

NCS (CAPS)

TEACHER SUPPORT

DOCUMENT GRADE 11 MATHEMATICS

STEP AHEAD PROGRAMME 2022

This document has been compiled by the KZN FET Mathematics Subject Advisors.

This support document serves to assist Mathematics teachers on how to deal with curriculum gaps and learning losses as a result of the impact of COVID-19 since 2020. It also captures the challenging topics in the Grade 10 - 12 work. The lesson plans should be used in conjunction with the 2022 Recovery Annual Teaching Plans. Activities should serve as a guide on how to assess topics dealt with in this document. It will cover the following:

TABLE OF CONTENTS				
TOPICSPAGE NUMBERS				
1.	Algebra	2		
2.	Euclidean Geometry	23		
3.	Trigonometry	53		
4.	Answers	96		

Downloaded from Stanmorephysics.com							
	LESSON 1: EXPONENTS AND SURDS						
Term 1	Week		Grade	11			
Duration 1hr	Weighting		Date				
Sub-topics	Simplify expressions	s using laws of exp	onents for ratio	onal exponents			
	where $x^{\frac{p}{q}} = \sqrt[q]{x^p}; x > 0; q > 0$						
RELATED CONCEPTS/	TERMS/VOCABULA	RY					
Exponential laws	•						
Square roots and other root	I S						
PRIOR-KNOWLEDGE/	BACKGROUND KNO	WLEDGE					
Learners are familiar with	simplifying expressions u	using laws of expo	nents from the	previous grades.			
RESOURCES							
Keeping Mathematics Sim	ple (Clever)						
Platinum Mathematics	atics (Learners Book						
Maths Handbook and Stud	y guide						
ERRORS/MISCONCEP	FIONS/PROBLEM AR	EAS					
• Learners fail to apply the	ne exponential laws						
• Inability to work with r	adical sign i.e., change fi	rom radical form to	o exponential fo	orm			
METHODOLOGY							
Rational exponents and roo	ots						
Concept development							
Writing a number in expon	ential form						
$9 = 3 \times 3 = 3^2$ multiplication of powers							
$\sqrt{9} = 3$	$\sqrt{9} = 3$ calculator						
$\sqrt{3^2} = 3$	$\sqrt{3^2} = 3$ since $9 = 3^2$						
Changing radical form to exponential form							
Given 3^2 , use $\sqrt{3^2}$ to investigate the value (exponent) of a radical sign							
Let $m = 2$ and n to repres	ent the value of $$						
$\sqrt{3^2} = \left(3^2\right)^m$		exponential form	n				
$3^{mn} = 3^{2n}$		raising a powe	er to an exponen	$at, \left(x^m\right)^n = x^{mn}$			
$3^{-1} = 3^{-1}$							

3. Evaluate the following without using a calculator

Downlo	aded fr	om Stanmorephys TOPIC: ALGI	i cs. com BRA			
LESSON 2						
Term	1	Week	Grade	11		
Duration	1hr	Weighting	Date			
Sub-topics		Simplify expressions usin where $x^{\frac{p}{q}} = \sqrt[q]{x^p}; x > 0; q$	g laws of exponents for ra >0	tional exponents		
RELATED CO	NCEPTS/ 7	TERMS/VOCABULARY				
PRIOR-KNOW Prime factoriza Exponential law Factorization b	/LEDGE/ F ttion vs y taking ou	ACKGROUND KNOWLI	EDGE			
RESOURCES						
Keeping Mathen Learning Channe Platinum Mathen Maths Handbool	natics Simpl el mathemat matics k and Study	e (Clever) ics (Learners' Book) guide				
 Removal of I multiplicatio Confusion be 	brackets in ton brackets in ton etween prob	he exponents: If there are tw	o terms the second term is	s left out during		
METHODOLC Examples of sim	OGY oplification of	of expression using exponent	ial laws will be done			
Simplify the foll 1. $\frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}}$ $= \frac{2^{2(x+2)} \cdot 2^{3(x-1)}}{2^{x-3} \cdot 2^{4(x)}}$	owing	writing bases as pow	vers of its prime bases			
$=\frac{2^{2(x+2)}.2^{3(x-1)}}{2^{x-3}.2^{4(x)}}$		multiply the exponen	nts (raising a power to an o	exponent)		
$=\frac{2^{2x+4} \cdot 2^{3x-3}}{2^{x-3} \cdot 2^{4x}}$		remove the brackets	in exponents	Ţ		
$=\frac{2^{2x+4+3x-3}}{2^{x-3+4x}}$		adding the bases		5		
$=\frac{2^{5x} \cdot 2^{1}}{2^{5x} \cdot 2^{-3}}$ $=2^{4}$ $=16$		simplify				

2.
$$\frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}}$$
$$= \frac{(3.5)^{n+2} \cdot (3.3.5)^{1-n}}{3^{3-n}}$$
$$= \frac{3^{n+2} \cdot 5^{n+2} \cdot 3^{1-n} \cdot 3^{1-n} \cdot 5^{1-n}}{3^{3-n}}$$
$$= \frac{3^{n+2+1-n+1-n} \cdot 5^{1} \cdot 5^{-n}}{3^{3-n}}$$
$$= \frac{3^{-n+4} \cdot 5 \cdot 5^{-n}}{3^{3-n}}$$
$$= \frac{3^{-n+4-3-(-n)} \cdot 5 \cdot 5^{-n}}{3^{3-n}}$$
$$= \frac{3 \cdot 5 \cdot 5^{-n}}{3^{3-n}}$$
$$= \frac{5^{x} \cdot 5^{2x} 5^{-2}}{5^{3x}}$$
$$= \frac{5^{x} \cdot 5^{2x} 5^{-2}}{5^{3x}}$$
$$= \frac{5^{x} \cdot 5^{2x} 5^{-2}}{5^{3x}}$$
$$= \frac{5^{3x} \cdot 5^{-2}}{5^{3x}}$$
$$= \frac{1}{5^{2}}$$
$$= \frac{1}{25}$$
$$4. \frac{2^{x} + 2^{x+1}}{2^{x} - 2^{x+2}}$$
$$= \frac{2^{x} + 2^{x} \cdot 2}{2^{x} - 2^{x} \cdot 2^{2}}$$
$$= \frac{2^{x} (1+2)}{2^{x} (1-2^{2})}$$
$$= \frac{3}{-2} = -\frac{3}{2}$$

Γ

prime factorization

breaking down of powers

applying the exponential laws

simplification

simplification negative exponent

breaking down of powers

taking out the common factor

simplification

Downloaded_f	rom Stanmorenhysics.com	
5. $\frac{3^{x+1}+3^x}{3^x}$		
$=\frac{3^{x}.3+3^{x}}{3^{x}}$	breaking down the power	
$=\frac{3^{x}(3+1)}{3^{x}}$	common factor	
=4	simplification	
$6. = \frac{15^{x-1} + 5^x}{5^x}$		
$=\frac{3^{x-1}.5^{x-1}+5^x}{5^x}$	expand	
$=\frac{3^{x}.3^{-1}.5^{x}.5^{-1}+.5^{x}}{5^{x}}$	expand	
$=\frac{5^{x}\left(3^{x}\cdot\frac{1}{3}\cdot\frac{1}{5}+1\right)}{5^{x}}$	simplification	
$=\frac{3^{x}}{15}+1$		
$=\frac{3^{x}}{15}+\frac{15}{15}$		
$=\frac{3^x+15}{15}$		

ACTI	IVITIES/ASSESS	MENTS			
Simpl	ify the following.	Leave your ansv	wer with a posit	ive exponent	
2.1	$25^{x+1}.6$				
	$10^{x-1}.15^x$				
2.2	$6^{n+3}.2^{n-1}$				
	12^{n+2}				
2.3	$2^{4x+1} \cdot 9^{x} \cdot 6^{2x-1}$				
	$12^{3x}.3^{x}$				
2.4	$8^{x}.6^{x-1}$				
	$\overline{\overline{}}$				
2 5	$2/3.16^{\circ}$				
2.5	$2^{n+1} + 2^{n+3}$				
	2^{n+1}				

Downloaded_fr	om Stanmorep	h <u>ysics.com</u>		
	I UPIC: A	LGEDKA JENTS AND SHI	DDC	
Tomm	LESSUN 3: EAPUN	EN15 AND SUP	Crada	11
	vv eek		Grade	11
Duration	Weighting		Date	
1 Hr	weighting		Date	
Sub-topics	Solve equations usi	ng laws of expone	ents for ratio	nal exponents
	$\frac{p}{a}$ $a\sqrt{-p}$			
	where: $x^q = \sqrt[q]{x^p}; x$	>0;q>0		
RELATED CONCEPTS/	FERMS/VOCABULA	RY		
Laws of exponents				
Rational exponents – defin	ition			
Square root and other roo	ts A CKC DOLIND KNO			
I aws of expenses	DACKGRUUND KNU	WLEDGE		
 Laws of exponents Definition of a surd 				
 Simplification of expression 	ssions using laws of ex	nonents for ratio	nal exponent	s where •
	ssions using it was of ex	ponents for ratio	nai exponent	s where .
$x^{\overline{q}} = \sqrt[q]{x^p}; x > 0; q > 0$				
RESOURCES				
Keeping Mathematics Simp	le (Clever)			
Learning Channel Mathema	tics (Learners' Book)			
Platinum Mathematics				
Maths Handbook and Study	guide			
		EAG		
ERRORS/MISCONCEPT	IONS/PROBLEM AR	EAS		
Nianipulation of ration Desiring on evenement to	al exponents			
• Raising an exponent to	another exponent			
• Splitting the powers	a			
 Factorization of power Checking the solution f 	8 For validity			
• Checking the solution				
1. Revision of the expo	nential equations learnt	in Gr10 (in which	an exponent	is the unknown)
I I I I I I I I I I I I I I I I I I I	1		r	
2. Remember:				
> The definition : $\sqrt[n]{a^m}$	$=a^{\frac{m}{n}}$ we will use this c	lefinition to solve	equations wit	h rational exponents
e.g. $\sqrt[3]{a^2} = a^{\frac{2}{3}}; \sqrt[3]{b} =$	$b^{\frac{1}{3}}; \sqrt[4]{p^3} = p^{\frac{3}{4}}; \sqrt{x} = x^{\frac{1}{2}}$			Ĩ
> By definition $\sqrt{25} =$	5; and $\pm \sqrt{25} = \pm 5$			T
				Í.
Example 1. Solve for x				
$A^{x} - \mathbf{Q}$				1
$4^{2} = 8^{2}$ $(2^{2})^{x} = 2^{3}$	- write bot	h bases as a powe	er of 2	
$2^{2x} = 2^3$	- raise a po	wer to a power: ($\left(a^{m}\right)^{n} = a^{mn}$	
2x=3	- equate e	exponents)	
$r = \frac{3}{2}$	_			
~ 2				

