon} = I(R + r) \checkmark$	$\overline{\varepsilon} = I(R + r) \checkmark$	
$13 = 4(R_{ext} + 1,31)$ \checkmark	$13 = 4(R_{ext} + 1,31)$	
$R_{ext} = 1,94 \Omega (1,92 \Omega)$	$R_{ext} = 1,94 \Omega (1,92 \Omega)$	
$\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$	$R_{p} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$	
$\frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{2X} \checkmark$	$1,94 = \frac{(5,6)(2X)}{5,6+2X} \checkmark$	
$_{2 \times = 2,97} \Omega$ (2,92 Ω)	(1,94)(5,6 + 2X) = 11,2 X	
$X = \frac{1}{2}(2,97)$	X = 1,49 Ω ✓	(5)
= 1,49 Ω ✓ (1,46 – 1,49 Ω)		[19]

QUESTION 17


QUEST	ION 17			
17.1	(Maximum) <u>energy provided (work done)</u> by a battery <u>per coulomb/unit charge</u> passing through it. 🗸			
	OR Work done by the battery to move a unit con		(2)	
		heat in the battery due to the internal resistance. $\checkmark\checkmark$	(2)	
17.3.1			()	
	$I = \frac{V}{2} \checkmark$			
	$I = \frac{V}{R} \checkmark$ $= \frac{1,5}{0,5} \checkmark$ $= 3 A \checkmark$			
	0,5			
	$= 3 A \checkmark$		(3)	
17.3.2			(0)	
17.0.2	OPTION 1	OPTION 2		
	$\frac{\frac{1}{R_p}}{\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} \checkmark}{\frac{1}{R_p} = \frac{1}{25} + \frac{1}{15} \checkmark}$			
	$\frac{1}{R_{\rm e}} = \frac{1}{R_{\rm e}} + \frac{1}{R_{\rm e}} \checkmark$	$R_p = \frac{R_1 R_2}{R_1 + R_2} \checkmark$		
	1 1 1	(25)(15)		
	$\frac{1}{D} = \frac{1}{2T} + \frac{1}{1T} \checkmark$	$R_p = \frac{(25)(15)}{25+15} \checkmark$		
	R _p = 9,375 Ω	$R_p = 9,375 \Omega$		
	R _{ext} = 9,375 <u>+ 4</u> ✓ = 13,38 Ω ✓	$R_{ext} = 9,375 \pm 4 \checkmark = 13,38 \Omega \checkmark$		
	(13,375 Ω)	(13,375 Ω)	(4)	
17.3.3 _г			(4)	
17.5.5				
	OPTION 1			
	$\mathcal{E} = I(R + r) \checkmark$			
	$= 3(13,38 + 0,5) \checkmark$			
	= 41,64 V ✓ (Range: 41,625 – 41,64)			
	OPTION 2			
	$\mathcal{E} = \bigvee_{\text{ext}} + \bigvee_{\text{int}} \checkmark$			
	$= (3)(13,38) + 1,5 \checkmark$		(2)	
	= 41,64 V ✓ (Range: 41,625 – 41,64)		(3)	
-				

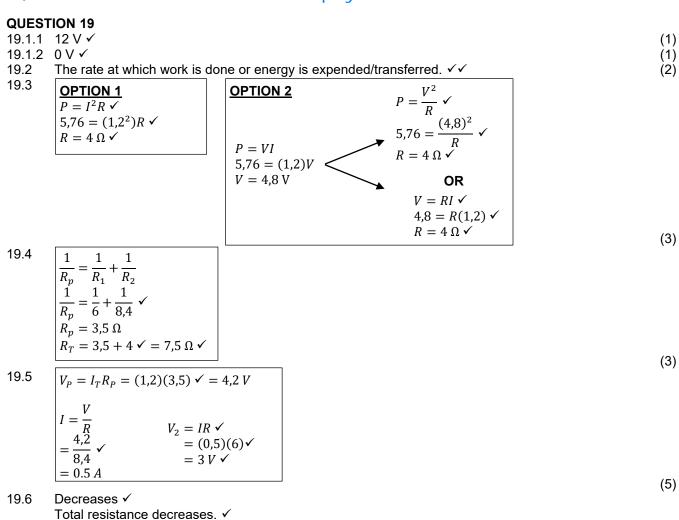
(3)

(1)

(2)

(4)

 $\varepsilon = 2,8 + 0,4r$ $\varepsilon = 2,629 + 0,751r$ 18.3.2 OR = 2,8 + (0,4)(0,49) \checkmark = 2,629 + (0,751)(0,49) \checkmark $= 3 V \checkmark$ $= 3 V \checkmark$


(2) [16]

(8)

Physics Revision Book: Answers

Physicaceandream Stanmorephysics.com

Total current increases. ✓

V_{internal} /Internal voltage ("lost volts") increases. ✓

Vexternal /external voltage decreases.

(4) [**19**]

QUEST				(0)	
20.1 20.2.1	A conductor (resistor) which $ \begin{array}{r} R = \frac{V}{I} \checkmark \\ 4 = \frac{3,2}{I} \checkmark \\ I = 0,8 A \checkmark \end{array} $	ו obeys Ohm's law. י∕ י	/	(2	
20.2.2	$ \frac{\text{OPTION 1}}{\varepsilon = I(R+r) \checkmark} $ $ = 0.8[(4+8) \checkmark = 0.5] \checkmark $ $ = 10 V \checkmark $	$V_{ext} = 3,2 + 6,4$	$V_{int} = Ir = (0,8)(0,5) \checkmark = 0,4 V V_{emf} = V_{ext} + V_{int} \checkmark = 9,6 + 0,4 \checkmark = 10 V \checkmark$	(3	
20.3.1	$V_{int} = 10 - 8.8$ = 1,2 V $V_{int} = I_{tot}r$ 1,2 = $I_{tot}(0,5) \checkmark$ $I_{tot} = 2.4 A$ $I_{serie \ branch} = \frac{V}{R}$ = $\frac{8.8}{8 + 4} \checkmark$	$I_R = I_{tot} - I_{serie \ branch}$ $= 2,4 - 0,733 \checkmark$ $= 1,667 A$ $R = \frac{V}{I_R}$ $= \frac{8,8}{1,667} \checkmark$ $= 5,28 \Omega \checkmark$		」 (4	+)
20.3.2	= 0,733 A There is a short circuit. The resistance of the connect	oting wire is yony low		(5	i)

The resistance of the connecting wire is very low. / The total resistance decreases. \checkmark The current delivered by the battery is very high. \checkmark Higher current produces more heat. ✓

QUESTION 21

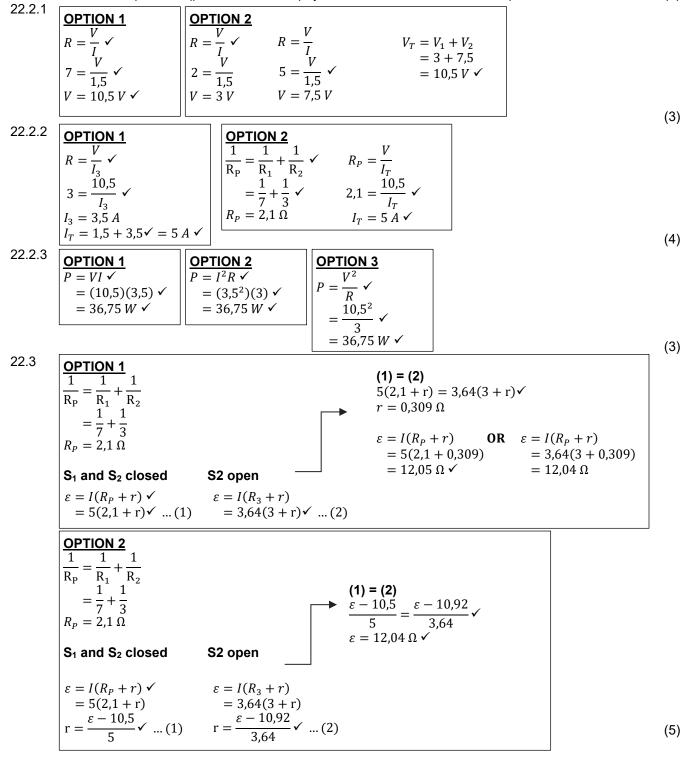
21.1 The potential difference across a conductor is directly proportional to the current in the conductor at constant temperature. ✓✓ (2) ~ ~ ~ 4

21.2.1
$$\begin{vmatrix} \frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} & R_{ext} = R_{p} + R_{4} \\ = \frac{1}{1} + \frac{1}{5} & = 4,833 \ \Omega & \checkmark \\ R_{p} = 0,833 \ \Omega & \end{vmatrix}$$

21.2.2

21.2.3 Smaller than ✓

21.3.1	Maximum energy supplied by the battery per unit charge. 🗸 🗸 OR	()
	The total amount of electric energy supplied by the battery per coulomb / per unit charge.	(2)
21.3.2	No ✓	(1)
21.3.3	The battery has internal resistance. OR	
	Some energy per coulomb of charge/volts is used to overcome internal resistance. OR	
	There is a potential drop/lost volts inside the battery. ✓	(1)
21.4.1	Decreases ✓	(1)
21.4.2	Increases 🗸	(1)


(3) [17]

(4) [**20**]

- 21.5 When the voltmeter is connected:
 - The resistance of the parallel branch increases. OR No/very small current through the 1 Ω branch.
 OR Branch with 1 Ω resistor is disabled/bypassed. OR A voltmeter has a very high resistance. ✓
 - (Total) resistance of the circuit increases. ✓
 - Current in circuit decreases. ✓
 - V_{internal}/ Internal volts/ V_{lost} decreases. ✓
 - Therefore, external volts increase for a constant emf.

QUESTION 22

22.1 The potential difference across a conductor is directly proportional to the current in the conductor at constant temperature (provided all other physical conditions remain constant). ✓✓ OR The ratio of potential difference to current is constant at constant temperature. OR The current in a conductor is directly proportional to the potential difference across the conductor at constant temperature (provided all other physical conditions remain constant). (2)

Physics Revision Book: Answers

22.4	Increases ✓ Total resistance increases. ✓ Current decreases. ✓	
0.150	V _{internal} /Internal volts decreases. ✓	(4) [21]

QUESTION 23

23.1 The potential difference (voltage) across a conductor is directly proportional to the current in the conductor at constant temperature. ✓✓ OR
 The current in a conductor is directly proportional to the potential difference (voltage) across the conductor if temperature is constant. (2)

23.3.2 Total resistance of the circuit increases and current in circuit decreases. ✓ V_{internal}/internal volts/V_{lost} decreases and V_{external}/external volts /V_{RL} increases. ✓ Power output increases ✓ therefore brightness increases.

```
(3)
[18]
```

ELECTRICAL MACHINES

QUESTION 1

- Electromagnetic induction ✓ 1.1
- (1) 1.2 Rotate coil faster./Increase number of coils./Increase the strength of the magnetic field. ✓ (1) 1.3 Slip rings ✓ (1) 1.4
- The <u>AC potential difference/voltage</u> ✓ that produces the <u>same amount of electrical energy as an</u> equivalent DC potential difference/voltage. ✓ (2) V

1.5
$$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark = \frac{339,45}{\sqrt{2}} \checkmark ... V_{\rm rms} = 240,03 \, \text{V} \checkmark$$

(3) [8]

[9]

(1)

(3)

[10]

(2)

QUESTION 2

2.1.1	OPTION 1	OPTION 2	
	$P_{ave} = \frac{V_{rms}^2}{R} \checkmark$	$V_{rms} = \frac{V_{max}}{\sqrt{2}} = \frac{340}{\sqrt{2}} = 240,04$	
	$100 \checkmark = \frac{\left(\frac{340}{\sqrt{2}}\right)^2 \checkmark}{R} \checkmark$	$P_{ave} = \frac{V_{rms}^2}{R} \checkmark$	
	$\frac{100 \lor = \frac{1}{R}}{R}$ $R = 578 \Omega \checkmark$	$100 \checkmark = \frac{(240,04)^2}{R} \checkmark \therefore R = 578 \Omega \checkmark$	(5)
2.1.2	OPTION 1 Pave = IrmsVrms ✓	OPTION 2	
	P _{ave} = I _{rms} V _{rms} ✓	V _{rms} = I _{rms} R ✓	
	$100 = \text{Irms} \frac{340}{\sqrt{2}} \checkmark \qquad \therefore \text{ Irms} = 0,417 \text{ A} \checkmark$	$\frac{340}{\sqrt{2}} = I_{rms}(578) \checkmark : I_{rms} = 0,417 \text{ A} \checkmark$	(3)
2.2	Can be stepped up or down. / Can be transm	nitted with less power loss. ✓	(1)

QUESTION 3

3.1.1 Anticlockwise √ 3.1.2 +100 _ Potential difference/ voltage (V) 0,1 t(s) -100 Criteria for graph: Two full cycles with correct shape. \checkmark \checkmark Showing the maximum voltage. \checkmark Showing the time 0,1s for two cycles.

