	School logo
LEARNER'S NAME & SURNAME	:
SUBJECT	MATHEMATICS
GRADE	9
TASK	: Term 3 Project
MARKS	morephysics.com ⁵⁰
DURATION	: 1 - 2 Weeks

Stages	1	2	3	4	Total
Торіс	Cartesian Plane	Graphs	Patterns	Poster: Graphs or patterns	
Total Mark	6	17	17	10	50
Learner Mark					

Project Ownloaded from Stanmorephysics. com

Term 3 Grade 9 Topic in the form of a Poster

Instructions to the learner

- 1. Read all the instructions carefully.
- 2. All stages are compulsory.

3. This is a fill in paper, Answer stages 1 - 3 on the spaces provided. Follow the instructions

on stage 4 carefully on how to answer that stage.

- 4. All working must be shown.
- 5. The attached rubric will be used to mark stage 4 only.
- 6. The project is out of 50 marks.
- 7. The project duration is 1-2 weeks.
- 8. The teacher will lead you through the stages by explaining what is required of you in each stage.
- 9. Approved scientific calculators (non-programmable and non-graphical) may be used.

Stage Pounlanderdarfer om Stanmorephysics.com

***INFORMATION:** A Cartesian Plane is used for sketching Graphs as well as to perform transformations.

1.1	Describe the features of a Cartesian Plane in terms of its axes, the di	rection	
	of the axes and its centre.		
4		_	
e de		_	
L _			
		_	
		-	
		-	(6)
			(0)
			[6]

***INFORMATION:** In this stage you find typical questions that a grade 9 learner needs to master **Graphs**. Answer the questions correctly.

INFORMATION: There are two sub-Topics that a grade 9 learner needs to master when graphs are taught. A grade 9 learner needs to know how to interpret graphs as well as how to draw graphs.

	IIIIni	Stepporenhiging.com				
Topic	Termino	logy				
2.1	The To	opic Graphs is one of the topics you have learned about in Term 3				
	Grade	9 Mathematics. In your own words, how would you explain to your				
	classmate what Graphs are?					
			(1)			
2.2	Differe	ent types of Data (Information) is represented using Graphs, this				
	inform	ation can be 'Discrete' or 'Continuous'.				
	2.2.1	Define the term 'Discrete Data'				
			(2)			
	2.2.2	Define the term 'Continuous Data'				
			(2)			

		graph.	
		x-intercept: $x = $	
		y-intercept: $y = _$	
2)	(2	in more physics.com	
		Use any two points on your graph to determine the value of the	2.3.3
		gradient.	
4)	(4		
,	`	Determine the equation of the line passing through the points	2.3.4
		represented in the table provided in Question 2.3 above.	
2)	(2		
		Is the graph represented above linear or non-Linear? Explain your	2.3.5
		answer.	
2)	(2		
7]	[17		
1) 2) 7]	(4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Use any two points on your graph to determine the value of the gradient.	2.3.3

You are considering the different patterns and structures of houses and considering the number people and resources that will be needed. The squares represent the number families that can be housed and the dots represents the amount of material that can be used to build each structure

2.1. Count the material to be used in each structure.

2 7. Determine the general rule to find the number of dots in the nth Structure.

2.8. Us Drawnload and ulateman Stateman In a solution of the s

_

ć.

[2]

2.9. From the structures above. Which structure will you use and why? Present your answer basing it on your answers above.

_ [2]

[Total : 17]

Stage 4: Poster

INFORMATION: At this stage you are going to represent all the information you learned when you were completing stages 2 to 3 in the form of a Poster that will be Pasted in your classroom.

Instructions on Designing a Poster

- 1. The poster must be on an A3 page or a bigger page.
- 2. The Goal of the poster is to educate and inform your peers about one of the topics in this project namely Graphs (stage 2) or (stage 3) patterns.
- 3. The poster must be creative (Use colour, diagrams and interesting layout).
- 4. Information from stage 2 or stage 3 (Graphs or patterns) must be displayed in an appealing way on the poster.

MARKING RUBRIC

The poster must be on an A3 page or a bigger page.

0	1	2	MARKS
Poster was not compiled.	Poster compiled on a page that is smaller than an A3 page.	Poster compiled on an A3 page or bigger.	

The Goal of the poster is to educate and inform your peers about the Topic you chose.

1	2	3	4	MARKS
Poster does	Poster educates	Educational poster	Educational	
not have a	learners but	designed with a	poster	
clear	some	focused Goal, but	designed with	
educational	information	the information is	a focused	
goal,	does not make	not clearly	Goal,	
information is	sense, there are	communicated and	information is	
incorrect.	many mistakes	there are a few	clearly	
	and errors.	errors and morephysics	communicated	
		mistakes.	and correct.	

Creativity

Stage 1: Cartesian Plane

***INFORMATION:** A Cartesian Plane is used for sketching Graphs as well as to perform transformations.

		[6]	
	is called the origin√A.	(0)	
	perpendicular at the point of intersection which	(6)	
	lines intersect one another at zero <mark>✓ A</mark> and are		
	right) ✓ A and named the x-axis ✓ A. These two	I mark for origin being zero	
	horizontally (stretches from the left to the	1 mark for origin	
	and named the y-axis < A. The other is drawn	1 mark for origin	
É	One drawn vertically (stretches up and down)✓A	1 mark for direction of v-axis	
1	The cartesian plane is a set of two number lines.	1 mark for v-axis	
ſ	of its axes, the direction of the axes and its centre.	1 mark for direction of x-axis	
1.1	Describe the features of a Cartesian Plane in terms	1 mark for x-axis	

Stage 2: Graphs

INFORMATION: In this stage you find typical questions that a grade 9 learner needs to master when **Graphs** are taught. Answer the questions correctly.