Downloaded from Stanmorephysics.com Example 2. Solve for *x*

$3^{x+2} + 3^{x+1} = 12$ $3^{x} \cdot 3^{2} + 3^{x} \cdot 3^{1} = 12$ $3^{x} (3^{2} + 3^{1}) = 12$ $3^{x} (9+3) = 12$	 split the powers factorise by taking out 3^x as a common factor
$12.3^{x} = 12$	
$\frac{12.3^x}{12} = \frac{12}{12}$	- divide both sides of the equation by 12
$3^{x} = 1$ $3^{x} = 3^{0}$ x = 0	- $a^0 = 1$

Example 3 Determine the value of x **if** $x^{\frac{3}{4}} = 8$

$$\left(x^{\frac{3}{4}}\right)^{\frac{4}{3}} = \left(2^{3}\right)^{\frac{4}{3}}$$
 - raise each side of the equation to the reciprocal exponent $x = 2^{4} = 16$

Example 4. Determine the value of x if $x^{\frac{1}{2}} - 3x^{\frac{1}{4}} - 10 = 0$ Solution: this can be easily solved by using substitution.

Let
$$k = x^{\frac{1}{4}}$$

 $\therefore k^2 = x^{\frac{1}{4}} x^{\frac{1}{4}} = x^{\frac{1}{2}}$
And , if $x^{\frac{1}{2}} - 3x^{\frac{1}{4}} - 10 = 0$
Then $k^2 - 3k - 10 = 0$
 $(k-5)(k+2) = 0$ - factorise
 $k = 5$ or $k = -2$ - solve for k
 $x^{\frac{1}{4}} = 5$ $x^{\frac{1}{4}} = -2$ - substitute for $k = x^{\frac{1}{4}}$
 $\left(x^{\frac{1}{4}}\right)^4 = 5^4$ No solution to $x^{\frac{1}{4}} = -2 : \sqrt[4]{x} \ge 0$
 $x = 625$

Do	wnloaded from Stanmorephysics.com				
ACTIV	VITIES/ASSESSMENTS				
SOLV	SOLVE FOR X:				
3.1	$x^{\frac{2}{3}} = 4$				
3.2	$\frac{1}{x^3} = -1$				
3.3	$x^{\frac{1}{2}} = -5$				
	$x^{\frac{3}{2}} = 27$				
3.4	$3\sqrt[3]{x} = 24$				
3.5	$x^{\frac{1}{2}} - 2x^{\frac{1}{4}} - 3 = 0$				
3.6	$x^{\frac{2}{3}} - 3x^{\frac{1}{3}} - 4 = 0$				
3.7	$3x^{\frac{3}{4}} = 24x^{\frac{1}{4}}$				
3.8	$6 + 4\sqrt[4]{x} = 18$				
3.9	$3x^{\frac{2}{3}} - 5x^{\frac{1}{3}} - 12 = 0$				
3.10	$x - 7x^{\frac{1}{2}} - 10 = 0$				

Downloaded	<u>from S</u> TO	Lanmore PIC: EXPO	OBVSICS, COU NENTS AND SU	RDS		
	10	LE	SSON 4			
Term 1	W	eek		Grade	11	
Duration 1hr	W	eighting		Date		
Sub-topics	DEFIN	ITION OF SU	JRDS			
	SURD	LAWS				
RELATED CONCE	EPTS/ TER	MS/VOCAB	ULARY			
Introduction to surds						
Definition of a surd						
Application of surd la	aws					
Exponential laws						
PRIOR-KNOWLED Prime factorization Exponential laws Factorization by tak	DGE/ BAC	KGROUND ommon facto	KNOWLEDGE or			
RESOURCES						
Keeping Mathematics	s Simple (C	lever)				
Learning Channel ma	athematics (Learners' Bo	ok			
Platinum Mathematic	cs Š					
Maths Handbook and	l Study guid	le				
ERRORS/MISCON	CEPTION	S/PROBLEN	A AREAS			
• Writing down a su	urd as a pro	duct of any ty	wo factors without	t ensuring that	at one must be	
rational and the of	ther irratior	al		C		
Removal of brack	tets in the e	xponents: If the	here are two terms	s the second	term is left out	
during simplificat	tion					
Confusion between	en problems	with multipl	ication and division	on and additi	on and subtraction.	
• Inability to factor	ise into prin	ne bases				
Negative exponent	nts are still a	a challenge				
METHODOLOGY		6				
Definition :				C		
Surd: A root of a nur	mber that p	oduces an Irr	ational number			
Irrational number: A	number tha	t cannot be w	ritten in the form	of $\frac{a}{b}$ where	a and b are	
integers, $a \neq 0$					ากไ	
Examples of surds: $\sqrt{2}$; $\sqrt{7}$; $\sqrt[3]{17}$; $\sqrt[5]{11}$						
Discussion of the rule	es and the re	estrictions on	surds will be don	e: Refer to w	orksheet	

hysics. <u>Downloaded from Stanmoreph</u> EXAMPLES: APPLICATION OF THE RULE con Simplify the following surd without using a calculator /32 1. $=\sqrt{2\times 16}$ factorise (ensure one of the factors is a perfect square) $=\sqrt{16}\times\sqrt{2}$ product rule $=4\sqrt{2}$ simplification ∛96 2. $=\sqrt[3]{8 \times 12}$ factorise (one factor a perfect cube)/ product rule $=2\sqrt[3]{12}$ simplification $\sqrt{50x^6y^8}$ 3. $=\sqrt{25\times 2x^6y^8}$ factorisation $=5\sqrt{2}x^3y^4$ simplification (exponential law) $\sqrt{32}$ 4. 12 $=\frac{\sqrt{16}\times\sqrt{2}}{12}$ product rule $=\frac{4\sqrt{2}}{12}$ simplification $\frac{\sqrt{2}}{3}$ **ACTIVITIES/ASSESSMENTS**

Simplify the following without using a calculator (Show all your working)

Downloaded from Stanmorephysics.com WORKSHEET: SURDS

1. INVESTIGATING THE PRODUCT RULE

Use your calculator to complete the table below.

Write your answer in decimal form

• The format of the answer has been modelled kin the first calculation

PRODUCT 1	PRODUCT 2
$\sqrt{7} \times \sqrt{3} = 4,5825$	$\sqrt{7 \times 3} =$
$\sqrt{8} \times \sqrt{3} =$	$\sqrt{8 \times 3} =$
$\sqrt{5} \times \sqrt{2} =$	$\sqrt{5 \times 2} =$
$\sqrt[3]{13} \times \sqrt[3]{11} =$	$\sqrt[3]{11\times13} =$
$\sqrt[4]{8} \times \sqrt[4]{12} =$	∜ 8×12

What do you observe about Product 1 and product 2?

.....

Conclusion:

 $\sqrt[n]{a \times b} = \dots$

2. RESTRICTIONS ON THE RULE

The rule applies for $n \in$ natural numbers, $n \ge 2$, a, b > 0Use two examples to show what happens when each of these occur :

- 2.1 a < 0
- 2.2 b < 0

2.4 n < 2 e.g. n = 1

INVESTIGATING THE QUOTIENT RULE

• Use your calculator to complete the table below.

• Write your answer in decimal form

The format of the answer has been modelled kin the first calculation

QUOTIENT 1	QUOTIENT 2	
$\frac{\sqrt{7}}{\sqrt{3}} =$	$\sqrt{\frac{7}{3}} =$	
$\frac{\sqrt{8}}{\sqrt{3}} =$	$\sqrt{\frac{8}{3}} =$	
$\frac{\sqrt{5}}{\sqrt{2}} =$	$\sqrt{\frac{5}{2}} =$	
$\frac{\sqrt[3]{11}}{\sqrt[3]{13}} =$	$\sqrt[3]{\frac{11}{13}} =$	
$\frac{\sqrt[4]{8}}{\sqrt[4]{12}} =$	$\sqrt[4]{\frac{8}{12}}$	

Conclusion:

$$\sqrt[n]{\frac{a}{b}} = \dots$$

Use your own examples to show that, Discuss the restrictions for the rules:

1. $\sqrt[p]{\sqrt[q]{a}} = \sqrt[pq]{a}$ 2. $\left(\sqrt[p]{a}\right)^q = \sqrt[p]{a^q}$