Decrease the frequency/ speed of rotation $\checkmark(1)$ 3.1.3

3.2
$$P_{ave} = V_{rms}I_{rms} \checkmark \therefore 1500 = (220)(I_{rms}) \checkmark \therefore I_{rms} = 6,82 \text{ A}$$

$$I_{\rm rms} = \frac{I_{\rm max}}{\sqrt{2}} \checkmark \qquad \therefore \quad I_{\rm max} = \sqrt{2} \ (6,82) \checkmark = 9,65 \ {\rm A} \checkmark \tag{5}$$

QUESTION 4

- Move the bar magnet very quickly $\checkmark \checkmark \mathbf{OR}$ up and down inside the coil. 4.1.1
- 4.1.2 Electromagnetic induction </ (1) (1)
- 4.1.3 Commutator √

FS/2024

4.2.1					1
4.2.1	$\frac{\text{OPTION 1}}{\sqrt{2}}$		V^2	(220)2 √	
	$P_{\text{ave}} = \frac{V_{\text{rms}}^2}{R} \checkmark = \frac{(220)^2}{40.33} \checkmark$		$W = \frac{V_{rms}^2}{R} \Delta t \checkmark$	$\zeta = \frac{(220)}{40.33}$ (1)	
	= 1 200,10 W ((J·s⁻¹) √		= 1200,10 J ✓	
	OPTION 2	()		- 1200,103 0	
			V _{rms}	220	
	$I_{\rm rms} = \frac{V_{\rm rms}}{R} \checkmark = \frac{220}{40,33} \checkmark =$	5,45 A	$I_{\rm rms} = \frac{1}{R} \sqrt{1}$	$=\frac{220}{40.33}$ \checkmark = 5,45 A	
	$P_{ave} = I_{rms}^2 R = (5,45)^2 40,33$./		(5,45) ² (40,33)(1) ✓	
400	= 1 197,9 W /1 2	200,10 ₩ 🗸		I 197,9 J / 1 200,10 J ✓	(4)
4.2.2	OPTION 1		OPTION 2 Pave = VrmsIrms ✓		
	$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}}$		<u>1200,1 = (220)In</u>	ms√	
			Irms = 5,455 A		
	$220 = \frac{V_{max}}{\sqrt{2}}$		$I_{max} = \sqrt{2} (5.45)$		
	√2		$I_{max} = \sqrt{2} (5,45)$	5)	
	V _{max} = 311,13 V	√ any	= 7,71 A√	(7,715 A)	
	V <u>33113</u>	/ formula			
	$I_{\text{max}} = \frac{V_{\text{max}}}{R} = \frac{331,13}{40,33} \neq 7,$	71 A ✓			
	OR				
	$P_{ave} = \frac{V_{max}I_{max}}{2}$				
	311131				
	$1200,1 = \frac{311,13I_{max}}{2}$: Ima	_x = 7,71 A			
			OPTION 4		
	$\frac{\text{OPTION 3}}{P_{\text{ext}} = l^2 R}$		<u>OPTION 4</u> V _{rms} = I _{rms} R ✓		
	$P_{ave} = I_{rms}^2 R \checkmark$		V _{rms} = I _{rms} R ✓) 🗸	
			V _{rms} = I _{rms} R ✓ <u>220 = I_{rms}(40,33)</u>	<u>)</u> ~	
	$ \overline{P_{ave}} = I_{rms}^2 \overline{R} \checkmark \frac{1200,1 = I^2 rms(40,33)}{I_{rms} = 5,455 \text{ A}} $		$V_{rms} = I_{rms}R \checkmark$ <u>220 = I_{rms}(40,33)</u> $I_{rms} = 5,455 \text{ A}$		(3)
	$\overline{P_{ave}} = I_{rms}^{2} \overline{R} \checkmark$ $\frac{1200,1 = I^{2} rms(40,33)}{I_{rms}} \checkmark$ $I_{rms} = 5,455 \text{ A}$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$	= 7,71 A ✓	$V_{rms} = I_{rms}R \checkmark$ <u>220 = I_{rms}(40,33)</u> $I_{rms} = 5,455 \text{ A}$) ✓ √2 (5,455) = 7,71 A ✓	(3) [11]
QUEST	$\overline{P_{ave}} = I_{rms}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2 rms(40,33)}{I_{rms}} \checkmark$ $I_{rms} = 5,455 \text{ A}$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ TION 5	= 7,71 A ✓	$V_{rms} = I_{rms}R \checkmark$ <u>220 = I_{rms}(40,33)</u> $I_{rms} = 5,455 \text{ A}$		[11]
5.1.1	$\overline{P_{ave}} = I_{rms}^2 R \checkmark$ $\frac{1200,1 = I^2 rms(40,33)}{I_{rms}} \checkmark$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ TION 5 North pole \checkmark	= 7,71 A ✓	$V_{rms} = I_{rms}R \checkmark$ <u>220 = I_{rms}(40,33)</u> $I_{rms} = 5,455 \text{ A}$		[11] (1)
	$\overline{P_{ave}} = I_{rms}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2 rms(40,33)}{I_{rms}} \checkmark$ $I_{rms} = 5,455 \text{ A}$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ TION 5	= 7,71 A ✓	$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$		[11]
5.1.1 5.1.2	$\overline{P_{ave}} = l_{rms}^2 R \checkmark$ $\frac{1200,1 = l_{rms}^2 (40,33)}{I_{rms}} \checkmark$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ $\overline{ION 5}$ North pole \checkmark $Q \text{ to P } \checkmark$ $\overline{OPTION 1}$		$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $OPTION 2$	√2 (5,455) = 7,71 A ✓	[11] (1)
5.1.1 5.1.2	$\overline{P_{ave}} = I_{rms}^2 R \checkmark$ $\frac{1200,1 = I^2_{rms}(40,33)}{I_{rms}} \checkmark$ $\overline{I_{rms}} = 5,455 \text{ A}$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ $\overline{ION 5}$ North pole \checkmark $Q \text{ to } P \checkmark$		$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}} \checkmark$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $T \therefore 220 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	[11] (1)
5.1.1 5.1.2	$\overline{P_{ave}} = l_{rms}^2 R \checkmark$ $\frac{1200,1 = l_{rms}^2 (40,33)}{I_{rms}} \checkmark$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ $\overline{ION 5}$ North pole \checkmark $Q \text{ to P } \checkmark$ $\overline{OPTION 1}$		$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $OPTION 2$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $T \therefore 220 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	[11] (1)
5.1.1 5.1.2	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}}} \checkmark$ $\overline{I_{\text{rms}}} = 5,455 \text{ A}$ $I_{\text{max}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ $\overline{ION 5}$ North pole \checkmark $Q \text{ to } P \checkmark$ $\overline{OPTION 1}$ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$		$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,1$ $V_{max} = I_{max}R \checkmark$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $(\therefore 220 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ (2 V)	[11] (1)
5.1.1 5.1.2	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}} = 5,455 \text{ A}}$ $\overline{I_{\text{rms}}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ $\overline{ION 5}$ North pole \checkmark $Q \text{ to } P \checkmark$ $\overline{\frac{\text{OPTION 1}}{I_{\text{rms}}}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\nabla_{\text{rms}} = I_{\text{rms}} \overline{R} \checkmark$		$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $\therefore 220 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ $22V$	(1) (1) (1)
5.1.1 5.1.2 5.2.1	$\overline{P_{ave}} = I_{rms}^2 R \checkmark$ $\frac{1200,1 = I^2 rms(40,33)}{I_{rms}} \checkmark$ $\overline{I_{rms}} = 5,455 \text{ A}$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ $\overline{OPTION 5}$ North pole \checkmark $Q \text{ to P }\checkmark$ $\overline{OPTION 1}$ $I_{rms} = \frac{I_{max}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall rms = I_{rms} R \checkmark$ $220 = 5,66 R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$	6 A	$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$ $V_{max} = 311,1$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $R = 38,89 \Omega$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $(\therefore 220 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ (2 V)	[11] (1)
5.1.1 5.1.2	$\overline{P_{ave}} = I_{rms}^{2} R \checkmark$ $\frac{1200,1 = I^{2} rms(40,33)}{I_{rms}} \checkmark$ $\overline{I_{rms}} = 5,455 \text{ A}$ $I_{max} = \sqrt{2} I_{rms} = \sqrt{2} (5,455)$ TON 5 North pole \checkmark Q to P \checkmark $\overline{OPTION 1}$ $I_{rms} = \frac{I_{max}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall rms = Irms R \checkmark$ $220 = 5,66R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$ $\overline{OPTION 1}$	6 A OPTION 2	$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $(\therefore 220 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ 22 V $(\cancel{2} \text{ V})$ $((\cancel{2} \text{ V})$ $((\cancel{2} \text{ V}))$ $((\cancel{2} \text{ V})$ $((\cancel{2} \text{ V}))$ $((\cancel{2} \text{ V})$ $(((\cancel{2} \text{ V}))$ $(((\cancel{2} \text{ V}))$ $(((((\cancel{2} \text{ V})))$ $(((((((((((((((((((((((((((((((((($	(1) (1) (1)
5.1.1 5.1.2 5.2.1	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 R \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}} = 5,455 \text{ A}}$ $\overline{I_{\text{rms}}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ $\overline{\text{ION 5}}$ North pole \checkmark $Q \text{ to P }\checkmark$ $\overline{\frac{\text{OPTION 1}}{I_{\text{rms}}}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall_{\text{rms}} = I_{\text{rms}} R \checkmark$ $220 = 5,66R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$ $\overline{\frac{\text{OPTION 1}}{P_{\text{ave}}}} = \forall_{\text{rms}} I_{\text{rms}} \checkmark$ $= (220)(5,66) \checkmark$	6 A <u> OPTION 2</u> P _{ave} = I ² _{rms} R ✓	$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$ OF P_{ax}	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $(\therefore 220 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ 22 V $(\cancel{2} \text{ V})$ $((\cancel{2} \text{ V})$ $((\cancel{2} \text{ V}))$ $((\cancel{2} \text{ V})$ $((\cancel{2} \text{ V}))$ $((\cancel{2} \text{ V})$ $(((\cancel{2} \text{ V}))$ $(((\cancel{2} \text{ V}))$ $(((((\cancel{2} \text{ V})))$ $(((((((((((((((((((((((((((((((((($	(1) (1) (1)
5.1.1 5.1.2 5.2.1	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 R \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}} = 5,455 \text{ A}}$ $I_{\text{max}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ TON 5 North pole \checkmark Q to P \checkmark $\overline{OPTION 1}$ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall_{\text{rms}} = I_{\text{rms}} R \checkmark$ $220 = 5,66R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$ $\overline{OPTION 1}$ $P_{\text{ave}} = \forall_{\text{rms}} I_{\text{rms}} \checkmark$ $= (220)(5,66) \checkmark$ $= 1.245,2 \text{ W}$	6 A $ \frac{\text{OPTION 2}}{P_{ave} = I_{rms}^{2} R \checkmark} $ = (5,66) ² (38,8)	$V_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$ OF P_{ax}	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,20) = \frac{V_{max}}{\sqrt{2}} \checkmark$	(1) (1) (1)
5.1.1 5.1.2 5.2.1	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 R \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}} = 5,455 \text{ A}}$ $I_{\text{max}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ TON 5 North pole \checkmark Q to P \checkmark $\overline{OPTION 1}$ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall_{\text{rms}} = I_{\text{rms}} R \checkmark$ $220 = 5,66R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$ $\overline{OPTION 1}$ $P_{\text{ave}} = \forall_{\text{rms}} I_{\text{rms}} \checkmark$ $= (220)(5,66) \checkmark$ $= 1.245,2 \text{ W}$	6 A $ \frac{\text{OPTION 2}}{P_{\text{ave}} = I_{\text{rms}}^2 R \checkmark} $ = (5,66) ² (38,8) = 1 245,22 W	$\nabla_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$ OF P_{av}	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,20) = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ $= \frac{V_{\text{max}}}{R} \checkmark = \frac{(220)^2}{38,87} \checkmark$ $= 1,245,18 \text{ W}$	(1) (1) (1)
5.1.1 5.1.2 5.2.1	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}} = 5,455 \text{ A}}$ $\overline{I_{\text{rms}}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ TON 5 North pole \checkmark Q to P \checkmark $\overline{OPTION 1}$ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall_{\text{rms}} = I_{\text{rms}} \overline{R} \checkmark$ $220 = 5,66R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$ $\overline{OPTION 1}$ $\overline{P_{\text{ave}}} = \forall_{\text{rms}} I_{\text{rms}} \checkmark$ $= (220)(5,66) \checkmark$ $= 1 245,2 \text{ W}$ $P = \frac{W}{\Delta t} \checkmark$	6 A $ \frac{\text{OPTION 2}}{P_{\text{ave}} = I_{\text{rms}}^2 R \checkmark} $ = (5,66) ² (38,8) = 1 245,22 W	$\nabla_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$ OF P_{av}	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,20) = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ $= \frac{V_{\text{max}}}{R} \checkmark = \frac{(220)^2}{38,87} \checkmark$ $= 1,245,18 \text{ W}$	(1) (1) (1)
5.1.1 5.1.2 5.2.1	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}} = 5,455 \text{ A}}$ $\overline{I_{\text{rms}}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ TON 5 North pole \checkmark Q to P \checkmark $\overline{OPTION 1}$ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall_{\text{rms}} = I_{\text{rms}} \overline{R} \checkmark$ $220 = 5,66R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$ $\overline{OPTION 1}$ $\overline{P_{\text{ave}}} = \forall_{\text{rms}} I_{\text{rms}} \checkmark$ $= (220)(5,66) \checkmark$ $= 1 245,2 \text{ W}$ $P = \frac{W}{\Delta t} \checkmark$	6 A $\boxed{\frac{\text{OPTION 2}}{P_{\text{ave}} = I_{\text{rms}}^2 \text{ R }}_{= (5,66)^2 (38,8)}_{= 1 245,22 \text{ W}}}$ $P = \frac{W}{\Delta t} \checkmark$	$\nabla_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$ OF P_{ax} $7) \checkmark$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $220 = \frac{V_{max}}{\sqrt{2}} \checkmark$ $220 = \frac{V_{max}}{\sqrt{2}} \checkmark$ $\frac{V^2}{\sqrt{2}} = \frac{V^2_{ms}}{R} \checkmark = \frac{(220)^2}{38,87} \checkmark$ $= 1.245,18 \text{ W}$ $= \frac{W}{\Delta t} \checkmark$	(1) (1) (1)
5.1.1 5.1.2 5.2.1	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2 \text{rms}(40,33)}{\text{Irms}} \checkmark$ $\overline{I_{\text{rms}}} = 5,455 \text{ A}$ $I_{\text{max}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ ION 5 North pole \checkmark $Q \text{ to P }\checkmark$ $\overline{\text{OPTION 1}}$ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall \text{rms} = \text{Irms} \overline{R} \checkmark$ $220 = 5,66R \checkmark$ $\therefore \overline{R} = 38,87 \Omega \checkmark$ $\overline{\text{OPTION 1}}$ $P_{\text{ave}} = \forall \text{rms} \text{Irms} \checkmark$ $= (220)(5,66) \checkmark$ $= 1.245,2 W$ $P = \frac{W}{\Delta t} \checkmark$ $1.245,22 = \frac{W}{7200} \checkmark$	6 A $ \frac{\text{OPTION 2}}{P_{\text{ave}} = I_{\text{rms}}^2 R \checkmark} $ = (5,66) ² (38,8) = 1 245,22 W	$\nabla_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$ OF P_{ax} $7) \checkmark$	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,455) = 7,71 \text{ A } \checkmark$ $\sqrt{2} (2,20) = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$ $= \frac{V_{\text{max}}}{R} \checkmark = \frac{(220)^2}{38,87} \checkmark$ $= 1,245,18 \text{ W}$	(1) (1) (1) (5)
5.1.1 5.1.2 5.2.1	$\overline{P_{\text{ave}}} = I_{\text{rms}}^2 \overline{R} \checkmark$ $\frac{1200,1 = I^2_{\text{rms}}(40,33)}{I_{\text{rms}} = 5,455 \text{ A}}$ $\overline{I_{\text{rms}}} = \sqrt{2} I_{\text{rms}} = \sqrt{2} (5,455)$ TON 5 North pole \checkmark Q to P \checkmark $\overline{OPTION 1}$ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \checkmark = \frac{8}{\sqrt{2}} \checkmark = 5,66$ $\forall_{\text{rms}} = I_{\text{rms}} \overline{R} \checkmark$ $220 = 5,66R \checkmark$ $\therefore R = 38,87 \Omega \checkmark$ $\overline{OPTION 1}$ $\overline{P_{\text{ave}}} = \forall_{\text{rms}} I_{\text{rms}} \checkmark$ $= (220)(5,66) \checkmark$ $= 1 245,2 \text{ W}$ $P = \frac{W}{\Delta t} \checkmark$	6 A $\boxed{\frac{\text{OPTION 2}}{P_{\text{ave}} = I_{\text{rms}}^2 \text{ R }}_{= (5,66)^2 (38,8)}_{= 1 245,22 \text{ W}}}$ $P = \frac{W}{\Delta t} \checkmark$	$\nabla_{rms} = I_{rms}R \checkmark$ $\frac{220 = I_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$ $I_{max} = \sqrt{2} I_{rms} =$ $\frac{OPTION 2}{V_{rms} = \frac{V_{max}}{\sqrt{2}}}$ $\therefore V_{max} = 311,11$ $V_{max} = I_{max}R \checkmark$ $311,12 = 8R \checkmark$ $\therefore R = 38,89 \Omega$ OF P_{av} $7) \checkmark$ P	$\sqrt{2} (5,455) = 7,71 \text{ A } \checkmark$ $220 = \frac{V_{max}}{\sqrt{2}} \checkmark$ $220 = \frac{V_{max}}{\sqrt{2}} \checkmark$ $\frac{V^2}{\sqrt{2}} = \frac{V^2_{ms}}{R} \checkmark = \frac{(220)^2}{38,87} \checkmark$ $= 1245,18 \text{ W}$ $= \frac{W}{\Delta t} \checkmark$	(1) (1) (1)