INFORMATION: There are two sub-Topics that a grade 9 learner needs to master when graphs are taught. A grade 9 learner needs to know how to interpret graphs as well as how to draw graphs.

Topic	Terminol	ogy	
2.1	The To	ppic Graphs is one of the topics you have learned	1 mark for a definition
	about i	n Term 3 Grade 9 Mathematics. In your own words,	that can be interpreted
	how we	ould you explain to your classmate what Graphs	as diagram representing
	are?		a relationship between
	A diag	ram showing the relationship between different	quantities.
	quanti	ties. ✓A	
	Or		
	A diag	ram that shows how different types of	
	inform	ation are related. 🗸 A	
			(1)
2.2	Differe	nt types of Data (Information) is represented using	
	Graphs	s, this information can be 'Discrete' or 'Continuous'.	
	2.2.1	Define the term 'Discrete Data'	1 mark for numerical or
		Numerical or quantitative data that can be	data that can be
		<u>counted√A</u> and only takes the form of specific	counted.
		values. <u>VA</u>	1 mark for specific
			values.
			(2)
	2.2.2	Define the term 'Continuous Data'	1 mark for data that is
		Data that can be measured <mark>✓A</mark> and takes the	measured.
		form of any value.	1 mark for data takes up
			any value.
			(2)

Downloa	aded from Stanmorephysics.com	
2.3.2	Identify the x -intercept and the y -intercept from	1 mark for x-intercept
	the above table or graph.	1 mark for y intercept
	<i>x</i> -intercept: $\underline{x} = 3 \checkmark \underline{A}$	
	<i>y</i> -intercept: $y = 6 \checkmark A$	(2)
2.3.3	Use any two points on your graph to determine	1 mark for method in
	the value of the gradient.	the numerator
	$aradient = \frac{vertical change}{vertical change}$	1 mark for method in
	horizontal change	denominator
	$=\frac{4-2\checkmark M}{2}$	1 mark for simplifying
	$1 - 2 \checkmark M$	1 mark for answer
	$=\frac{2}{-1}\checkmark CA$	
	Stanmorephy Sics 20m CA	(4)
2.3.4	Determine the equation of the line passing	1 mark for gradient
	through the points given in 3.1 above.	multiplied x
	$y = -2x + 6 \checkmark \checkmark CA$	1 mark for adding 6
		(2)
2.3.5	Is the graph represented above linear or non-	1 mark for Linear
	Linear? Explain your answer.	1 mark for reason
	Linear <mark>√A</mark> because it is a graph of a straight	
	<u>line</u> <u>✓</u> A	
		(2)
i		[17]
		LIDOL

Stage 3: Patterns

QUESTION 2

You are considering the different patterns and structures of houses and considering the number people and resources that will be needed. The squares represent the number families that can be housed and the dots represents the amount of material that can be used to build each structure

2.1. Count the material to be used in each structure

- a) Structure $1 2 \text{ dots} \sqrt{}$ b) Structure $2 - 5 \text{ dots} \sqrt{}$ c) Structure $3 - 10 \text{ dots} \sqrt{}$
- d) Structure 4 17 Dots $\sqrt{}$

2.2. What will the structure 5 look like. Draw below

[4]

- 2.3. Count the number of dots in Structure 5 _____ 26 dots.
- 2.4 How much material/dots will you need to house 25 families? 37 dots
- 2.5. How many dots/material are there in Structure 6? 50 dots. [1]
- 2.6. Describe the pattern from structure 1 to Structure 4. Square the position of the structure and add 1 dot
- 2 7. Determine the general rule to find the number of dots in the nth Structure. $Tn = n^2 + 1$
- 2.8. Use the rule to calculate many dots are there in the 50th Structure? Show calculations.

$$T50 = 50^2 + 1$$

= 2501

[2]

[1]

[1]

[2]

[2]

2.9. From the structures above. Which structure will you use and why? Present your answer basing it on your answers above.

I will use the structure that houses a lot of families on a small space like structure 4 and 5 [2]

Stage 4: Poster

INFORMATION: At this stage you are going to represent all the information you learned when you were completing stages 2 to 3 in the form of a Poster that will be Pasted in your classroom.

Instructions on Designing a Poster

- 1. The poster must be on an A3 page or a bigger page.
- 2. The Goal of the poster is to educate and inform your peers about **one** of the topics in this project namely Graphs (stage 2) or patterns (stage 3).
- 3. The poster must be creative (Use colour, diagrams and interesting layout).
- 4. Information from stage 2 or stage 3 (Graphs or patterns) must be displayed in an appealing way on the poster.

MARKING RUBRIC

The poster must be on an A3 page or a bigger page.

0	1	2	MARKS
Poster was not compiled.	Poster compiled on a page that is smaller than an A3 page.	Poster compiled on an A3 page or bigger.	

The Goal of the poster is to educate and inform your peers about the Topic you chose.

1	2	3	4	MARKS
Poster does not have a clear educational goal, information is incorrect.	Poster educates learners but some information does not make sense, there are many mistakes and errors.	Educational poster designed with a focused Goal, but the information is not clearly communicated and there are a few errors and mistakes.	Educational poster designed with a focused Goal, information is clearly communicated and correct.	

Creativity

1	2	3	4	MARKS
Little attempt in making the poster creative, layout is untidy, diagrams are incorrect and or no colour is used.	Average attempt was made in making the poster presentable with some correct diagrams, and colour.	Poster was designed with correct diagrams, presentable layout, and colour.	Poster was creatively designed with correct diagrams, appealing layout, and colour.	