Download	ed from S	tanmorephy	Sics, com				
		PIC: EAPONEN	AND SURDS	DC			
Term	1	Week		Grade	11		
Duration	1hr	Weighting		Date			
Sub-topics	Si	implification of su	rds				
RELATED CO	NCEPTS/ TER	MS/VOCABULA	RY				
Definition of a S	Surd						
Irrational numbe	er						
Kationalize							
PRIOR-KNOW	LEDGE/ BAC	KGROUND KNO	OWLEDGE				
Application of l	aws in surds						
RESOURCES	··· 0: 1 (0	1					
Keeping Mathen	natics Simple (C	lever)					
Platinum Mathe	matics	Leathers Dook					
Maths Handbool	k and Study guid	le					
ERRORS/MIS	CONCEPTION	S/PROBLEM AF	REAS				
Not simp	lifying the surds	fully					
• Inability	to recognize like	e surds and simplif	y them				
METHODOLC	OGY						
Examples							
Simplify withou	t using a calculat	tor					
1. $\sqrt{18} + \sqrt{3}$	$\overline{50} - \sqrt{8}$						
1. (- (-	v -						
$\sqrt{132}$							
2. $\frac{1}{\sqrt{3}}$							
$3(\sqrt{5+3})$	$\left(\sqrt{5} \right)$						
$3. (\sqrt{3+3})$	$(\sqrt{3}-3)$			LUUU			
4. $(\sqrt{5} - \sqrt{3})$	$(\sqrt{5}+\sqrt{3})$						
7	· · · · ·						
5. $\overline{\sqrt{5}}$	(rationalize th	e denominator		LUUUI			
V2-V2							

Downloaded :	f rom Stanm	orephysics, (.om				
	10	JPIC: ALGEBKA					
		LESSUN 0:	Cred	11			
Term 1	Week		Grad	11			
Duration 1 Hr	Weighting		Date				
Sub-topics	SIMPLE EQUAT	IONS WITH SUF	RDS				
RELATED CONCEPTS	5/ TERMS/VOCA	BULARY					
Laws of exponents							
Rational exponents							
PRIOR-KNOWLEDGE	// BACKGROUNI	D KNOWLEDGE					
• Laws of exponents							
• Definition of a surd							
Simplification of exp	ressions using lav	vs of exponents for	r rational exponer	nts where:			
$\frac{p}{q}$ $q \sqrt{p}$ $p \sim 0$							
$x^{q} = \sqrt[n]{x^{p}}; x > 0; q$	>0			•			
· Solve aquations win	a lowe of owners	to for rotional a	ononte where $\frac{p}{a}$	$-\frac{q}{r}$			
• Solve equations usin	g laws of exponen	is for rational exp	onents where: x	$= \sqrt{x^2}, x > 0; q > 0$			
RESUURCES							
Graue 11 DOOKS: Kooning Mothematics S	imple (Clever)						
Maths Handbook And S	Study Guide						
Via Africa Mathematics	Grade 11						
Platinum Mathematics	Grude II						
ERRORS/MISCONCE	PTIONS/PROBLI	EM AREAS					
Manipulation of rati	onal exponents						
• Isolating a surd	onur enponentes						
 Squaring on both sid 	les						
 Checking the solution 	n for validity						
METHODOLOGY	in tor vundity						
Explain that equations y	with surds can be	solved by :					
• using the laws of	rational exponent	ts.					
• by Squaring bot	h sides of the equa	ation.					
Example 1. Solve for x							
			\sim				
$\sqrt[3]{x} = 2$ B and the	$x \ge 0$			2			
	iction: " = °			5			
$x^{\overline{3}} = 2$ - expr	ess in exponential	form	Щ				
$r^{\frac{1}{3}\times\frac{3}{1}} - 2^{\frac{3}{1}}$	lighting of the law	a of unitional orman		า			
x = 2 - app	lication of the law	s of rational expo	nents	Ц			
$x = 2^{\circ}$							
x = 0				7			
				3			
Checking:							
$IHS = \frac{3}{8}$							
$=2^{\frac{3}{3}}$							
= 2 = KHS							
\cdots δ is a valid solution							

Downloaded from Stanmorephysics.com Example 2. Solve for *x*

Restriction: $x \ge 0$

Checking: $LHS = \sqrt{16^3}$ $= 16^{\frac{3}{2}}$ $= 4^{2\times\frac{3}{2}}$ $= 4^3$ = 64 = RHS

: 16 is a valid solution

- **Example 3 Determine the value of** *x* **if** $3\sqrt{x} = x 4$
- **Restriction:** $x \ge 4$

$\left(3\sqrt{x}\right)^2 = \left(x-4\right)^2$	- squaring on both sides	Checking: $x = 16 \cdot 3\sqrt{16} = 16 - 4$
$9(x) = x^2 - 8x + 16$		For W 1010 VIO 10
$x^2 - 17x + 16 = 0$		For $x = 1: 3\sqrt{1} \neq 1 - 4$
(x-16)(x-1)=0	- factorization	=12 = RHS
x = 16 or $x = 1$	- find the answer	∴ 16 is valid solution
		$\therefore x = 1$ is not a valid solution

Example 4. Determine the value of x if $\sqrt{x+1} = 2$ *restrictio* : $x \ge -1$

 $(\sqrt{x+1})^2 = 2^2$ - squaring on both sides x+1=4 x+1-1=4-1 - add the additive inverse of 1 on both sides of the equation x=3 - find the answer

Checking: $LHS = \sqrt{3+1}$ $= \sqrt{4}$ = 2 = RHS \therefore 3 is a valid solution

	Downloaded_from_Stanmorephysics.com
ACT	IVITIES/ASSESSMENTS
SOLV	VE FOR X:
6.1	$\sqrt[4]{x^3} = 27$
6.2	$-1\sqrt{x} = -7$
6.3	$\sqrt{x-1} = 6$
6.4	$\sqrt{x+3} = 10$
6.5	$\sqrt{x+12} = x$
6.6	$\sqrt{x+2} = x-4$
6.7	$\sqrt{10-x} = -2x - 1$
6.8	$\frac{\sqrt{x}}{\sqrt{2}} = 3\sqrt{2}$
6.9	$\sqrt{2-7x} + 2 = x$
6.10	$-\sqrt{-9x-17} = -3 - x$

Downloaded fu	Downloaded from Stanmorephysics.com					
TOPIC: ALGEBRA						
	LESSON /: EAP	<u>'ONEN IS ANI</u>	Crada	11		
Term 1	Week		Graue	11		
Duration 1Hr	Weighting]	Date			
Sub-topics SI	MPLE EQUATIONS	S WITH SURD	DS			
RELATED CONCEPTS/	FERMS/VOCABUL	ARY				
Exponential laws						
Rational exponents						
PRIOK-ANOWLEDGE/ I	DACKGROUND KIN	OWLEDGE				
 Definition of a suru Simplification of expre 	ssions using laws of	exponents for r	ational exponen	nts where :		
	ssions using iaws of	exponents for f	utional exponen			
$x^q = \sqrt[q]{x^p}; x > 0; q > 0$				•		
			<u>p</u>			
• Solve equations using I	aws of exponents for	r rational expo	nents where: x^q	$=\sqrt[q]{x^p}; x > 0; q > 0$		
RESOURCES						
Grade 11 books:	o(Claver)					
Maths Handbook And Study	Guide					
Gr11 mathematics (Via Afri	ca)					
	,					
ERRORS/MISCONCEPT	IONS/PROBLEM A	REAS				
Manipulation of ration	al exponents					
• Isolating a surd						
• Squaring on both sides						
Checking the solution 1	or validity					
Equations with surds can be	solved using.					
Equations with surds can be	sorred using.					
• The following Steps to	solving Surd Equati	ons				
State the restriction	ns					
Isolate the surd ter	m					
Square both sides of Solve for the university	of the equation					
 Solve for the unknow Check your answei 	JWII r against the stated r	restrictions to	declare a valid s	olution and omit the		
invalid solution	against the stated I					
				n		
Example 1. Determine the	value of <i>x</i> if					
<i>restriction</i> : $x \ge -2$ and $y \ge -2$: 0					
$\sqrt{x+2} - 3 = 0$			Juni	ก		
$\sqrt{r+2} - 3$ $\frac{1}{2}$	the gund torm			7		
$\int \sqrt{x} + 2 = 3 \qquad - \text{Isolat}$						
$(\sqrt{x+2}) = 3^2$ - squari	ng on both sides					
x + 2 = 9	41		. 1. 64	· · · · · · · · · · · · · · · · · · ·		
x+2-2=9-2 - adding x-7 find the	g the additive invers	se of $+2$ on both	sides of the equ	ation(transposition)		
$\lambda - \lambda - \lambda$ - ind th	C 4115WCI					

Downloaded_from_Stanmorephysics.com
Checking:
$LHS = \sqrt{1+2-3}$
$=\sqrt{9}-3$
= 3 - 3 = 0 - BHS
∴ 7 is a valid solution
Example 2: Solve for x: Restriction on $x+1>0$ on $x-1>0$
$\therefore x \ge -1 \qquad $
$1 + \sqrt{x+1} = x$
$\sqrt{x+1} = x-1$ - isolating a surd
$\left(\sqrt{x+1}\right)^2 = \left(x-1\right)^2$ - squaring on both sides
$x+1 = x^2 - 2x + 1$
$x^2 - 3x = 0$
x(x-3) = 0 - factorization
x = 0 or $x = 5$
Checking:
For $x = 0$: $LHS = \sqrt{0+1} = 1$ For $x = 3$: $LHS = \sqrt{3+1} = \sqrt{4} = 2$
RHS = 0 - 1 = -1 $RHS = 3 - 1 = 2$ $r = 3$ is a valid solution
ACTIVITIES/ASSESSMENTS
7.1 $\sqrt{x-3} - 4 = 0$
7.2 $\sqrt{12+x} = \sqrt{x} + 3$
7.3 $\sqrt{8-x} = 2$
$7.4 x_{2} x_{1} = 12$
$2\sqrt{\frac{2}{2}} - 3 + 4 = 12$
7.5 $4\sqrt{x-3}-3=2x-9$
7.6 $\sqrt{2x-1} - \frac{3}{\sqrt{2x-1}} = -2$
7.7 $2\sqrt{4-x} = 2\sqrt{x} - 4$
$7.8 \qquad 3\sqrt{\sqrt{x}+3} = 9$
7.8 $3\sqrt{\sqrt{x}+3} = 9$ 7.9 $\sqrt{22-7x} - x = -4$
7.8 $3\sqrt{\sqrt{x}+3} = 9$ 7.9 $\sqrt{22-7x} - x = -4$ 7.10 A rectangular fence has a perimeter of 35 meters. It has a width of 5meters and a length of
7.8 $3\sqrt{\sqrt{x}+3} = 9$ 7.9 $\sqrt{22-7x} - x = -4$ 7.10 A rectangular fence has a perimeter of 35 meters. It has a width of 5meters and a length of $\sqrt{2x+3}$ meters. Determine the value of x.