Physics Revision Book: Answers

QUESTION 6

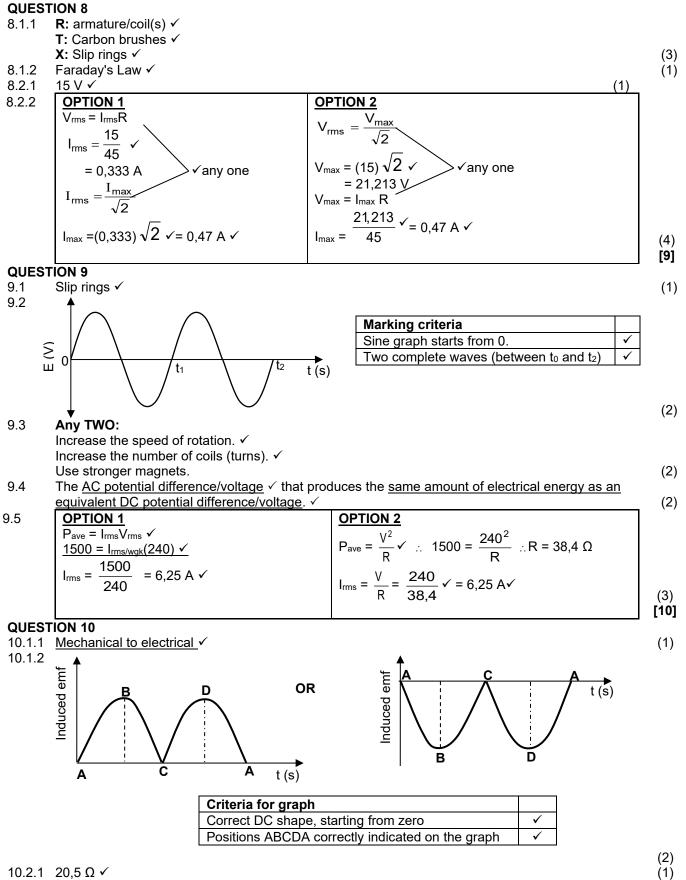
- 6.1.1 a to b √
- 6.1.2 Fleming's left hand rule /Left hand motor rule √
- 6.1.3 Split rings /commutator √
- 6.2.1 Mechanical/Kinetic energy to electrical energy √√

(2) **OPTION 2** 6.2.2 **OPTION 1** $V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark = \frac{430}{\sqrt{2}} \checkmark = 304,06 \, \rm V$ V_{max} = I_{max}R ✓ 430 = I_{max}(400) √ $I_{max} = 1,075$ $I = \frac{V}{R} \checkmark = \frac{304,06}{400} \checkmark = 0,76 \text{ A} \checkmark$ $I_{rms} = \frac{I_{rms}}{\sqrt{2}} = \frac{1,075}{\sqrt{2}} \checkmark = 0,76 \text{ A} \checkmark$ OPTION 4**OPTION 3** $V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark = \frac{430}{\sqrt{2}} \checkmark = 304,06 \text{ V}$ $V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark = \frac{430}{\sqrt{2}} \checkmark = 304,06 \text{ V}$ $P_{ave} = \frac{V_{rms}^2}{R} = \frac{(304,06)^2}{400} = 231,13 \text{ W}$ $\mathsf{P}_{\mathsf{ave}} \; = \frac{\mathsf{V}_{\mathsf{rms}}^2}{\mathsf{R}} = \frac{(304,06)^2}{400} \; = 231,13 \; \mathsf{W}$ Pave = IrmsVrms ✓ $P_{ave} = I^2_{rms} R \checkmark$ 231,13 = I_{rms}(304,06) ✓ ∴ I_{rms} = 0,76 A ✓ 231,13 = I^{2}_{rms} (400) \checkmark \therefore Irms = 0,76 A \checkmark (5)

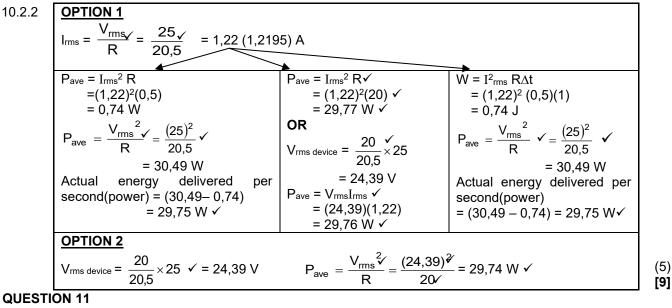
QUESTION 7

DC-generator √ 7.1.1 Uses split ring/commutator √ (2) 7.1.2 OR nduced emf (V) nduced emf (V) time (s) Curve starts at zero to first peak. ✓ Time (s) (2) Shape and one complete DC cycle. ✓ **OPTION 1** 7.2.1 **OPTION 2** $V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} = \frac{340}{\sqrt{2}} = 240,416 \, \rm V$ $V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} = \frac{340}{\sqrt{2}}$ Pave = VrmsIrms ✓ Pave = V_{rms}I_{rms} ✓ $800 = \frac{340}{\sqrt{2}} \operatorname{Irms} \checkmark \quad \therefore \operatorname{Irms} = 3,33 \, \text{A} \checkmark$ <u>800 = Irms (240,416)</u> √ I_{rms} = 3,33 A √ **OPTION 3 OPTION 4** $P_{\text{ave}} = \frac{V_{\text{rms}}^2}{R} = \frac{V_{\text{max}}^2}{2R}$ $P_{ave} = I_{rms}^2 R \checkmark$ $800 = I \frac{2}{rms} (72,25) \checkmark$ $800 = \frac{(340)^2}{(\sqrt{2})^2 R}$ \therefore R = 72,25 Ω Irms = 3,33 A ✓ V_{rms} = I_{rms}R ✓ $I_{\rm rms} = \frac{240,416}{72,25} \checkmark = 3,33 \text{ A} \checkmark$ (3)**OPTION 1 OPTION 2** 7.2.2 For the kettle: $P_{ave} = V_{rms}I_{rms} \checkmark = \frac{V_{max}I_{max}}{2}$ Pave = V_{rms}I_{rms} ✓ 2000 = $\frac{340}{\sqrt{2}}$ I_{rms} \checkmark : I_{rms} = 8,32 A 2 800 = $\frac{340}{2}$ I_{max} \checkmark .: I_{max} = 16,47 A I_{tot} = (8,32 + 3,33) √ $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} = \frac{16,47}{\sqrt{2}} \checkmark \therefore I_{\text{rms}} = 11,65 \text{ A} \checkmark$ = 11.65 A ✓ (4)[11]

FS/2024

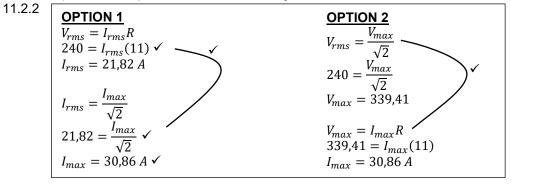

(1)

(1)


(1)

[10]