<u>Downloaded from Stanmorephysics.com</u>							
	TOPIC: EUCLIDEAN GEOMETRY						
LESSON 8							
Term	1	Week		Grade	11		
Duration	1 hour	Weighting	$50 \\ \pm 3$	Date			
Sub-topics	Revise lines and an	ngles, Triangles a	nd Quad	rilaterals			
RELATED CONCEPTS/ T	TERMS/VOCABUL	ARY					
PRIOR-KNOWLEDGE/ B	ACKGROUND KN	OWLEDGE					
Types and properties of angle	es, triangles and quad	lrilaterals					
RESOURCES							
Via Africa Study Gui	de Grade 11						
 Mind Action Series (Grade 11						
EDDODS/MISCONCEDTI		DEAS					
Assuming that lines are paral	lal Lising congruons	NLAS	outundan	standing			
Assuming that lines are paral	lief. Using congruence	y conditions with	out under	standing			
METHODOLOGY							
Intersecting Lines							
The sum of the angles around	a point is 360°.	a c		a+b+c =	360°		
Adjacent angles at a point on	a line segment	1		$\hat{\mathbf{p}}$, $\hat{\mathbf{p}}$	1000		
are supplementary .				$B_1 + B_2 =$	180°		
		2/1 B					
When two lines intersect , the	vertically	/	/				
opposite angles are equal.							
		Ð	Ð				
		/		-			
Parallel lines							
When a transversal cuts paral	lel lines the alternate		/				
angles are equal	ier mes, the uternate	A	3/	В			
ungies are equal .			/				
		c	× >	D	c.		
When a transversal cuts two	parallel lines. the		/				
corresponding angles are equ	al.	A	- /x	В			
			/				
		c	×				
When a transversal cuts paral	lel lines, the co-interio	or		12			
angles are supplementary.	,	A	d		В		
· · · · · · · · · · · · · · · · · · ·			/v	000	S. Sal		
		с—	16		D		
Trionalog			1	ากก			
I riangles			F				
The interior orgins of a triang			~	a L h	L a - 1909		
The interior angles of a triang	le are supplementary.		C	a+b	+c = 180		
		/	< \				
		a		6			
The angles opposite two equa	al sides of an isosceles		\wedge				
triangle are equal .		¥	×				
		6					
<u> </u>							

All interior angles of an equilateral triangle are 60°.	60
An exterior angle of a triangle is equal to the sum of the opposite interior angles	c = a + b
When the sides of one triangle are equal to the to the three sides of the other triangle, the two triangles are congruent . [SSS]	
Two triangles are congruent when two sides and the included angle are equal to two sides and the included angle of the other triangle. [SAS]	
When two angles and a side of one triangle are equal to two angles and the corresponding side of another triangle, the two triangles are congruent. [AAS]	
Two triangles are congruent when the hypotenuse and one side of a right-angled triangle are equal to the hypotenuse and one side of another right-angled triangle. [90°HS]	
The line segment joining the midpoints of two sides of a triangle is parallel to the third side and half the length of the third side . [DE DB]	
When the corresponding sides of two triangles are in the same ratio, the two triangles are similar. [SSS]	kz kz kx ky G
When the corresponding angles of two triangles are equal, the two triangles are similar. [AAA]	B B B B B B B B B B B B B B B B B B B

Quadrilaterals

A parallelogram is a quadrilateral with opposite sides	
parallel. [PQ SR, PS QR]	P T R
A rectangle is a parallelogram with a 90° interior angle. [∠KPM = 90°]	
An isosceles trapezium is a quadrilateral with one pair opposite sides parallel and the other pair equal. [PQ SR, PS = QR]	S R R

A square is a rhombus with a 90° interior angle. [AB = BC = CD = DA]	$ \begin{array}{c} $
A kite is a quadrilateral with two pairs of adjacent	
sides equal. [KI = KE, ET = TI]	K 12 E
A rhombus is a parallelogram with all sides equal. [KL	K H
= LM = MP = PK]	

ACTIVITIES/ ASSESSMENT

8.1 In the diagram below, AB and DC are two parallel lines cut by two transversal lines at X, Y and Z respectively.

- 8.1.1 Determine giving reasons, the value of x in the diagram:
- 8.1.2 Name one pair of co-interior angles
- 8.1.3 Name one pair of alternate angles
- 8.1.4 Complete: If two parallel lines are cut by a transversal, then the co-interior angles are

Reason

8.1.5 Complete: The size of angle XYD =

Downloaded from Stanmorephysics com Determine with reasons, the value of y(XY) in the diagram below. Given that AB = 4 units 8.2 and BC = 3 units. X and Y are the midpoints of AB and BC respectively. A

In the diagram below, AD = CD and $PQ \parallel RS$. AR and FC are straight lines. RS and FC 8.3 intersect

at E also PQ intersects FC at B.

(a) Determine the sizes of the following angles, giving appropriate reasons: 1) \hat{D}_1

- 2) \hat{B}_{1}
- 3) Â₂

(b) Show that $R\hat{E}F = \hat{B}_3$

LESSON 9					
Term	1	Week		Grade	11
Duration	1 hour	Weighting	5±3	Date	
Sub-topics	Circle Geometry: I	ine from Centre	to chord		
RELATED CONCEPT	S/ TERMS/VOCAB	ULARY			
Segment, Chord, perpend	licular bisector				
PRIOR-KNOWLEDGE	E/ BACKGROUND I	KNOWLEDGE			
Circle, diameter, radius,	circumference, Congr	uent, Pythagoras t	heorem		
RESOURCES					
Mind action Serie	\$S				
Mind Action Seri	es New Edition				
• Siyavula					
ERRORS/MISCONCE	PTIONS/PROBLEM	I AREAS			
Proving congruency and	reasons for congruence	y raasons sometim	as do not	understand	ransons
METHODOL OCV	offectry/ write wrong	reasons, somethin		unuerstanu	Teasons
Terminology					
The following terms are 1	regularly used when re	eferring to circles			
• Arc — a portion	of the circumference	of a circle.			
• Chord — a strai	ght line joining the en	ds of an arc.			
Circumference -	— the perimeter or bo	undary line of a c	ircle.		
• Radius (r) — an	v line from the centre	of the circle to a	point on th	ne circumfe	rence.
• Diameter — a si	Decial chord that pass	es through the cer	tre of the	circle.	
• Segment — part	of the circle that is cu	it off by a chord.	A chord di	ivides a circ	ele into two
segments.		·			
• Tangent — a lin	e that touches a circle	at only one point	on the cir	cumference	e.
• Secant a lin	e that cuts the circle in	n two places.			
		to			
		langent			
			-		
	secan				
-		1			
	diamete	T			
	an	sector	1		
radius					
chord					
segment					
	arc				
	1000.0				
A theorem is a hypothes	is (proposition) that ca	an be shown to be	true by a	ccepted ma	thematical
operations and arguments	s.		•	-	
A proof is the process of	showing a theorem to	be correct.			

The **converse** of a theorem is the reverse of the hypothesis and the conclusion.

Hint to educators: Before proving each theorem use the investigative approach to investigate the statement of the theorem

Downloaded from Stanmorephysics.com Examples: 1. Given a circle with centre O with PR = 8 units. Determine the value of x. PQ = QR = 4 units Perpendicular from centre to chord In ∆OPQ $OP^2 = OQ^2 + PQ^2$ (Pythagoras Theorem) $5^2 = x^2 + 4^2$ $25 - 16 = x^2$ $9 = x^2$ $\therefore x = 3$ 2. O is the centre. AC = 16, AB = BC and OA = 17. Calculate the length of OB. AB = BC = 8(Line from centre midpoint of chord) $OB^2 = AO^2 - AB^2$ (Pythagoras Theorem) $=17^2 - 8^2$ = 289 - 64 $OB^2 = 225$ OB = 153. Given the circle with centre O. AB = 6 cm, CD = 8 cmand the radius is 5 cm. (a) Determine the length of: 1) OP AP = 3 cm(Line from centre to midpoint of chord) OA = 5 cm(Radius) $OP^2 = OA^2 - AP^2$ (Pythagoras Theorem) $OP^2 = 5^2 - 3^2 = 16$ OP = 4cm2) PQ CQ = 4 cm(Line from centre to midpoint of chord) OC = 5 cm(Radius) $OQ^2 = OC^2 - CQ^2$ (Pythagoras Theorem) $OQ^2 = 5^2 - 4^2 = 9$ OQ = 3cmPQ = OP + OQPQ = 4 + 3 = 7cm(a) Explain why AB || CD. $\hat{P}_{1} = 90^{\circ}$ (Line from centre to midpoint of chord) $\hat{Q}_1 = 90^{\circ}$ (given) $\hat{P}_1 + \hat{Q}_1 = 180^\circ$ (both angles are equal to 90° each (co-interior angles supplementary) ∴ AB || CD

f

TOPIC: EUCLIDEAN GEOMETRY						
LESSON 10						
Term	1	Week		Grade	11	
Duration	1 hour	Weighting	50 ± 3	Date		
Sub-topics	Circle Geometry: A	ngles subtended	by a cho	ord/arc		
RELATED CONCEPTS	/ TERMS/VOCABUI					
Subtends, arc, segment, ch	ord, semi-circle Conve	erse of a theorem,	corollar	у		
PRIOR-KNOWLEDGE/	BACKGROUND KN	NOWLEDGE				
Exterior angle of a triangle						
Mind Action Ser	iec					
Mind Action Ser Mind Action Ser	ies New Edition					
Siyavula						
• Via Afrika						
ERRORS/MISCONCEP	TIONS/PROBLEM A	AREAS				
METHODOLOGY						
• Arc — a portion o	of the circumference of	a circle.				
• Chord — a straight	ht line joining the ends	of an arc.				
• Segment — part o	of the circle that is cut of	off by a chord. A	chord div	vides a cir	cle into two	
segments.						
• Subtend side	opposite an angle subte	ends that angle				
Theorem: The angle that an subtends at any	n arc of a circle subter point on the circumf	nds at the centre erence	of the ci	rcle is tw i	ice the angle it	
(a) C (b) N (c) N (c						
Given: Circle with centre	O. Arc AB subtends A	ÔB				
At centre and $A\hat{C}B$	at the circumference.				7	
Required to prove (RTP)	$A\hat{O}B + 2A\hat{C}B$				5	
Proof : Join CO and produce $\hat{\rho}$	ce to N				Ц	
$O_1 = C_1 + A$	(Ext \angle of Δ)	OAB)		LOON	Т	
But $\hat{C}_1 = \hat{A}$	(AO = OC, Radii)			000	5	
$\hat{O}_1 = 2\hat{C}_1$						
Similarly, in \triangle OCB: $\hat{O}_1 = 2\hat{C}_2$						
Diagram (a) and (c)	2	Diag	ram (b)			
$\hat{O}_{1} + \hat{O}_{2} = 2\hat{C}_{1} + 2\hat{O}_{2}$	\hat{C}_{2}	C	$\hat{O}_{2} - \hat{O}_{2}$	$=2\hat{C}_{2}-2\hat{C}_{3}$	\hat{C}_1	
$\hat{\mathbf{a}} + \hat{\mathbf{a}} = 2\hat{\mathbf{a}}_1 + 2\hat{\mathbf{a}}_2$	\hat{c}			$\hat{a} = 2\hat{a}$	\hat{c}	
$U_1 + U_2 = 2(C_1 + C_2)$	C ₂)		$O_2 - C_2$	$\mathcal{I}_1 = \mathcal{L}(\mathcal{C}_2)$	$-\mathbf{U}_{1}$)	
$\therefore AOB = 2AC$	В		∴ AOI	B = 2ACB		
Reason: \angle at centre = 2	×∠ at circum					

Examples:

1. O is the centre of the circle, determine x, y and z

Downloaded from Stanmorephysics con TOPIC: EUCLIDEAN GEOMETRY							
	LESSON 11						
Term	1	Week		Grade	11		
Duration	1 hour	Weighting	$50 \\ \pm 3$	Date			
Sub-topics	Circle Geometry:	Angles subtended	by a cho	ord/arc			
RELATED CONCEPTS/	/ TERMS/VOCABI	ULARY					
Subtends, arc, segment, ch	ord, semi-circle Con	verse of a theorem	, corollar	у			
PRIOR-KNOWLEDGE/	BACKGROUND I	KNOWLEDGE					
Exterior angle of a triangle							
KESUURCES	00						
Mind Action Ser	ies New Edition						
 Siyavula 							
• Via Afrika							
ERRORS/MISCONCEP	TIONS/PROBLEM	I AREAS					
METHODOLOGY							
> Theorem: The angle subtended by a diameter at the circumference of a circle is a right angle. If AB is a diameter, the $\hat{C}_1 = 90^\circ$							
Reason: \angle in semi-circle							
Converse: Reverse of a theorem If the angle subtended by a chord at a point on the circle is 90° , then the chord is a diameter							
I, $\hat{C}_1 = 90^\circ$ then AB is a diameter							
Reason: Chord subtends	90°		\checkmark		5		
Theorem: Angles subtended by a chord/arc at the circumference of a circle on the same side of the chord are equal; or angles in the same segment of a circle are equal.							
If AD subtends \hat{B} and \hat{C} , then $\hat{B} = \hat{C}$ Reason: \angle s in same segn	ıent	B					

Examples:

1. In the diagram alongside, O is the centre of the circle. AB || CD and $\hat{C}_1 = 36^\circ$ Determine with reasons, the size of: (a) (b) Â C_{γ} $\hat{B} = 90^{\circ}$ $(\angle in semi-circle)$ (a) $\hat{C}_2 = \hat{B} = 90^\circ$ (alternate $\angle s$, AB || CD) $\hat{C}_3 = 180^\circ - 90^\circ - 36^\circ$ (\angle s on a straight line) $\hat{C}_{3} = 54^{\circ}$ $\hat{A} = 36^{\circ}$ $(\angle s \text{ of } \Delta)$ (b) 2. Calculate with reasons, the value of the unknowns: $(\angle s \text{ in same segment -subtended by MN})$ $x = 20^{\circ}$ $(\angle s \text{ in same segment - subtended by LP})$ $y = 15^{\circ}$

Determine, with reasons, the size of \hat{F}

$$\hat{C} = 30^{\circ}$$
 ($\angle s \text{ of } \Delta$)
 $\hat{F} = \hat{C} = 30^{\circ}$ (equal chords sub. Equal $\angle s$)

Downloaded fr	om Stanmoren TOPIC: EUCLID	hysics com Ean geomet	RY		
	LESS	SON 12			
Term	1	Week no.		Grade	11
Duration	1 hour	Weighting	50 ± 3	Date	
Sub-topics	Cyclic Quadrilatera	l			
RELATED CONCEPTS/	FERMS/VOCABULA	RY			
Subtends, arc, segment, chor	rd, semi-circle Convers	e of a theorem, co	orollary		
PRIOR-KNOWLEDGE/ B	BACKGROUND KNO	WLEDGE			
Quadrilateral, exterior angle	, supplementary				
Mind action Series	3				
 Mind Action Serie 	s New Edition				
• Siyavula					
ERRORS/MISCONCEPT	IONS/PROBLEM AR	REAS			
Treating opposite angles of a	a cyclic quadrilateral as	s opposite angles	of a parall	elogram	
METHODOLOGY	1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				
Cyclic quadrilateral is a qu	adrilateral with all ver	tices (corner) lyir	ng on/touc	hing the ci	rcumference
Theorem: The opposite ang	les of a cyclic quadrilat	teral are supplement	entary.		
Given : Circle with centre O. Beginned to prove $\hat{a} + \hat{c}$.	ABCD is a cyclic quantum -100° and $ABC + AD$	drilateral	/	Å	
Required to prove . $A + C$ -	$= 100$ and ADC \pm AD	C = 100	/	/ \	1
Proof: Join OB and OD		/		/ \	
$\hat{O}_1 = 2\hat{A}$ ($\angle a$	at centre = $2 \times \angle at c$	ircumf)	1	02	$\langle \rangle$
$\hat{O}_2 = 2\hat{C} \qquad (\angle \mathbf{a})$	at centre =2 x \angle at ci	rcumf)	1	1	1/
$O_1 + O_2 = 360^\circ$ ($\angle s$	round a point)	/	11		D
2Â+2Ĉ=360°			B	100.00	//
$2(\hat{A}+\hat{C})=360^{\circ}$				>	
$\therefore \hat{A} + \hat{C} = 180^{\circ}$				C	
Similarly, by joining AO and	d OC, it can be proven	that $A\hat{B}C + A\hat{D}C$	'=180°		
Reason : Opp. \angle s of cyclic	quad.		la la		
Converse : IF the opposite and quadrilateral are supplement quadrilateral is cyclic.	ngles of a ary, then the	D			P
If $\hat{A} + \hat{C} = 180^\circ$ and $\hat{B} + \hat{D}$	$= 180^{\circ}$, then	$\langle \rangle_{c}$		➔ ()	$\langle . \rangle$
ABCD is a cyclic quadrilate	ral. A	180°-θ		A	180° – Ө
Reason: Opp. ∠s of cyclic	quad suppl.	B			B

Downloaded from Stanmorephysics com Theorem: An exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

If BC is produced to E, then $\hat{C}_2 = \hat{A}$

Reason: Ext.
$$\angle$$
 of cyclic = int opp. \angle

Examples:

(a)

1. Calculate, with reasons, the value of the unknowns

 $x = 110^{\circ}$ (Opp. \angle s of cyclic quad) $y = 100^{\circ}$ (Opp. \angle s of cyclic quad)

 $a = 112^{\circ}$ (Ext. \angle of cyclic = int opp. \angle s)

 $b = 88^{\circ}$ (Opp. \angle s of cyclic)

2. In the following diagram, $BC \parallel ED$ and $\hat{A} = 130^{\circ}$ Determine, with reasons, the size of

(a) \hat{C}_1 (b) \hat{F} (a) $\hat{C}_1 = 50^\circ$ (Opp. \angle s of cyclic quad) (b) $\hat{D}_1 = \hat{C}_1 = 50^\circ$ (alt. \angle s, $BC \parallel ED$) $\therefore \hat{F} = 130^\circ$ (Opp. \angle s of cyclic quad)