Physicacean Stanmorephysics.com


10.2.1 20,5 Ω ✓

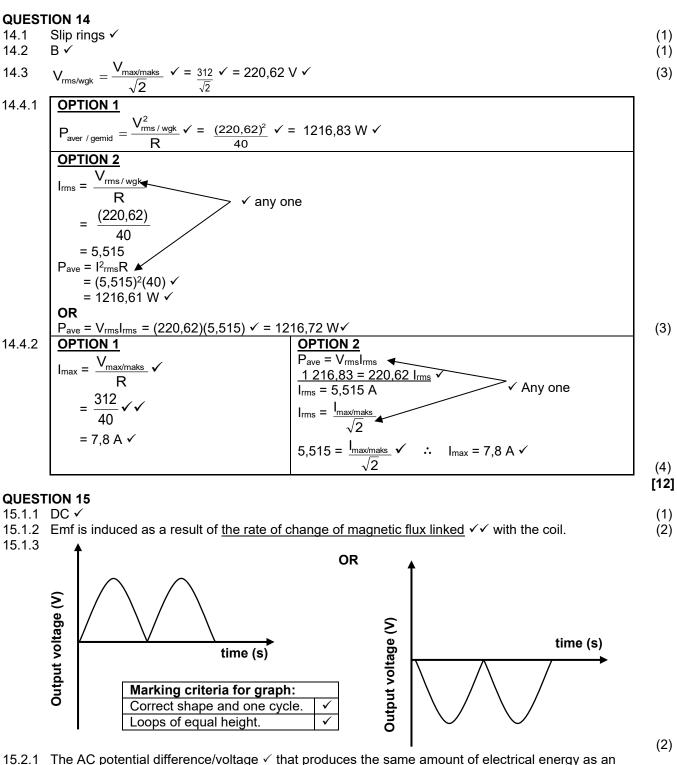
11.1.1 **ANY THREE**

 Permanent magnets; coils (armature); commutator; brushes; power supply/battery
 (3)

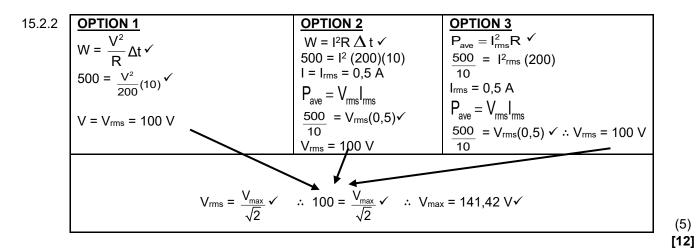
 11.2.1
 The <u>AC potential difference/voltage</u> ✓ that produces the same amount of electrical energy as an equivalent <u>DC potential difference/voltage</u>. ✓
 (2)

QUESTION 12

QUESI			
12.1.1	Split ring/commutator 🗸		(1)
12.1.2	Anticlockwise 🗸 🗸		(2)
	Electrical energy v to mechanical (kinetic) energy		(2)
	DC generator: split ring/commutator and AC ge	enerator has slip rings ✓	(1)
	$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark = \frac{320}{\sqrt{2}} \checkmark = 226,27 \text{V} \checkmark$		(3)
12.2.3	$I_{max} = \frac{V_{max}}{R} = \frac{320}{35} \checkmark = 9,14 \text{ A}$ \therefore $I_{rms} =$	$\frac{l_{\text{max}}}{\sqrt{2}} \checkmark = \frac{9,14}{\sqrt{2}} \checkmark = 6,46 \text{ A} \checkmark$	(4)
			[13]
QUEST	TION 13		
13.1.1	Y to/ <i>na</i> X √		(1)
13.1.2	Faraday's Law Electromagnetic Induction ✓		
	OR Electromagnetic induction/Faraday's Lav	N 🗸	(1)
13.1.3	Mechanical (kinetic) energy √to electrical energy	ду √	(2)
13.2.1	340 V ✓		(1)
13.2.2	$V_{\rm rms/wgk} = \frac{V_{\rm max/maks}}{\sqrt{2}} \checkmark = \frac{340}{\sqrt{2}} \checkmark \therefore V_{\rm rms/wgk} =$	= 240,42 V ✓	(3)
13.2.3	OPTION 1	OPTION 2	
	$\overline{P_{\text{ave/gemid}}} = \frac{V_{\text{rms/wgk}}^2}{R} \checkmark$	$P_{\text{ave/gemid}} = \frac{V_{\text{rms/wgk}}^2}{R} \checkmark = \frac{\frac{V_{\text{max/maks}}^2}{2}}{R} = \frac{V_{\text{max/maks}}^2}{2R}$	
	1 4 600 - 0000 000 - 0 - 0640 0 / 0 - 0 - 0640 0 / 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		4


1 600 = $(240,42)^2$ \checkmark \therefore R = 36,13 Ω \checkmark

 \therefore 1 600 = (340)² \checkmark \therefore R = 36,13 Ω \checkmark


2R

(4) **[9]**

(3) [11]

equivalent DC potential difference/voltage. ✓ (nat produces the same amount of electrical energy as an equivalent DC potential difference/voltage. ✓ (2)

QUESTION 16

- 16.1.1 (DC) motor ✓
- 16.1.2 Electrical to mechanical/kinetic (energy).
- 16.1.3 Split ring/commutator

OPTION 1

 $P_{ave} = \frac{V_{rms}^2}{R} \checkmark$ $200 = \frac{220^2}{R} \checkmark$

 $R = 242 \,\Omega \checkmark$

- 16.1.4 Anticlockwise
- 16.2.1 The AC voltage/potential difference which dissipates the same amount of energy/heat/power as an equivalent DC voltage/potential difference. </ 16.2.2

OPTION 3

 $P_{ave} = V_{rms}I_{rms} \checkmark$ $200 = I_{rms}(220)$ $I_{rms} = 0,909 A$

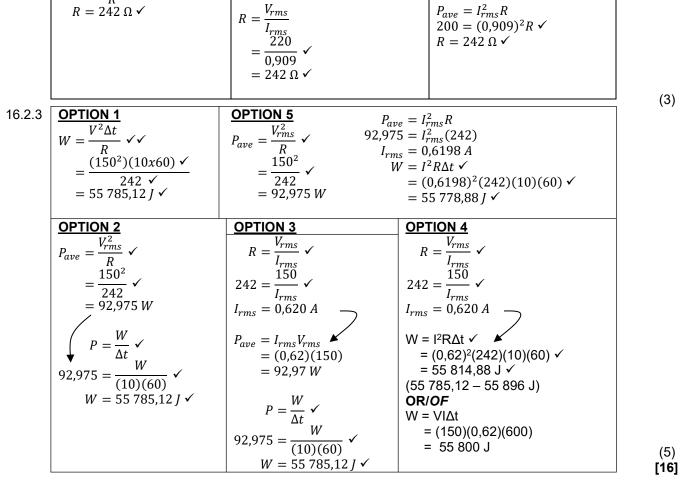
 $P_{ave} = I_{rms}^2 R$ 200 = (0,909)² R \checkmark

OPTION 2

 $\overline{P_{ave}} = V_{rms} I_{rms} \checkmark 200 = I_{rms} (220)$

 $I_{rms} = 0,909 A$

(3)


(1)

(2)

(1)

(2)

(2)

QUESTION 17

17.1 Slip rings ✓ (1) 17.2 Allows the slips rings to rotate while maintaining contact with the external circuit. ✓ OR Transfer/conduct current to the external circuit. OR Connection between external circuit and coil/slip rings/internal circuit. (1) 17.3 According to the principle of electromagnetic induction, an emf/current is induced as a result of the change in the magnetic flux linkage $\checkmark \checkmark$ with the coil. (2 or 0) (2) P to Q ✓✓ 17.4 (2) 17.5 $T = \frac{1}{f} = \frac{1}{50} \checkmark$ $t = (1,5)(0,02)\checkmark$ = 0,03 s \checkmark = 0,02 s -OR $\left(\frac{1}{2}\right)(0,02)\checkmark$ t = 0,02 + $= 0,03 s \checkmark$ (3) 17.6 V_{max} V_{max} $V_{rms} =$ $I_{rms} =$ $\sqrt{2}$ $\sqrt{2}$ 311 219,91 $\sqrt{2}$ 100 = 2,1991 V= 219,91 V**OPTION 2 OPTION 1 OPTION 3** $V^2\Delta t$ $W = VI\Delta t \checkmark$ $W = I^2 R \Delta t \checkmark$ W == (219,91)(2,20)(60) ✓✓ $= (2,20^2)(100)(60) \checkmark \checkmark$ R

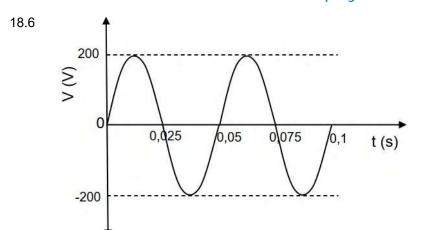
= 29 040 J ✓

- **QUESTION 18**
- 18.1 Slip rings ✓

 $(219,91^2)(60)$

100 = 29 016,24 J ✓

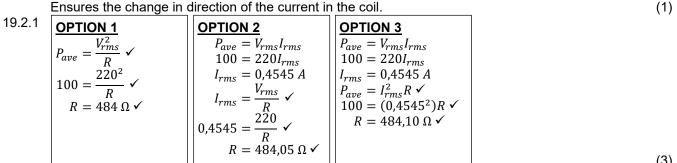
- Y to X ✓✓ 18.2
- The AC potential difference which dissipates the same amount of energy as an equivalent 18.3 DC potential difference. $\checkmark\checkmark$

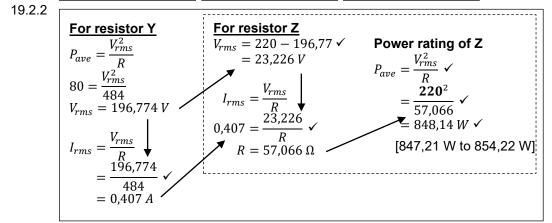

= 29 028,12 *J* ✓

(5) [14]

(1)

(2)


(2)



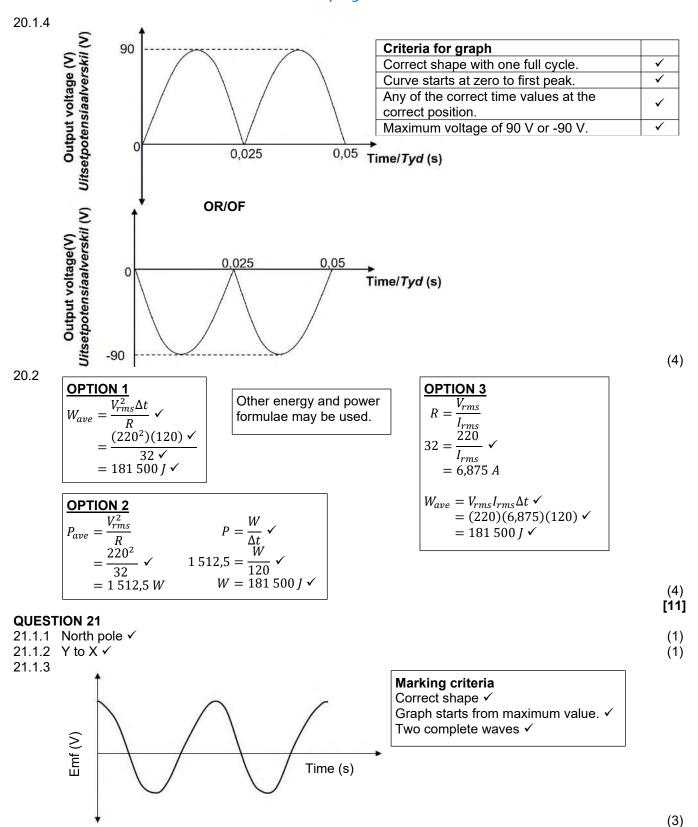
QUESTION 19

19.1.1 Electrical to mechanical/kinetic/rotational ✓

- 19.1.2 DC ✓
- Ensures continuous rotation of the coil. </ 19.1.3
- Ensures the change in direction of the current in the coil.

QUESTION 20

20.1.1	Split ring/commu	utator 🗸	(1)
20.1.2	Y to X OR No cu	urrent ✓	(1)
20.1.3	1		
	$T = \frac{1}{f}$		
	1		
	$=\frac{1}{20}$		
	20 - 0.05 c t		
	$= 0,05 s \checkmark$		


(3) [15] (1)

(1)

(3)

(1)

,			i J			
21.2.1	OPTION 1	OPTION 2				
	$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$	$I_{rms} = \frac{I_{max}}{\sqrt{2}} \checkmark$				
	$200 = \frac{V_{max}}{\sqrt{2}} \checkmark$	$=\frac{6}{\sqrt{2}}$				
	$\frac{OPTION 1}{V_{rms}} = \frac{V_{max}}{\sqrt{2}} \checkmark$ $200 = \frac{V_{max}}{\sqrt{2}} \checkmark$ $V_{max} = 282,84 V$	$\int_{max}^{\sqrt{2}} = 4,24 A$				
	$\frac{R}{282,84}$	$r = \frac{I}{200}$				
	$R = \frac{V}{I}$ $= \frac{282,84}{6} \checkmark$ $= 47,14 \Omega \checkmark$	$= \frac{1}{4,24} \checkmark$				
21.2.2						(4)
21.2.2	$\frac{\mathbf{OPTION 1}}{W = I^2 R \Delta t} \checkmark$	<u>OPT</u> W =	<u>ION 2</u> ↓ VI∆t ✓		$\frac{\Gamma ION 3}{V^2 \Delta t}$	
	$W = I^2 R \Delta t \checkmark$ = (4,24 ²)(47,17 = 6,11x10 ⁶ J \checkmark	$)(7\ 200\checkmark)\checkmark =$	ION 2 VIΔt ✓ (200)(4,24)(7 200√) 6,11x10 ⁶ J ✓	✓ <i>VV</i> =	$\frac{FION 3}{R} \neq \frac{V^2 \Delta t}{R} \checkmark$ $= \frac{(200^2)(7\ 200\checkmark)}{47.17} \checkmark$	
			0,11010)			(4)
QUEST	ION 22			=	= 6,11 <i>x</i> 10 ⁶ <i>J</i> ✓	[13]
22.1.1	Split ring/Commutat					(1)
22.1.3	Electrical to mechan Clockwise $\checkmark \checkmark$					(1) (2)
22.1.4	 Any two of the follow Increase the str 	-	etic field, e.g., use str	onger magr	nets or bring magnets	s closer
	• Increase the cu	rrent.	ono nona, orgi, aco on	enger mag	nete er sning magneta	
	Increase the areIncrease the nu	ea of the coll. mber of turns in th	e coil.			
22.2.1		ith a higher potent	ial difference. nating current that dis	sinates the	same amount of ene	(2)
	an equivalent DC cu		lating our one that do			(2)
22.2.2	$I_{rms} = \frac{I_{max}}{\sqrt{2}} \checkmark$ $= \frac{3.6}{\sqrt{2}} \checkmark$					
	$=\frac{3,6}{\sqrt{2}}$					
	$ \sqrt{2} = 2,55 \text{ A } \checkmark $					(3)
22.2.3						
	$\frac{\text{OPTION 1}}{W = VI_{rms}\Delta t} \checkmark$		V = IR			
	= (220)(2,62)(1) = 69 168 <i>J</i> \checkmark	20) ✓	220 = R = 83	2,62 <i>R</i> 3,969 Ω		
		$W = I_{rm}^2$			$W = \frac{V_{rms}^2 \Delta t}{R} \checkmark$	
		= (2,	62 ²)(83,969)(120) ✓	OR	$v = \frac{R}{R} \sqrt{\frac{(220^2)(120)}{\pi}}$	
		= 69	168 <i>J</i> ✓		$=\frac{1}{83,969}$	

(3) **[14]**

83,969 $= 69 \ 168 J \checkmark$

OPTICAL PHENOMENA AND PROPERTIES OF MATERIALS

QUESTION 1 The minimum frequency of light needed to emit electrons \checkmark from the surface of a metal. \checkmark 1.1 (2) $\mathsf{E} = \mathsf{W}_{\circ} + \mathsf{E}_{\mathsf{k}(\mathsf{max})}$ 1.2 $E = W_{\circ} + \frac{1}{2}mv_{max}^{2}$ Any one $h\frac{c}{\lambda} = hf_{\circ} + \frac{1}{2}mv_{max}^{2}$ $\frac{(6,63\times10^{-34})(3\times10^{8})}{\lambda}\checkmark = (6,63\times10^{-34})(5,548\times10^{14})\checkmark + \frac{1}{2}(9,11\times10^{-31})(5,33\times10^{5})^{2}\checkmark$ $\lambda = 4 \times 10^{-7} \text{ m} \checkmark$ (5) 1.3 Smaller (less) than ✓ (1)

The wavelength/frequency/energy of the incident light/photon is constant. ✓ 1.4 Since the speed is higher, the kinetic energy is higher \checkmark and the work function / W₀ / threshold frequency smaller. ✓

QUESTION 2

The minimum energy needed to emit an electron \checkmark from (the surface of) a metal. \checkmark 2.1 (2) \sim

2.3

$$E = W_{0} + \frac{1}{2}mv_{max}^{2}$$

$$h_{\lambda}^{C} = W_{0} + \frac{1}{2}mv_{max}^{2}$$
Any ONE OF/ENIGE EEN van⁄
$$\frac{(6,63 \times 10^{-34})(3 \times 10^{8})}{(\lambda)} = (3,36 \times 10^{-19}) + 2,32 \times 10^{-19} \checkmark$$

$$\lambda = 3,50 \times 10^{-7} m\checkmark$$

$$E = W_{0} + \frac{1}{2}mv_{max}^{2}$$

$$OR/OF$$

$$h_{\lambda}^{C} = W_{0} + \frac{1}{2}mv_{max}^{2}$$

$$\frac{(6,63 \times 10^{-34})(3 \times 10^{8})}{(3.50 \times 10^{-7})} = (3,65 \times 10^{-19}) + E_{k}$$
(4)

E = 2,03 x 10⁻¹⁹ J
$$\checkmark$$

2.4.1 Increasing the intensity does not change the energy / frequency /

٦

/ wavelength of the incident photons. 2 **OR:** The energy of a photon remains unchanged (for the same frequency). (1) 2.4.2 Increases √ (1) More photons/packets of energy strike the surface of the metal per unit time. ✓ Hence more (photo) 2.4.3electrons ejected per unit time ✓ leading to increased current. (2)

QUESTION 3

- 3.1.1 The particle nature of light. \checkmark
- 3.1.2 Shorter wavelength means higher photon energy. ✓

Photon energy is inversely proportional to wavelength \checkmark (E = $\frac{hc}{\lambda}$).

For the same metal, kinetic energy is proportional to photon energy.

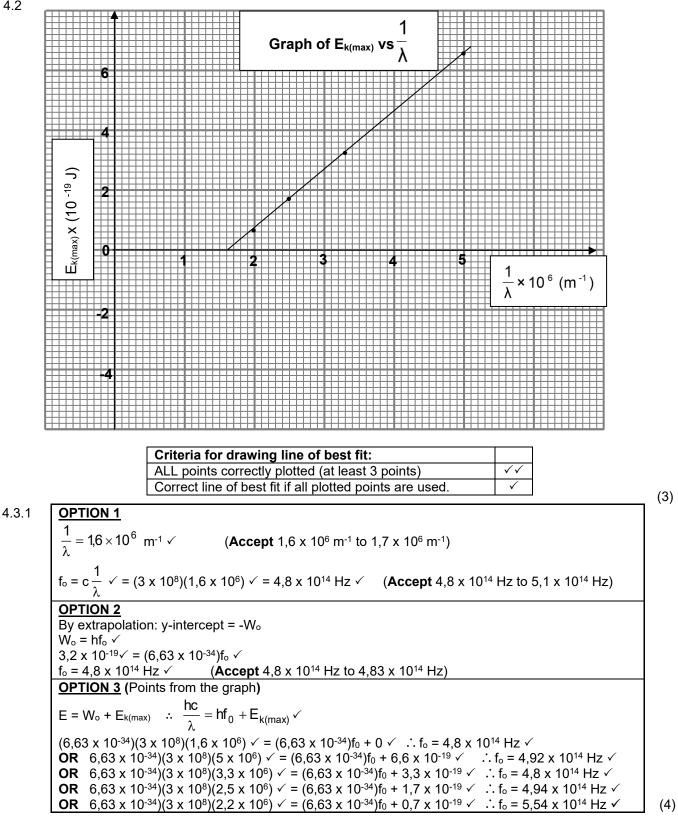
3.2.1	$\frac{\text{OPTION 1}}{W_{o}} = h \frac{c}{\lambda} \checkmark = \frac{(6,63 \times 10^{-34})(3 \times 10^{8})}{330 \times 10^{-9}}$	$\begin{array}{c} \hline \textbf{OPTION 2} \\ c = f\lambda \therefore 3 \times 10^8 = f_0(330 \times 10^{-9}) \checkmark \\ \therefore f_0 = 9,09 \times 10^{14} \text{ Hz} \\ W_0 = hf_0 \qquad \qquad \checkmark \text{ for both equations} \end{array}$	
3.2.2	$\therefore W_{\circ} = 6,03 \times 10^{-19} \text{ J} \checkmark$	= $(6,63 \times 10^{-34})(9,09 \times 10^7) \checkmark$ = $6,03 \times 10^{-19} J \checkmark$	(4)
	$E = W_o + E_k$ $hf = hf_o + E_k$ $hf = hf_o + \frac{1}{2} mv^2$ Any one		
	$ \begin{array}{l} E = W_{\mathrm{o}} + \frac{1}{2} \; \mathrm{mv}^2 \; J \\ (6,63 \; \mathrm{x} \; 10^{-34})(\; 1,2 \; \mathrm{x} 10^{15}) \; \checkmark = (6,03 \; \mathrm{x} \; 10^{-19}) \; \checkmark + \frac{1}{2}(6,03 \; \mathrm{x} \; 10^{-19}) \; \lor + \frac{1}{2$	(9,11 x 10 ⁻³¹)v ² ✓ ∴ v= 6,5 x 10 ⁵ m·s ⁻¹ √	

(3)[11]

(4)

[14]

(1)


(2)

OPTION 2

 $E_{K} = E_{light} - W_{o}$ L√ Any one $= hf_{light} - hf_o$ = $(6,63 \times 10^{-34})(1,2 \times 10^{15}) \checkmark - 6,03 \times 10^{-19} \checkmark = 1,926 \times 10^{-19} \text{ J}$ (5) \therefore 1,926 x 10⁻¹⁹ = $\frac{1}{2}$ (9,11 x 10⁻³¹) v^{2} $\therefore v = 6,5 x 10^{5} \text{ m} \cdot \text{s}^{-1} \sqrt{2}$ $E_{\rm K} = \frac{1}{2} {\rm mv}^2$ [12]

QUESTION 4

- 4.1 It is the process whereby electrons are ejected from a metal surface when light of suitable frequency is incident/shines on it. √√ (2)
- 4.2

11190100			0,2024
4.3.2	OPTION 1	OPTION 2	
		W₀ = y intercept	
	$\underline{hc = gradient} \checkmark = \frac{\Delta y}{\Delta x} = \frac{6.6 \times 10^{-19}}{(5 - 1.6) \times 10^6} \checkmark$	$= 3.2 \times 10^{-19} \text{ J}$	
		Accept: 3,2 x10 ⁻¹⁹ J to 3,4 x10 ⁻¹⁹ J	
	$= 1,941 \times 10^{-25} (J \cdot m)$	$W_o = hf_o$	
	$h = {{gradient}\over{c}} = {{1,941 \times 10^{-25}}\over{3 \times 10^8}} \checkmark$	$3.2 \times 10^{-19} \checkmark = h(4.8 \times 10^{14}) \checkmark$	
	$c 3 \times 10^{\circ}$	$h = 6,66 \times 10^{-34} \text{ J} \cdot \text{s} \checkmark$	
	= 6,47 x10 ⁻³⁴ J⋅s √	Accept: 6,66 x10 ⁻³⁴ J·s to 7,08 x10 ⁻³⁴ J·s)	
	OPTION 3 (Points from the graph)	OPTION 4	
	$\frac{hc}{\lambda} = W_0 + E_{k(max)} = 3.2 \times 10^{-19} \checkmark + 6.6 \times 10^{-19} \checkmark$	$W_0 = \frac{hc}{\lambda}$	
	λ	$\mathbf{v}\mathbf{v}_0 = \frac{1}{\lambda}$	
	9,8×10 ⁻¹⁹	3,2 x 10 ⁻¹⁹ ✓= h(3 x 10 ⁸)(1,6 x 10 ⁶)✓	
	$h = \frac{9.8 \times 10^{-19}}{(3 \times 10^8)(5 \times 10^6)} \checkmark = 6.53 \text{ x } 10^{-34} \text{ J} \cdot \text{s} \checkmark$	h = 6,66 x 10 ⁻³⁴ J⋅s ✓	
	OR		
	$\frac{hc}{\lambda} = W_0 + E_{k(max)} = 3.2 \times 10^{-19} \checkmark + 3.3 \times 10^{-19} \checkmark$		
	6.5×10^{-19}		
	h = $\frac{6.5 \times 10^{-19}}{(3 \times 10^8)(3.3 \times 10^6)}$ \checkmark = 6.57 x 10 ⁻³⁴ J·s \checkmark		
	OR		
	$\frac{hc}{\lambda} = W_0 + E_{k(max)} = 3.2 \times 10^{-19} \checkmark + 1.7 \times 10^{-19} \checkmark$		
	$4,7 \times 10^{-19}$		
	h = $\frac{4.7 \times 10^{-19}}{(3 \times 10^8)(2.5 \times 10^6)}$ \checkmark = 6.27 x 10 ⁻³⁴ J·s \checkmark		(4) [13]
QUEST			[10]
5.1	The minimum energy needed to emit electrons \checkmark from	the surface of a certain metal. \checkmark	(2)
5.2	Frequency/Intensity ✓		(1)
5.3	The minimum frequency (of a photon/light) needed to metal. \checkmark	emit electrons \checkmark from the surface of a certain	
5.4	E = W ₀ + E _k \ ✓ Any one/ <i>Enige een</i>		(2)
0.1	$\mathbf{n}\mathbf{f} = \mathbf{n}\mathbf{f}_0 + \mathbf{E}_k \mathbf{f}$		
	$(6,63 \times 10^{-34})(6,50 \times 10^{14}) \checkmark = (6,63 \times 10^{-34})(5,001 \times 10^{14})$ $\therefore v = 4,67 \times 10^5 \text{ m} \cdot \text{s}^{-1} \checkmark$	√+ ½(9,11 x 10 ⁻³¹)v²√	
	•		
	$\begin{array}{c} \underline{OR/OF} \\ E_{K} = E_{light} - W_{o} \\ = hf_{light} - hf_{o} \\ = (6.63 \times 10^{-34})(6.50 \times 10^{14} - 5.001 \times 10^{14}) \checkmark \\ = 9.94 \times 10^{-20} \text{ J} \end{array}$		
	$E_{K} = E_{\text{light}} - W_{o}$		
	$= hf_{\text{light}} - hf_0 \qquad \qquad 7 \text{ Arry on a 2-1 nge cont}$ = (6.63 × 10 ⁻³⁴) (6.50 × 10 ¹⁴ - 5.001 × 10 ¹⁴) \checkmark		
	$= 9.94 \times 10^{-20} \text{ J}$		
	$E_{\rm K} = \frac{1}{2} {\rm mv}^2 \sqrt{1}$		
	$v = \sqrt{\frac{2E_{k}}{m}} = \sqrt{\frac{(2)(9,94 \times 10^{-20})}{9,11 \times 10^{-31}}}$		
			(-)
E E	$v = 4,67 \times 10^5 \text{ m} \cdot \text{s}^{-1} \checkmark$	v of the incident light	(5)
5.5	The photocurrent is directly proportional to the intensit	y of the incident light. V V	(2) [12]
QUEST	ION 6		[.~]
6.1.1	Light has a particle nature. \checkmark		(1)
6.1.2	Remains the same. ✓	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	For the same colour/ frequency/wavelength the energy		io
	(The brightness causes more electrons to be released energy.)	, but they will have the same maximum kinet	IC
	OR Maximum kinetic energy of ejected photo-electron	s is independent of intensity of radiation.	(2)
	3,	· · · · · · · · · · · · · · · · · · ·	(-)