3. In the given diagram, $A\hat{B}D = 40^{\circ}$ and $A\hat{D}B = 35^{\circ}$ Determine, with reasons, the size of \hat{C}_1

$$\hat{A} = 105^{\circ} \qquad (\angle s \text{ of } \Delta)$$
$$\hat{C}_1 = \hat{A} = 105^{\circ} \qquad (\text{Ext. } \angle \text{ of cyclic} = \text{ int opp. } \angle)$$

Downloaded_f.r	om <u>Stanmor</u>	ephysics_con			
	<u> </u>	ESSON 13			
Term	1	Week no.		Grade	11
Duration	1 hour	Weighting	50 + 3	Data	
Sub topics	Tangants to the c	irelo	50 ± 5	Date	
Sub-topics	Tangents to the c				
RELATED CONCEPTS/	FERMS/VOCABU	LARY			
Tangent					
PRIOR-KNOWLEDGE/ B	ACKGROUND K	NOWLEDGE			
Congruency, perpendicular					
RESOURCES					
Mind action Series	5				
Mind Action Serie	es New Edition				
• Siyavula					
Mathematics up to	date				
ERRORS/MISCONCEPT	IONS/PROBLEM	AREAS			
Understanding the term tang	ent in relation to the	e only point that tou	ches the curv	/e.	
METHODOLOGY					
A tangent is a straight line t	hat touches the circl	e at only one point.			
Theorem: The radius of a circle is per APB is a OP is a r Then OF	pendicular to the tangent to the circl radius drawn to P. $^{2} \perp APB$	angent at the point e with centre O.	of contact.	Ŷ	
Reason:	rad \perp tan		A	РВ	
Theorem					
Theorem.					
Two tangents drawn to a cir	rcle from the same p	point outside the cir	rcle are equa	l in length	
			Α		
If tangents DA and DB are fr	om D		1		
If tangents I A and I B are in	01111,	P	1 6	E C	
then $PA = PB$		-		5	
Reason: tangents fr	om same noint			201	
Examples:	om same point		в	Ū	
O is the centre of the circle.	Determine, with rea	sons. the value of the	ne unknown.	đ	
				<u> </u>	

13.2 In the diagram below, DE = EB, $\hat{BDE} = \hat{CBE} = 30^\circ$. Determine, with reasons, the values of *x*, *y* and *z* A B C

	TOPIC: EUCI	LIDEAN GEOME	TRY		
	L	ESSON 14			
Term	1	Week no.		Grade	11
Duration	1 hour	Weighting	50 ± 3	Date	
Sub-topics	Tangents to the c	circle			
RELATED CONCEPTS/ T	TERMS/VOCABU	JLARY			
Tangent					
PRIOR-KNOWLEDGE/ B	ACKGROUND K	NOWLEDGE			
Congruency, perpendicular					
RESOURCES					
Mind action Series	5				
• Siyavula					
ERRORS/MISCONCEPT	ONS/PROBLEM	AREAS			
Failing to identify the releva	nt angles i.e the one	e between the chord	and the tange	nt and the	one that is

subtended by the same chord in the circumference.

METHODOLOGY

Theorem:

The angle between a tangent to a circle and a chord drawn from the point of contact is equal to an angle in the alternate segment.

(Alt. $\angle s$, CE || AD)

Given: Circle with centre O. Tangent ABC, chord BD

Required to prove: $C\hat{B}D = B\hat{E}D$ or $A\hat{B}E = B\hat{D}E$

Proof: Draw diameter BOF and join EF

$$\hat{E}_1 + \hat{E}_2 = 90^\circ$$
 (\angle in semi-circle)

 $\hat{B}_1 + \hat{B}_2 = 90^\circ$ (rad \perp tan)

 $\hat{E}_1 = \hat{B}_1$ (\angle s in the same segment)

 $\therefore \hat{E}_2 = \hat{B}_2$

Examples:

- 1. In the diagram
 - (a) Determine with reasons, the size of D
 - (b) Prove that AB is a tangent to circle ACD

Solution:

(a) $\hat{D} = \hat{C}_1$ $\therefore \hat{D} = 52^\circ$ A B C

ACTIVITIES/ASSESSMENT 14.1 Determine the values of the unknown letters, stating reasons. a) (c) (c)(c)

14.2 ABT is a tangent. Calculate the value of x and y.

O is the centre of the circle

(j)

R

	101101200212				
	LESS	SON 15			
Term	1	Week no.		Grade	11
Duration	1 hour	Weighting	50 ± 3	Date	
Sub-topics	Circle Geometry pr	oblems and pro	ofs of rider	S	
RELATED CONCEPTS/	 TERMS/VOCABUL	ARV			
PRIOR-KNOWLEDGE/	BACKGROUND KN	OWLEDGE			
All theorems, converses and	d corollaries				
RESOURCES					
Mind action S	eries				
• Siyavula Matl	nematics	DEAS			
Learners finding it difficult	to apply different theo	rems in one rider			
METHODOLOGY					
Examples:					
1. <i>BD</i> is a tangent to the ci	rcle with centre O, with	h $BO \perp AD$.			`
Prove that:			(0	
(a) <i>CFDE</i> is a cyclic qu	adrilateral		A		
(b) $FB = BC$				F	
(c) $AOC = 2BFC$				C	
0.1.7					
Solution:				В	
(a) $BO \perp OD$	(given)				
$\therefore \hat{FOE} = 90^{\circ}$					
$F\hat{C}E = 90^{\circ}$	(in semi circle)				
· CEOF is a cyclic quad	(opp / s suppl)				
	(opp. \simeq s suppr.)				
(b) $\hat{BCF} = \hat{CEO}$	(tan-chord theo)				
BFC = CEO	(ext. \angle cyclic quad)		5		
$\therefore BFC = BCF$			e e		
$\therefore FB = BC $	(lines opp. equal $\angle s$)		ற	$\Omega \Omega$	
^ ^				าก	
(c) $AOC = 2AEC$	$(\angle \text{ at centre} = 2 \angle \text{ at})$	circum.)			
and $\hat{AEC} = \hat{BFC}$	(ext. \angle cyclic quad.)			Щ	
$\cdot \Lambda \hat{O}C - 2R\hat{F}C$	(
\dots $MOC = 2DFC$					

Downloaded from Stanmorephysics. 2. ABC is a tangent to the circle BED. BE || CD.

Prove that: $\hat{D}_1 = \hat{C}$ Solution: $\hat{D}_1 = \hat{B}_1$ (tan-chord theo) $\hat{C} = \hat{B}_{1}$ (corresp $\angle s$, BE || CD) $\therefore \hat{D}_1 = \hat{C}$

3. In the circle ABCD, AB=BC. Prove that AB is a tangent to the circle AED in A Solution:

$$\hat{D} = \hat{C}$$
$$\hat{A}_1 = \hat{C}$$
$$\hat{D}_1 = \hat{A}_1$$

(subt. By same chord) $(\angle s \text{ opp. equal sides})$

(converse tan-

: AB is a tangent to circle AED chord thm)

ACTIVITIES/ ASSESSMENT

15.1 In circle EBCDE, BC and AD are parallel chords. (a) Name two cyclic quadrilaterals

(b) Prove that:

(1)
$$\hat{B}_1 = \hat{E}$$

(2) $\hat{D}_1 = \hat{A}$

15.2 PA and Pc are tangents to the circle at A and C. $AD \parallel PC$, and PD cuts the circle B. CB is Produced to meet AP at. AB, AC and Dc are drawn. Prove that:

- (a) AC bisects $P\hat{A}D$
- (b) $\hat{B}_1 = \hat{B}_3$

(c)
$$A\hat{P}C = A\hat{B}D$$

15.3 TA and TB are tangents to the circle with centre O.

C is a point on the circumference and $A\hat{T}B = x$. Express the following in terms of X, giving reasons:

- (a) $A\hat{B}T$
- (b) *OBA*
- (c) Ĉ

C

Downloaded from Stanmorephysics.com	
 15.4 POQ is a diameter of the circle with centre O. QP is produced to A and AC is a tangent to the circle. BA 1 AQ and BCQ is a straight line. Prove that: (a) PĉQ = BÂP (b) BAPC is a cyclic quadrilateral <lu> (c) AB=AC </lu> 	

Downlo	aded from	Stanmore	physics. (on.	
		TOPIC: 1	RIGONOME	TRY	
	1		ESSUN 17		11
Term		Week		Grade	11
Duration	2 hours	Weighting	±50 marks	Date	
Sub-topics	• 1	ntroduction to	Trigonometric	ratios and Tri	ig Identities
DELATED		DMGMOCAD			
RELATED	CUNCEPIS/IE	KNIS/VUCAE	ULAKY		
• Ratios(G	rades 8 \approx 9)				
	Distances)				
 Angles Trianalas 					
• Triangles	1	0 to a (C as 1)	10)		
• Irig Ratio	os such as: sin, cos	s & tan (Grade	10)		
PRIOR-KNO	OWLEDGE/ BA	CKGROUND	KNOWLEDO	<u>FE</u>	
The trigonom	netric functions in	relation to a rig	ght triangle are	displayed in	the figure below. For
example, the	triangle contains a	an angle A , and	the ratio of th	e side opposit	e to A and the side
opposite to th	e right angle (the	hypotenuse) is	called the sine	$e \text{ of } A, \text{ or } \sin A$; the other trigonometry
functions are	defined similarly.				
			4		
• $\sin \Lambda =$	Opposite Side	BC			
$\sin A = \frac{1}{H}$	Iypotenuse Side	\overline{AC}			
•	Adjacent Side	AB Side that	is adjacent to	Ну	potenuse Side
$-\frac{\cos A}{H}$	Hypotenuse Side	AC an angle	A		
• ton A = C	Opposite Side _ B	С			
- tan $A = -$	$\overline{\text{Adjacent Side}} = \overline{\text{A}}$	B			
			B	Side opposite t	to angle A C
Trigonometri	c functions are use	ed in obtaining	unknown ang	les and distand	ces from known or
measured ang	gles in geometric f	igures.	C		
-		-			
Trigonometry	y developed from a	a need to comp	oute angles and	distances in s	such fields
as astronomy	, mapmaking, surv	veying, and art	illery range fin	ding.	
RESOURCE	ES				
Maths Set	t (Instruments)				
Scientific	Calculators			9	
• Pen / Pen	cils			1	Inni
				Ī	
ERRORS/M	ISCONCEPTIO	NS/PROBLE	M AREAS	ų į	
Language	e barrier			In	Inn
• Failure to	relate technical w	orld with trigo	onometry	1	~
• Failure to	apply fractions co	orrectly, viz	sin, cos & tan		