Physicacean Stanmorephysics.com

 $E = W_0 + E_k$ OR $hf = hf_0 + E_k$ OR $hf = hf_0 + \frac{1}{2} mv^2$ 6.1.3 OR $E = W_0 + \frac{1}{2} mv^2$ $\frac{(6,63\times10^{-34}\,)(3\times10^{\,8}\,)}{420\times10^{-9}}\,\checkmark=\,\frac{(6,63\times10^{-34}\,)(3\times10^{\,8}\,)}{\lambda_{o}}\,\checkmark\,+\,\frac{1}{2}(9,11\times10^{-31}\,)(4,76\times10^{\,5}\,)^{2}\,\checkmark$ $\therefore \lambda_0 = 5,37 \text{ x } 10^{-7} \text{ m}$ \therefore the metal is sodium \checkmark (5) 6.2 Q ✓ and S ✓ Emission spectra occur when excited atoms /electrons drop from higher energy levels to lower energy levels. √√ (Characteristic frequencies are emitted.) (4) [12] **QUESTION 7** 7.1.1 The minimum frequency of a photon/light needed \checkmark to emit electrons from a certain metal surface. \checkmark (2)7.1.2 Silver √ Threshold frequency / cut-off frequency (of Aq) is higher. \checkmark and W₀ α f₀ / W₀ = hf₀ \checkmark (3)7.1.3 Planck's constant √ (1) 7.1.4 Sodium √ (1) Energy radiated per second by the blue light = $(\frac{5}{100})(60 \times 10^{-3}) \checkmark = 3 \times 10^{-3} \text{ J} \cdot \text{s}^{-1}$ 7.2.1 $\mathsf{E}_{\mathsf{photon}} = \frac{\mathsf{hc}}{\lambda} \checkmark = \frac{(6,63 \times 10^{-34})(3 \times 10^8)}{470 \times 10^{-9}} \checkmark = 4,232 \times 10^{-19} \mathsf{J}$ Total number of photons incident per second = $\frac{3 \times 10^{-3}}{4232 \times 10^{-19}}$ \checkmark = 7,09 x 10¹⁵ \checkmark (5) 7,09 x 10¹⁵ (electrons per second) \checkmark 7.2.2 **OR:** Same number as that calculated in Question 7.2.1 above. (1) [13] **QUESTION 8** 8.1 It is the process whereby electrons are ejected from a metal surface when light of suitable frequency is incident/shines on that surface. $\checkmark\checkmark$ (2) 8.2 Increase √ Increase in intensity means that for the same frequency the number of photons incident per unit time increase. ✓ Therefore the number of electrons ejected per unit time increases. ✓ (3)**OPTION 1** 8.3 $E = W_{o} + E_{k(max)} \quad OR \quad hf = hf_{o} + E_{k(max)} \quad OR \quad hf = hf_{o} + \frac{1}{2} mv^{2} \quad OR \quad E = W_{o} + \frac{1}{2} mv^{2} \checkmark (6,63 \times 10^{-34} \times 5,9 \times 10^{14}) \checkmark = \frac{(6,63 \times 10^{-34} \times 10^{-34})(3 \times 10^{8})}{\lambda_{0}} + 2.9 \times 10^{-19}$ 39,117 x 10⁻²⁰ − 2,9 x 10⁻¹⁹ = $\frac{19,89 \times 10^{-26}}{\lambda_0}$ \therefore λ_0 = 1,97 x 10⁻⁶ m \checkmark **OPTION 2** $E = W_0 + E_{k(max)}$ OR $hf = hf_0 + E_{k(max)}$ OR $hf = hf_0 + \frac{1}{2} mv^2$ OR $E = W_0 + \frac{1}{2} mv^2 \sqrt{2}$ $((6.63 \times 10^{-34} \times 5.9 \times 10^{14}) \checkmark = (6.63 \times 10^{-34})f_0 + 2.9 \times 10^{-19}$ $\therefore f_0 = 1, 52 \times 10^{14} \text{ Hz}$ $c = f_0 \lambda_0$ \therefore 3 x 10⁸ = (1,52 x 10¹⁴) $\lambda_0 \checkmark$ \therefore $\lambda_0 = 1,97 x 10^{-6} m \checkmark$ **OPTION 3** $E = W_0 + E_{k(max)}$ **OR** hf = hf₀ + $E_{k(max)}$ **OR** hf = hf₀ + $\frac{1}{2}$ mv² **OR** E = W₀ + $\frac{1}{2}$ mv² \checkmark $(6,63 \times 10^{-34} \times 5,9 \times 10^{14}) \checkmark = W_0 + 2,9 \times 10^{-19}$ \therefore $W_0 = 1,01 \times 10^{-19} \text{ J}$ (5) From the photo-electric equation, for a constant work function, \checkmark the energy of the photons is 8.4 proportional to the maximum kinetic energy of the photoelectrons. \checkmark (2)[12] **QUESTION 9** The minimum frequency of light \checkmark needed to emit electrons from the surface of a metal. \checkmark 9.1 (2) 9.2 The speed remains unchanged. ✓ (1)9.3 **OPTION 1** c = fλ ✓ $\therefore 3 \times 10^8 = f(6 \times 10^{-7}) \checkmark$ ∴ f = 5 x 10¹⁴ Hz √

The value of f is less than the threshold frequency of the metal, ✓ therefore photoelectric effect

is not observed. 🗸

FS/2024

	OPTION 2	
	For the given metal: $W_0 = hf_0 \checkmark = (6,63 \times 10^{-34})(6,8 \times 10^{14}) \checkmark = 4,51 \times 10^{-19} \text{ J}$ For the given wavelength:	
	$E_{photon} = \frac{hc}{\lambda} = \frac{(6,63 \times 10^{-34})(3 \times 10^8)}{6 \times 10^{-7}} \checkmark \qquad OR \qquad E_{photon} = hf = (6,63 \times 10^{-34})(5 \times 10^{14}) \checkmark \checkmark$	
	= 3,32 x 10^{-19} J = 3,32 x 10^{-19} J Energy is less than work function \checkmark of metal, therefore photoelectric effect not observed. \checkmark	
		(5)
9.4	$E = W_{o} + E_{k(max)} OR E = W_{o} + \frac{1}{2}mv_{max}^{2} OR h\frac{c}{\lambda} = hf_{0} + \frac{1}{2}mv_{max}^{2} OR hf = hf_{0} + \frac{1}{2}mv_{max}^{2}$	
	$(6,63 \times 10^{-34})(7,8 \times 10^{14}) \checkmark = (6,63 \times 10^{-34})(6,8 \times 10^{14}) \checkmark + \frac{1}{2} \text{mv}_{\text{max}}^2$	
	$\frac{1}{2} \text{ mv}^2_{\text{max}} = 6,63 \text{ x } 10^{-20} \text{ J}$ thus $\frac{1}{2}(9,11 \text{ x } 10^{-31}) \text{ v}^2_{\text{max}} \checkmark = 6,63 \text{ x } 10^{-20} \therefore \text{ v}_{\text{max}} = 3,82 \text{ x } 10^5 \text{ m} \cdot \text{s}^{-1} \checkmark$ TION 10	(5) [13]
10.1.1	(Line) emission (spectrum) ✓	(1)
	(Line) absorption (spectrum) ✓ Emission ✓	(1) (1)
	Energy released in the transition from E_4 to $E_2 = E_4 - E_2$	
	$E_4 - E_2 = (2,044 \times 10^{-18} - 1,635 \times 10^{-18}) \checkmark = 4,09 \times 10^{-19} \text{ J}$ $E = \text{hf} \checkmark \therefore \frac{4,09 \times 10^{-19} = (6,63 \times 10^{-34})\text{f}}{(6,63 \times 10^{-34})\text{f}} \checkmark \therefore \text{f} = 6,17 \times 10^{14} \text{ Hz} \checkmark$	(4)
10.2.3	$E = W_{o} + E_{k(max)} OR hf = hf_{o} + E_{k(max)} OR hf = hf_{o} + \frac{1}{2} \text{ mv}^{2} OR E = W_{o} + \frac{1}{2} \text{ mv}^{2} \checkmark$ 4,09 x 10 ⁻¹⁹ $\checkmark = (6,63 \text{ x } 10^{-34})(4,4 \text{ x } 10^{14}) \checkmark + E_{k(max)} \therefore E_{k(max)} = 1,17 \text{ x } 10^{-19} \text{ J} \checkmark$	
	$E_{k(max)} = E_{light} - W_{o}$ \checkmark Any one	
	= hf _{light} – hf _o ∫ = $(6.63 \times 10^{-34})(6.17 \times 10^{14})$ ✓- $(6.63 \times 10^{-34})(4.4 \times 10^{14})$ ✓ = 1.17 x 10 ⁻¹⁹ J ✓	(4)
10.2.4	No \checkmark The threshold frequency is greater than the frequency of the photon. \checkmark	
	OR: The frequency of the photon is less than the threshold frequency.	(0)
	OR: Energy of the photon is less than the work function of the metal.	(2) [13]
	OR: Energy of the photon is less than the work function of the metal.	(2) [13]
11.1.1	 OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than ✓ Electrons are ejected from the metal plate. ✓	[13] (2)
11.1.1	 OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than ✓ Electrons are ejected from the metal plate. ✓ Increase in intensity implies that, for the same frequency, the number of photons per second increas (ammeter reading increases), ✓ but the energy of the photons stays the same. ✓ Therefore the	[13] (2)
11.1.1	 OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than ✓ Electrons are ejected from the metal plate. ✓ Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), ✓ but the energy of the photons stays the same. ✓ Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the formation of the photoelectrons and photoelectrons and not the formation of the photoelectrons and phot	[13] (2) ses
11.1.1 11.1.2	 OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than ✓ Electrons are ejected from the metal plate. ✓ Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), ✓ but the energy of the photons stays the same. ✓ Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change.	(2) ses ne (2)
11.1.1 11.1.2 11.1.3 11.2.1	 OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than ✓ Electrons are ejected from the metal plate. ✓ Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), ✓ but the energy of the photons stays the same. ✓ Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. ✓ The minimum frequency needed for the emission of electrons from the surafce of a metal. ✓✓	[13] (2) ses
11.1.1 11.1.2 11.1.3	 OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than ✓ Electrons are ejected from the metal plate. ✓ Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), ✓ but the energy of the photons stays the same. ✓ Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. ✓	(2) ses (2) ses (2) (1) (2)
11.1.1 11.1.2 11.1.3 11.2.1	OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than \checkmark Electrons are ejected from the metal plate. \checkmark Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), \checkmark but the energy of the photons stays the same. \checkmark Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. \checkmark The minimum frequency needed for the emission of electrons from the surafce of a metal. $\checkmark \checkmark$ $W_o = hf_o \checkmark$ $= (6,63 \times 10^{-34})(5,73 \times 10^{14}) \checkmark$ $= 3,8 \times 10^{-19} J \checkmark$ $E = W_o + E_{k(max)}$ OR $hf = hf_o + E_{k(max)}$ OR $hf = hf_o + \frac{1}{2} mv^2$ OR $E = W_o + \frac{1}{2} mv^2 \checkmark$ $(6,63 \times 10^{-34})f = 3,8 \times 10^{-19} + [\frac{1}{2}(9,11 \ 10^{-31})(4,19 \times 10^5)^2] \checkmark$	(2) ses (2) ne (2) (1) (2) (3)
11.1.1 11.1.2 11.1.3 11.2.1 11.2.2	OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than \checkmark Electrons are ejected from the metal plate. \checkmark Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), \checkmark but the energy of the photons stays the same. \checkmark Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. \checkmark The minimum frequency needed for the emission of electrons from the surafce of a metal. $\checkmark \checkmark$ $W_o = hf_o \checkmark$ $= (6,63 \times 10^{-34})(5,73 \times 10^{14}) \checkmark$ $= 3,8 \times 10^{-19} J \checkmark$ $E = W_o + E_{K(max)}$ OR $hf = hf_o + f_2 mv^2$ OR $E = W_o + f_2 mv^2 \checkmark$	(2) ses (2) ses (2) (1) (2)
11.1.1 11.1.2 11.1.3 11.2.1 11.2.2 11.2.3 QUES	OR: Energy of the photon is less than the work function of the metal. TION 11 Greater than \checkmark Electrons are ejected from the metal plate. \checkmark Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), \checkmark but the energy of the photons stays the same. \checkmark Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. \checkmark The minimum frequency needed for the emission of electrons from the surafce of a metal. $\checkmark \checkmark$ $W_o = hf_o \checkmark$ $= (6,63 \times 10^{-34})(5,73 \times 10^{14}) \checkmark$ $= 3,8 \times 10^{-19} J \checkmark$ $E = W_o + E_{k(max)}$ OR hf = hf_o + E_{k(max)} OR hf = hf_o + 1/2 mv ² OR $E = W_o + 1/2 mv^2 \checkmark$ $(6,63 \times 10^{-34})f = 3,8 \times 10^{-19} + [1/2(9,11 \times 10^{-31})(4,19 \times 10^{5})^2] \checkmark$ TION 12	(2) ses (2) (3) (3) (3) (3) [13]
 11.1.1 11.1.2 11.1.3 11.2.1 11.2.2 11.2.3 QUES 12.1 12.2 	OR : Energy of the photon is less than the work function of the metal. FION 11 Greater than \checkmark Electrons are ejected from the metal plate. \checkmark Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), \checkmark but the energy of the photons stays the same. \checkmark Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. \checkmark The minimum frequency needed for the emission of electrons from the surafce of a metal. $\checkmark \checkmark$ $W_o = hf_o \checkmark$ $= (6,63 \times 10^{-34})(5,73 \times 10^{14}) \checkmark$ $= 3,8 \times 10^{-19} J \checkmark$ $E = W_o + E_{k(max)}$ OR hf = hf_o + E_{k(max)} OR hf = hf_o + 1/2 mv ² OR $E = W_o + 1/2 mv^2 \checkmark$ ($6,63 \times 10^{-34}$)f = $3,8 \times 10^{-19} + [1/2(9,1110^{-31})(4,19 \times 10^5)^2] \checkmark$ FION 12 The minimum energy needed to eject electrons \checkmark from the surface of a certain metal. \checkmark (Maximum) kinetic energy of the ejected electrons \checkmark	(2) ses (2) (3) (1) (2) (3) (3) (3) [13] (2) (1)
 11.1.1 11.1.2 11.1.3 11.2.1 11.2.2 11.2.3 QUES 12.1 12.2 12.3 	OR : Energy of the photon is less than the work function of the metal. TION 11 Greater than \checkmark Electrons are ejected from the metal plate. \checkmark Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), \checkmark but the energy of the photons stays the same. \checkmark Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. \checkmark The minimum frequency needed for the emission of electrons from the surafce of a metal. $\checkmark \checkmark$ $W_0 = hf_0 \checkmark$ $= (6,63 \times 10^{-34})(5,73 \times 10^{14}) \checkmark$ $= 3,8 \times 10^{-19} J \checkmark$ $E = W_0 + E_{k(max)}$ OR hf = hf_0 + E_{k(max)} OR hf = hf_0 + $\frac{1}{2}$ mv ² OR E = W_0 + $\frac{1}{2}$ mv ² \checkmark ($6,63 \times 10^{-34}$)f = $3,8 \times 10^{-19} + [\frac{1}{2}(9,11 \times 10^{-31})(4,19 \times 10^{5})^2] \checkmark$ TION 12 The minimum energy needed to eject electrons \checkmark from the surface of a certain metal. \checkmark	(2) ses (2) ses (2) (1) (2) (3) (3) (3) [13] (2)
 11.1.1 11.1.2 11.1.3 11.2.1 11.2.2 11.2.3 QUES 12.1 12.2 	OR : Energy of the photon is less than the work function of the metal. FION 11 Greater than \checkmark Electrons are ejected from the metal plate. \checkmark Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), \checkmark but the energy of the photons stays the same. \checkmark Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. \checkmark The minimum frequency needed for the emission of electrons from the surafce of a metal. $\checkmark \checkmark$ $W_0 = hf_0 \checkmark$ $= (6,63 \times 10^{-34})(5,73 \times 10^{14}) \checkmark$ $= 3,8 \times 10^{-19} J \checkmark$ $E = W_0 + E_{k(max)}$ OR hf = hf_0 + $E_{k(max)}$ OR hf = hf_0 + $\frac{1}{2} mv^2$ OR $E = W_0 + \frac{1}{2} mv^2 \checkmark$ ($6,63 \times 10^{-34}$)f = $3,8 \times 10^{-19} + [\frac{1}{2}(9,11 \times 10^{-31})(4,19 \times 10^5)^2] \checkmark$ FION 12 The minimum energy needed to eject electrons \checkmark from the surface of a certain metal. \checkmark (Maximum) kinetic energy of the ejected electrons \checkmark Wavelength/Frequency (of light) \checkmark Silver \checkmark According to Photoelectric equation, hf = $W_0 + \frac{1}{2} mv^2$	(2) ses (2) (3) (1) (2) (3) (3) (3) [13] (2) (1)
 11.1.1 11.1.2 11.1.3 11.2.1 11.2.2 11.2.3 QUES 12.1 12.2 12.3 	OR: Energy of the photon is less than the work function of the metal. FION 11 Greater than \checkmark Electrons are ejected from the metal plate. \checkmark Increase in intensity implies that, for the same frequency, the number of photons per second increase (ammeter reading increases), \checkmark but the energy of the photons stays the same. \checkmark Therefore the statement is incorrect. OR An increase in energy of photons only increases kinetic energy of the photoelectrons and not the number of photoelectrons, thus the ammeter reading will not change. Light has a particle nature. \checkmark The minimum frequency needed for the emission of electrons from the surafce of a metal. $\checkmark \checkmark$ $W_o = hf_o \checkmark$ $= (6.63 \times 10^{-34})(5.73 \times 10^{14}) \checkmark$ $= 3.8 \times 10^{-19} J \checkmark$ $E = W_o + E_{k(max)}$ OR $hf = hf_o + E_{k(max)}$ OR $hf = hf_o + \frac{1}{2} mv^2$ OR $E = W_o + \frac{1}{2} mv^2 \checkmark$ $(6.63 \times 10^{-34})f = 3.8 \times 10^{-19} + [\frac{1}{2}(9.11 \ 10^{-31})(4.19 \times 10^5)^2] \checkmark$ FION 12 The minimum energy needed to eject electrons \checkmark from the surface of a certain metal. \checkmark (Maximum) kinetic energy of the ejected electrons \checkmark Wavelength/Frequency (of light) \checkmark Silver \checkmark	(2) ses (2) (3) (1) (2) (3) (3) (3) [13] (2) (1)

Physicaceandream Stanmorephyzics.com

12.5	hf = W _o + $\frac{1}{2}mv^2_{max/maks}$ OR h $\frac{c}{\lambda}$ = W _o + E _{k(max/m}	aks) ✓	
	$\frac{(6,63 \times 10^{-34})(3 \times 10^8)}{2 \times 10^{-8}} \checkmark = W_0 + 9,58 \times 10^{-18} \checkmark$		
12.6	9,945 x10 ⁻¹⁸ = W _o + 9,58 x 10 ⁻¹⁸ \therefore W _o = 3,65 x 10 ⁻¹⁹ J \checkmark Remains the same \checkmark Increasing intensity increases number of photons constant \checkmark and energy of photon is the same. \checkmark		(4) (3)
QUES.	TION 13		[14]
13.1	The minimum energy needed to eject electrons \checkmark from the surface of a certain metal. \checkmark		(2)
13.2	Potassium / K \checkmark		
	f_0 for potassium is greater than f_0 for caesium \checkmark OR		
	Work function is <u>directly proportional</u> to threshold	frequency 🗸	(2)
13.3	$\frac{\text{OPTION 1}}{(2 - 5)^{-1}} = 2 \times 10^8 = f(5 - 5 \times 10^{-7}) \times (5 - 5 - 5)^{-1}$	$45 \times 10^{14} H_{7}$, $f < f < \dots$	
	c = fλ ✓ ∴ $3 \times 10^8 = f(5.5 \times 10^{-7})$ ✓ ∴ f = 5,4 ∴Ammeter in circuit B will not show a reading ✓		
	OPTION 2		
	$E = \frac{hc}{\lambda} = \frac{(6,63 \times 10^{-34})(3 \times 10^8)}{5,5 \times 10^{-7}} = 3,6164 \times 10^{-19} J$		
	$\frac{\lambda}{W_0} = hf_0 \checkmark = (6,63 \times 10^{-7})(5,55 \times 10^{14}) \checkmark = 3,68$	x 10-19 I	
	$W_0 > E \text{ or } hf_0 > hf $ \therefore The ammeter will not regis		
	OPTION 3		
	$c = f_0 \lambda_0 \checkmark$ 3 x 10 ⁸ = (5,55 x 10 ¹⁴) $\lambda \checkmark$		
	$3 \times 10^{\circ} = (5,55 \times 10^{14})^{14} \times 10^{14}$ $\lambda_{o} = 5,41 \times 10^{-7} \text{ m}$		
	λ_{0} (threshold) < λ (incident) \therefore the ammeter will not register a current \checkmark (3)		(3)
13.4	OPTION 1		
	$E = W_0 + E_{k(max)} OR hf = hf_o + \frac{1}{2}mv_{max}^2 OR$	$h \frac{c}{\lambda} = h \frac{c}{\lambda_0} + E_{K(max)} \checkmark$	
	$\frac{(6,63\times10^{-34})(3\times10^8)}{(6,63\times10^{-34})(5,07\times10^{14})} = (6,63\times10^{-34})(5,07\times10^{14})(5,07\times10^$	⁴) + E _{k(max)}	
	$\frac{(6,63 \times 10^{-34})(3 \times 10^8)}{5,5 \times 10^{-7\sqrt{3}}} = (6,63 \times 10^{-34})(5,07 \times 10^{14}) + E_{k(max)}$		
	$E_{\rm K} = 2,55 \ge 10^{-20} \ \text{J} \ \qquad (\text{Range: } 2,52 \ge 10^{-20} - 2,6 \ge 10^{-20} \ \text{J})$		
	$\frac{\text{OPTION 2}}{\text{E} = W_0 + \text{E}_{\text{k(max)}}} \text{ OR } \text{ hf} = \text{hf}_0 + \frac{1}{2} \text{mv}_{\text{max}}^2 \text{ OR } \text{ h} \frac{\text{c}}{\lambda} = \text{h} \frac{\text{c}}{\lambda_0} + \text{E}_{\text{K(max)}} \checkmark$		
	$(6,63 \times 10^{-34})(5,45 \times 10^{14}) \checkmark \checkmark = (6,63 \times 10^{-34})(5,07 \times 10^{14}) + E_{k(max)} \checkmark$ $E_{\kappa} = 2,52 \times 10^{-20} \text{ J} \checkmark \qquad (\text{Range: } 2,52 \times 10^{-20} - 2,6 \times 10^{-20} \text{ J}) \qquad (4)$		(5)
13.5	Remains the same √ (1		(1)
OUES	TION 14		[13]
14.1	The minimum frequency of light needed to eject of	electrons from a metal surface. $\checkmark\checkmark$	(2)
14.2	OPTION 1/	OPTION 2	
	$E = h \frac{c}{\lambda} \checkmark$	$c = f\lambda$ $3 \times 10^8 = f(5 \times 10^{-7})$ $\checkmark Both$	
	$\begin{bmatrix} - \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$f = 6 \times 10^{14} \text{ Hz}$	
	$=\frac{(6,63\times10^{-34})(3\times10^{8})}{5\times10^{-7}}\checkmark$	E = hf	
		= (6,63 x 10 ⁻³⁴)(6 x 10 ¹⁴) ✓ = 3,98 x 10 ⁻¹⁹ J✓	
	= 3,98 x 10 ⁻¹⁹ J√		(3)