	<u>Downloaded from Stanmo</u>	renhvci	<u>cs com</u>
ACT	IVITIES / ASSESSMENTS		
Simp	lify as far as possible:		
17.1	$1-\sin^2 x$	17.2	$\cos^2\beta - 1$
	COS X		$\frac{1}{1-\sin^2\beta}$
	LINU		
17.3	$1 \cos^2 x$	17.4	$1 + \cos \theta$ $\sin \theta$
	$sin^2 x$ $sin^2 x$		$\frac{1}{\sin\theta} + \frac{1}{1+\cos\theta}$
17.5	$\sin^3 \theta + \sin \theta . \cos^2 \theta$		
	$\cos \theta$		

			TOPIC: TR	RIGONOMETI	RY	
			LE	SSON 18		
Term	1		Week		Grade	11
Duration	1 Hour		Weighting	±50 marks	Date	
Sub tanias						TIOG
Sub-topics		• <i>P</i>	APPLICATION	N OF TRIGONC	DMETRIC RA	1105
RELATED	CONCEPTS/	TERN	IS/VOCABII			
• Ratios(G	rades 8 & 9)	1 1/1/17				
 Angles 						
 Triangles 	1					
Trig Rati	os such as: sin	cos &	tan (Grade 10)		
ing itu		, 005 00)		
PRIOR-KN	OWLEDGE/	BACK	GROUND KN	NOWLEDGE		
• Trig. Rati	DS					
 Pythagora 	s theorem					
RESOURC	ES					
Maths Se	t (Instruments))				
• Scientifi	c Calculators				5	
• Pen / Pen	cils				4	001
ERRORS/M	ISCONCEPT	TIONS	PROBLEM A	AREAS		
• Languag	e barrier				<u>الل</u>	INT
• Failure to	relate technic	al worl	d with trigono	metry		
• Failure to	apply fraction	is corre	ectly, viz sir	n, cos & tan		
						Ц

	Downloaded from Stanmorenhysics com
18.6	If $5\sin\theta = -3\cos\theta$ and $\theta \in [90^\circ; 270^\circ]$ calculate with an aid of the
	diagram:
a)	$sin(-1440^\circ + \theta)$
b)	$\cos^2\theta - \sin^2\theta$
18.7	If $sin16^\circ = k$, WITHOUT using a alculator, express the following in
	terms of k:
a) b)	sin 106°
	$\sin^2 106 \pm \cos^2 2769$
,	$\sin 190 + \cos 5/0^{\circ}$
18.8	-1 $a \sin 61^\circ - n$
10.0	If $qS 0 ^{2} = p$, express the following in terms of p and q.
a)	cos151°
b)	
()	tan 29° Calculate without using a calculator the value of:
0)	tan209°.sin119°
	cos61°
18.9	If $tan 202^\circ = t$ write the following in terms of t.
a)	tan(-202°)
b)	cos518°
c)	sin 338°
d)	cos 68°
	$\overline{\cos 22^{\circ}}$
e)	$cos(-202^{\circ})$
	tan22°
18.10	If $\sin 40^\circ = \rho$ write the following in terms of p.
a)	sin 50°
b)	sin140°
c)	cos 50°
d)	sin(-40°)
e)	tan 320°
18.11	Given: $\sin 28^\circ = p$, determine the following in terms of <i>p</i> .
a)	$\tan^2(-28^\circ)$
b)	$\sin^2(-28^\circ) - \cos^2 62^\circ$
c)	$\frac{\cos{(-28^{\circ})}}{\sin{(-62^{\circ})}} - \tan{62^{\circ}}$
d)	$\frac{\cos(-28^{\circ})}{\cos(-28^{\circ})} = \tan 62^{\circ}$
	$\frac{1}{\sin(-62^\circ)} = \tan 62$
e)	$\frac{\cos(132^{\circ})}{\sin(-28^{\circ})} - \tan 298^{\circ}$
	Sin(20)

Downlo	<u>aded fr</u>	om_	Stanmore	nhvsics c	<u>com</u>		
			TOPIC: TR	IGONOMET	'RY		
			LE	SSON 19			
Term	1		Week		Grade	11	
	2						
Duration	3 Hours		Weighting	±50 marks	Date		
Sub-topics	5	• S	pecial Angles	and Reduction	Formulae		
RELATED CC	NCEPTS/ 1	L FERM	IS/VOCABUI	LARY			
Ratios(Grad	es 8 & 9)						
• Lengths(Dis	tances)						
• Angles							
• Triangles							
Trig Ratios	such as: sin,	cos &	tan (Grade 10)			
PRIOR-KNOV	VLEDGE/ B	BACK	GROUND KN	NOWLEDGE			
Special angles							
Identities							
CAST Diagram							
Factorization							
RESOURCES							
Maths Set (I	nstruments)						
• Scientific Ca	alculators						
• Pen / Pencili	S						
ERRORS/MIS	CONCEPT	IONS	PROBLEM 4	AREAS			
Language ha	arrier						
Failure to re	late technica	l worl	d with trigono	metrv			
Failure to ap	ply fractions	s corre	ctly, viz sir	n, cos & tan			

• Failure to apply fractions correctly, viz.... sin, cos & tan

Downloaded from Stanmorephysics.com REDUCTION FORMULAE

Identify in which quadrant the angle(s) lie first, then you will be able to know the sign of each trigonometric ratio(s) referring to CAST diagram, then change the trig ratio to its co-function if you are reducing by 90

WORKED EXAMPLE		
loost.		
$90^{\circ} - \theta$ (1 st quadrant)	$90^{\circ} + \theta$ (2 nd quadrant)	$180^\circ - \theta$ (2 nd quadrant)
• $\sin(90^\circ - \theta) = \cos\theta$	• $\sin(90^\circ + \theta) = \cos\theta$	• $\sin(180^\circ - \theta) = \sin\theta$
• $\cos(90^\circ - \theta) = \sin\theta$	• $\cos(90^\circ + \theta) = -\sin\theta$	• $\cos(180^\circ - \theta) = -\cos\theta$
		• $\tan(180^\circ - \theta) = -\tan\theta$
180°+A (3 rd auadrant)		$360^\circ - \theta (4^{\text{th}} \text{ guadrant})$
• $\sin(180^\circ + \theta) = -\sin\theta$		• $\sin(360^\circ - \theta) = -\sin\theta$
• $\cos(180^\circ + \theta) = -\cos\theta$		• $\cos(360^\circ - \theta) = \cos\theta$
• $tan(180^\circ + \theta) = tan\theta$		• $tan(360^\circ - \theta) = -tan\theta$
		× /
$-\theta$ (4 th quadrant)		
• $\sin(-\theta) = -\sin\theta$	• $\cos(-\theta) = \cos\theta$	• $tan(-\theta) = -tan\theta$
	MIXED QUADRANTS	
• $\sin(\theta-90)=-\cos\theta$	• $\cos(-\theta-90) = -\sin\theta$	• $\sin(\theta - 180) = -\sin\theta$
• $\sin(-\theta-90)=-\cos\theta$		• $\cos(\theta - 180) = -\cos\theta$
• $\cos(\theta-90)=\sin\theta$		• $\tan(\theta - 180) = \tan\theta$
• $\sin(-\theta-180)=\sin\theta$	• $\sin(\theta-360)=\sin\theta$	• $\sin(-\theta - 360) = -\sin\theta$
• $\cos(-\theta - 180) = -\cos\theta$	• $\cos(\theta - 360) = \cos\theta$	• $\cos(\theta - 360) = \cos\theta$
• $tan(-\theta-180)=-tan\theta$	• $tan(-\theta-360)=-tan\theta$	• $tan(-\theta-360)=-tan\theta$
• $\sin(360^\circ + \theta) = \sin\theta$	• $\cos(360^\circ + \theta) = \cos\theta$	• $\tan(360^\circ + \theta) = \tan\theta$
		لمما
REDUC	CTION FORMULAE WITH SP	PECIAL ANGLES
WORKED MIXED EXAMI	PLES	
• $\sin 150^\circ = \sin(180^\circ - 30^\circ) =$	$=\sin 30^{\circ} = \frac{1}{2}$ • $\sin 330^{\circ} = \sin 33$	$\sin(360^\circ - 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$
• $\cos 135^\circ = \cos(180^\circ - 45^\circ)$	$=-\cos 45^\circ = \frac{1}{\sqrt{2}} \qquad \bullet \qquad \tan 225^\circ = \tan 225^$	$an(180^\circ + 45^\circ) = tan 45^\circ = 1$
• $\sin 420^\circ = \sin(360^\circ + 60^\circ)$	$=\sin 60^\circ = \frac{\sqrt{3}}{2} \bullet \tan(-405^\circ)$	t^{2}) = tan(-405° + 45°)=tan45°=1