FS/2024

OPTION 1 14.3 $E = W_0 + E_{kmax}$ $hf = W_0 + \frac{1}{2}mv_{max}^2$ √ Any one $h \frac{c}{\lambda} = W_0 + E_{K(max/maks)}$ $h\frac{c}{\lambda} = hf_0 + E_{K(max/maks)}$ $3,98 \times 10^{-19} = (6,63 \times 10^{-34})(5,55 \times 10^{14}) + E_{K(max)} \checkmark$ E_{K(max)} = 3,0 x10⁻²⁰ J $\sqrt{}$ $E_{K(max} > 0 \checkmark$ (The electrons emitted from the metal plate have kinetic energy to move between the plates, hence the ammeter registers a reading.) OPTION 2 $\overline{W_o} = hf_o \checkmark = (6,63 \text{ x } 10^{-34})(5,55 \text{ x} 10^{14}) \checkmark = 3,68 \text{ x } 10^{-19} \text{ J}$ Ephoton > Wo ✓ (The energy of the incident photon is greater than the work function of potassium. From the equation hf = W_0 + E_{Kmax} , the ejected photoelectrons will move between the plates, \checkmark hence the ammeter registers a reading.) (4) The increase in intensity increases the *number* of photons per second.√ 14.4 Since each photon releases one electron \checkmark the number of ejected electrons per second increases. (3)[12] **QUESTION 15** The process whereby electrons are ejected from a metal surface \checkmark when light of suitable frequency 15.1 is incident/shines on the surface. \checkmark (2) 15.2 7,48 x 10⁻¹⁹ (J) ✓ $E = W_0 + E_{kmax} (= W_0 + \frac{1}{2}mv^2_{max}) \checkmark$ When $E_k = 0$, $E = W_0 \checkmark$ (3)Mass (of photo-electron) ✓ 15.3 (1)**OPTION 1** 15.4 Gradient = ½m ✓ $\frac{11,98 \times 10^{-19} - 7,48 \times 10^{-19} \checkmark}{\times 0.5} = \frac{1}{2}(9,11 \times 10^{-31}) \checkmark$ X-0 ✓ X = 0,9868 ✓ **OPTION 2** $E = W_0 + \frac{1}{2}mv^2_{max}$ 11.98 x $10^{-19} \checkmark = 7.48 \times 10^{-19} \checkmark + \frac{1}{2}(9,11 \times 10^{-31}) \sqrt{10^{-31}} \sqrt{10^{-31}}$ $4.5 \times 10^{-19} = 4.56 \times 10^{-31} v^2$ $v^2 = 0,9868 \times 10^{12}$ $X = 0,9868 \checkmark (0,99)$ (5)15.5.1 Remains the same ✓ (1)15.5.2 Increases ✓ (1) [13] **QUESTION 16** 16.1 Photoelectric effect ✓ (1)Work function (of potassium) ✓ 16.2 (1)Potassium ✓ It has the lowest work function / threshold frequency / highest threshold wavelength. ✓ 16.3 (2)The work function of a metal is the minimum energy that an electron (in the metal) needs \checkmark to be 16.4

16.4 The work function of a metal is the <u>minimum energy</u> that an <u>electron</u> (in t <u>emitted/ejected from the metal / surface</u>. ✓

(2)

16.5.1 W₀= hf₀ ✓ = (6,63 x 10⁻³⁴)(<u>1,75 x 10¹⁵</u>) ✓ = 1,160 x 10⁻¹⁸ J √ OR/OF $E = W_o + E_{k(max)}$ Any one $hf = W_o + E_{k(max)}$ (6,63 x 10⁻³⁴)(1,75 x 10¹⁵) = W₀ + 0 √ $W_{o} = 1,160 \times 10^{-18} \text{ J} \checkmark$ (3) 16.5.2 E=W_o + E_{k(max)} ∕∽Any one/ $hf = hf_0 + \frac{1}{2}mv_{max}$ $(6,63 \times 10^{-34})$ f \checkmark = 1,160 x 10⁻¹⁸ + $\frac{1}{2}(9,11 \times 10^{-31})(5,60 \times 10^{5})^2$ \checkmark ∴ f = 1,97 x 10¹⁵ Hz √ (4) [13] **QUESTION 17** 11.6 × 10⁻¹⁹ J ✓ 17.1 (1)17.2 As the wavelength of the incident radiation/light increases the maximum kinetic energy of

the emitted electrons decreases. $\checkmark \checkmark OR$ As the wavelength of the incident radiation/light decreases the maximum kinetic energy of the emitted electrons increases. **OR**

The maximum kinetic energy is inversely proportional to the wavelength. OR

 $E_k(\max) \alpha \frac{1}{\lambda}$

17.3 The work function of a metal/surface is the minimum energy needed to remove/release an
electron from a (metal) surface. ✓✓(2)(2)

17.4

OPTION 1	OPTION 2
$W_o = h f_o \checkmark$	$E = W_o + E_{k(max)} \checkmark$
OR OF	OR OF
$W_{o} = \frac{hc}{\lambda_{o}}$ $W_{o} = \frac{(6,63x10^{-34})(3x10^{8})\checkmark}{4,9x10^{-7}\checkmark}$ $W_{o} = 4,06x10^{-19} J\checkmark$	$E = \frac{hc}{\lambda_o} + 0$ $W_o = \frac{(6,63x10^{-34})(3x10^8)}{4,9x10^{-7}}$ $W_o = 4,06x10^{-19} J \checkmark$

OPTION 3

 $W_o = 3,3725 x 10^{-19}$ / \checkmark

Any set of co-ordinates can also be used, for example if wavelength is equal to 4 x 10⁻⁷ m (refer to the table below 17.5 for the different answers): $E = W_o + E_{k(max)} \checkmark$ $\frac{hc}{\lambda} = W_o + E_{k(max)}$ $\frac{(6,63x10^{-34})(3x10^8)}{\sqrt{1-34}} \checkmark = W_o + 1,6x10^{19} \checkmark$

17.5

 $\begin{aligned}
E &= W_o + E_{k(max)} \checkmark \\
\frac{hc}{\lambda} &= W_o + E_{k(max)} \\
\frac{(6,63x10^{-34})(3x10^8)}{0,5x10^{-7}} \checkmark &= 3,3725x10^{-19} \checkmark + E_{k(max)} \\
E_{k(max)} &= 3,641x10^{-18} J \checkmark
\end{aligned}$

(4)

		Q17.4	Q17.5
λ	E _{k(max)}	Wo	E _{k(max)}
4,9 x 10 ⁻⁷	0	4,06 x 10 ⁻¹⁹	3,752 x 10 ⁻¹⁸
0,75 x 10 ⁻⁷ –	14.0×10^{-19}	1,252 x 10 ⁻¹⁸ –	2,762 x 10 ⁻¹⁸
0,8 x 10 ⁻⁷	14,0 x 10 ⁻¹⁹	1,086 x 10 ⁻¹⁸	2,702 X 10 ···
1,5 x 10 ⁻⁷	8,0 x 10 ⁻¹⁹	5,26 x 10 ⁻¹⁹	3,452 x 10 ⁻¹⁸
2 x 10 ⁻⁷	6,0 x 10 ⁻¹⁹ –	3,745 x 10 ⁻¹⁹ –	3,6035 x 10 ⁻¹⁸ –
2 X 10	6,2 x 10 ⁻¹⁹	3,95 x 10 ⁻¹⁹	3,945 x 10 ⁻¹⁸
3 x 10 ⁻⁷	3,6 x 10 ⁻¹⁹	3,03 x 10 ⁻¹⁹	3,675 x 10 ⁻¹⁸
4 x 10 ⁻⁷	1 6 x 10 ⁻¹⁹	3 3725 x 10 ⁻¹⁹	3 64075 x 10 ⁻¹⁸

QUESTION 18

18.1 The minimum frequency of light needed to eject electrons from a metal / surface. $\checkmark \checkmark$

18.2 Greater than \checkmark 18.3 $\overline{E} = W + E$

 $E = W_o + E_{k(max)} \checkmark$ $hf = hf_o + E_{k(max)}$ $(6,63x10^{-34})f_x \checkmark = (6,63x10^{-34})(10,4x10^{14})\checkmark + 23,01x10^{-19}) \checkmark$ $f_x = 4,51x10^{15} Hz \checkmark$

18.4.1 No effect ✓

18.4.2 Increases ✓

18.4.2 No effect ✓

QUESTION 19

19.1.1 The process whereby electrons are ejected from a (metal) surface when light of suitable frequency is incident on that surface. ✓✓
 (2)

19.1.2
For one photon:

$$E = hf \checkmark$$

$$= (6,63x10^{-34})(1,2x10^{15}) \checkmark$$

$$= 7,956x10^{-19} J$$
Number of electrons = $\frac{total \ energy \ of \ photons}{energy \ of \ one \ photon}$

$$= \frac{1,75x10^{-9}}{7,956x10^{-19}} \checkmark$$

$$= 2,20x10^{9} \checkmark$$

19.1.3 $E = W_o + K_{max} \checkmark$ $hf = hf_o + \frac{1}{2}mv_{max}^2$ $7,96x10^{-19}\checkmark = (6,63x10^{-34})(9,09x10^{14})\checkmark + \frac{1}{2}(9,11x10^{-31})v_{max}^2\checkmark$ $v_{max} = 6,51x10^5 \ m \cdot s^{-1}\checkmark$

19.2 An atom (electron) in a higher (excited) energy state/level returns to a lower energy state/level. ✓ (5) 19.2 Energy is released as light (photons/frequencies of light are released). ✓ (2) [13] [13]

QUESTION 20

20.1 Light has a particle nature/is quantized. \checkmark (1) 20.2 The minimum energy (of incident photons) that can eject electrons from a metal/surface. \checkmark (2) 20.3 $E = W_o + E_{k(max)} \checkmark$ $hf = W_o + E_{k(max)}$ $(6,63x10^{-34})(5,96x10^{14}) \checkmark = 3,42x10^{-19} + E_{k(max)} \checkmark$ $E_{k(max)} = 5,31x10^{-20} J \checkmark$ (4)

(1) (1) **[12]**

(5)

(1)

[13]

(2)

(2)

Physic	acearate and the stanmore physics.com	FS/2024
20.4	$I = \frac{Q}{\Delta t} \qquad n = \frac{Q}{e}$ $0,012 = \frac{Q}{10} \checkmark \qquad = \frac{0,12}{1,6x10^{-19}} \checkmark$	
	$Q = 0,12 C = 7,5x10^{17}$ <i>Number of photons</i> = 7,5x10^{17} \checkmark	(4)
20.5	Increases \checkmark More photons strike the surface of the metal per unit time/ at a higher rate. \checkmark More (photo) electrons ejected per unit time \checkmark (resulting in increased current).	(3) [14]
QUEST	ΓΙΟΝ 21	[14]
21.1	6,63 x 10 ⁻³⁴	
21.2 21.3.1	The minimum energy needed to eject an electron from a (metal) surface. \checkmark	(2)
21.0.1	$W_o = h f_o \checkmark$ = (6,63x10^{-34})(5x10^{14}) \checkmark	
	$= 3,32x10^{-19} / \checkmark$	
04.0.0		(3)
21.3.2	$E = W_o + E_{k(max)} \checkmark$ (6,63x10 ⁻³⁴)(12,54x10 ¹⁴) \sqrt{ = 3,32x10 ⁻¹⁹ } + E_{k(max)} E_{k(max)} = 4,99x10 ⁻¹⁹ J = X	
		(4)
21.4.1 21.4.2	No effect ✓ Increases ✓	(1)
21.4.2	A / /B	(1)
	Marking criteria Graph B to the right of graph A ✓ Lines are parallel. ✓ Frequency	
		(2)
QUEST	TION 22	[14]
22.1.1	The minimum energy (of incident photons) that can eject electrons from a metal/surface. $\checkmark\checkmark$	(2)
22.1.2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$E > W_o \checkmark$ $f > f_o \checkmark$	
	$ \frac{\text{OPTION 3}}{E = W_o + E_{k(\max)}} \checkmark \\ hf = W_o + E_{k(\max)} \\ (6,63x10^{-34})(2,8x10^{16}) = 6,63x10^{-19} + E_{k(\max)} \checkmark \\ E_{k(\max)} = 1,79x10^{-17} J \checkmark \\ E_{k(\max)} > 0 \checkmark $	(4)

22.1.3 $F = \frac{kQ_AQ_B}{r^2} \checkmark \qquad n$ $0,027 \checkmark = \frac{(9x10^9)(5,4x10^{-6})Q_B}{0,1^2} \checkmark \qquad Q_B = 5,56x10^{-9} C$	$= \frac{Q_B}{e} \checkmark$ = $\frac{5,56x10^{-9}}{1,6x10^{-19}} \checkmark$ = 3,47x10^{10} umber of electrons = 3,47 x 10^{10} \checkmark
--	--

- 22.2.1 (Line) Absorption ✓
- 22.2.2 Continuous spectrum of white light/rainbow of colours ✓ with dark/black lines ✓ (replacing specific frequencies).
- 22.2.3 Diagram B 🗸 🗸

BIBLIOGRAPHY

Department of Basic Education, *National Senior Certificate Physical Sciences Question papers*, 2014 – 2023, Pretoria

(6)

(1)

(2)

(2) [**17**]