ACTIVITIES/ASSESSMENTS 19.1 Simplify the following: (Day 1) a) $\frac{\cos(180^\circ + \theta).\cos(90^\circ - \theta)}{\sin(90 + \theta).\sin(180 - \theta)}$ b) $\tan(180^\circ + \theta).\cos(90^\circ + \theta) + \sin(360 - \theta).\tan(180^\circ - \theta)$ c) $\sin^2(180^\circ + \theta) - \cos^2(90^\circ - \theta)$ d) $\frac{\sin^2(360^\circ - \theta)}{\cos(90^\circ + \theta).\sin(540^\circ - \theta)}$ e) $\frac{\sin(-\theta - 900^\circ).\tan(180^\circ + \theta).\cos(\theta - 360^\circ)}{\sin(-\theta).\cos\theta.\tan(1485^\circ)}$ 19.2 Calculate : a) $\cos 30^\circ \times \sin 60^\circ$	
19.1 Simplify the following: (Day 1) a) $\frac{\cos(180^{\circ} + \theta).\cos(90^{\circ} - \theta)}{\sin(90 + \theta).\sin(180 - \theta)}$ b) $\tan(180^{\circ} + \theta).\cos(90^{\circ} + \theta) + \sin(360 - \theta).\tan(180^{\circ} - \theta)$ c) $\sin^{2}(180^{\circ} + \theta) - \cos^{2}(90^{\circ} - \theta)$ d) $\frac{\sin^{2}(360^{\circ} - \theta)}{\cos(90^{\circ} + \theta).\sin(540^{\circ} - \theta)}$ e) $\frac{\sin(-\theta - 900^{\circ}).\tan(180^{\circ} + \theta).\cos(\theta - 360^{\circ})}{\sin(-\theta).\cos\theta.\tan(1485^{\circ})}$ 19.2 Calculate : a) $\cos 30^{\circ} \times \sin 60^{\circ}$	
a) $\frac{\cos(180^\circ + \theta).\cos(90^\circ - \theta)}{\sin(90 + \theta).\sin(180 - \theta)}$ b) $\tan(180^\circ + \theta).\cos(90^\circ + \theta) + \sin(360 - \theta).\tan(180^\circ - \theta)$ c) $\frac{\sin^2(180^\circ + \theta) - \cos^2(90^\circ - \theta)}{\cos(90^\circ + \theta).\sin(540^\circ - \theta)}$ e) $\frac{\sin(-\theta - 900^\circ).\tan(180^\circ + \theta).\cos(\theta - 360^\circ)}{\sin(-\theta).\cos\theta.\tan(1485^\circ)}$ 19.2 Calculate : a) $\cos 30^\circ \times \sin 60^\circ$	
a) $\frac{\cos(180^\circ + \theta) \cdot \cos(90^\circ - \theta)}{\sin(90 + \theta) \cdot \sin(180 - \theta)}$ b) $\tan(180^\circ + \theta) \cdot \cos(90^\circ + \theta) + \sin(360 - \theta) \cdot \tan(180^\circ - \theta)$ c) $\sin^2(180^\circ + \theta) - \cos^2(90^\circ - \theta)$ d) $\frac{\sin^2(360^\circ - \theta)}{\cos(90^\circ + \theta) \cdot \sin(540^\circ - \theta)}$ e) $\frac{\sin(-\theta - 900^\circ) \cdot \tan(180^\circ + \theta) \cdot \cos(\theta - 360^\circ)}{\sin(-\theta) \cdot \cos \theta \cdot \tan 1485^\circ}$ 19.2 Calculate : a) $\cos 30^\circ \times \sin 60^\circ$	
b) $\tan(180^\circ + \theta) \cdot \sin(180^\circ - \theta)$ c) $\sin^2(180^\circ + \theta) - \cos^2(90^\circ - \theta)$ d) $\frac{\sin^2(360^\circ - \theta)}{\cos(90^\circ + \theta) \cdot \sin(540^\circ - \theta)}$ e) $\frac{\sin(-\theta - 900^\circ) \cdot \tan(180^\circ + \theta) \cdot \cos(\theta - 360^\circ)}{\sin(-\theta) \cdot \cos \theta \cdot \tan 1485^\circ}$ 19.2 Calculate : a) $\cos 30^\circ \times \sin 60^\circ$	
b) $\tan(180^\circ + \theta) \cdot \cos(90^\circ + \theta) + \sin(360 - \theta) \cdot \tan(180^\circ - \theta)$ c) $\sin^2(180^\circ + \theta) - \cos^2(90^\circ - \theta)$ d) $\frac{\sin^2(360^\circ - \theta)}{\cos(90^\circ + \theta) \cdot \sin(540^\circ - \theta)}$ e) $\frac{\sin(-\theta - 900^\circ) \cdot \tan(180^\circ + \theta) \cdot \cos(\theta - 360^\circ)}{\sin(-\theta) \cdot \cos \theta \cdot \tan 1485^\circ}$ 19.2 Calculate : a) $\cos 30^\circ \times \sin 60^\circ$	
c) $sin^{2}(180^{\circ} + \theta) - cos^{2}(90^{\circ} - \theta)$ d) $sin^{2}(360^{\circ} - \theta)$ cos(90^{\circ} + \theta).sin(540^{\circ} - \theta) e) $sin(-\theta - 900^{\circ}).tan(180^{\circ} + \theta).cos(\theta - 360^{\circ})$ sin(-\theta).cos \theta.tan1485^{\circ} 19.2 Calculate : a) $cos 30^{\circ} \times sin 60^{\circ}$	
(c) $\sin(180^\circ + \theta) - \cos(90^\circ - \theta)$ (d) $\sin^2(360^\circ - \theta)$ (e) $\sin(-\theta - 900^\circ) \cdot \tan(180^\circ + \theta) \cdot \cos(\theta - 360^\circ)$ $\sin(-\theta) \cdot \cos \theta \cdot \tan 1485^\circ$ 19.2 Calculate : (a) $\cos 30^\circ \times \sin 60^\circ$	
d) $\frac{\sin^{2}(360^{\circ}-\theta)}{\cos(90^{\circ}+\theta).\sin(540^{\circ}-\theta)}$ e) $\frac{\sin(-\theta-900^{\circ}).\tan(180^{\circ}+\theta).\cos(\theta-360^{\circ})}{\sin(-\theta).\cos\theta.\tan 1485^{\circ}}$ 19.2 Calculate : a) $\cos 30^{\circ} \times \sin 60^{\circ}$	
e) $\frac{\sin(-\theta - 900^{\circ}) \cdot \sin(540^{\circ} - \theta)}{\sin(-\theta) \cdot \cos(\theta - 360^{\circ})}$ 19.2 Calculate : a) $\cos 30^{\circ} \times \sin 60^{\circ}$	
e) $\frac{\sin(-\theta - 900^{\circ}) \cdot \tan(180^{\circ} + \theta) \cdot \cos(\theta - 360^{\circ})}{\sin(-\theta) \cdot \cos \theta \cdot \tan 1485^{\circ}}$ 19.2 Calculate : a) $\cos 30^{\circ} \times \sin 60^{\circ}$	
a) $\cos 30^{\circ} \times \sin 60^{\circ}$	
19.2 Calculate : a) $\cos 30^\circ \times \sin 60^\circ$	
19.2Calculate :a) $\cos 30^\circ \times \sin 60^\circ$	
a) $\cos 30^\circ \times \sin 60^\circ$	
a) $\cos 30^\circ \times \sin 60^\circ$	
a) $\cos 30^\circ \times \sin 60^\circ$	
b) $\sin 60^{\circ} \cos 30^{\circ} - \cos 60^{\circ} \sin 30^{\circ}$	
c) $\sin 45^\circ \cdot \sin 30^\circ \cdot \tan 60^\circ$	
$\overline{\cos 60^\circ}$.tan 30°.cos 45°	
19.3 Evaluate without the use of a calculator. (Day 2)	
^{a)} $\tan^2 135^\circ$	
b) $tan(-300^{\circ}).sin600^{\circ}$	
a^{1} $tan 315^{\circ}$ $2cos 60^{\circ}$ $tsin 210^{\circ}$	
$\frac{1}{10}$	
a) $\tan 120^{\circ} \cdot \cos 210^{\circ} - \sin^2 315^{\circ}$	
e) $\underline{\tan 150^\circ} \underline{\sin 300^\circ}$	
tan 240° sin 120°	
tan 240° sin 120° f) $sin 315^{\circ}.cos(-315^{\circ}).sin 210^{\circ}$	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} \cdot \cos(-315^{\circ}) \cdot \sin 210^{\circ}}{\tan 225^{\circ}}$	
$f) = \frac{\sin 240^{\circ} \sin 120^{\circ}}{\sin 315^{\circ} \cdot \cos(-315^{\circ}) \cdot \sin 210^{\circ}}}{\tan 225^{\circ}}$	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} \cdot \cos(-315^{\circ}) \cdot \sin 210^{\circ}}{\tan 225^{\circ}}$ g) $\sqrt{4^{\sin 150^{\circ}} \cdot 2^{3 \tan 225^{\circ}}}$ h) tan 330° sin 120° sin 260°	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} \cdot \cos(-315^{\circ}) \cdot \sin 210^{\circ}}{\tan 225^{\circ}}$ g) $\sqrt{4^{\sin 150^{\circ}} \cdot 2^{3 \tan 225^{\circ}}}$ h) $\frac{\tan 330^{\circ} \sin 120^{\circ} \sin 260^{\circ}}{\cos 225^{\circ} \sin^2 315^{\circ} \cos 350^{\circ}}$	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} . \cos(-315^{\circ}) . \sin 210^{\circ}}{\tan 225^{\circ}}$ g) $\sqrt{4^{\sin 150^{\circ}} . 2^{3 \tan 225^{\circ}}}$ h) $\frac{\tan 330^{\circ} \sin 120^{\circ} \sin 260^{\circ}}{\cos 225^{\circ} \sin^2 315^{\circ} \cos 350^{\circ}}$ 19.4 Prove without using a calculator that:	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} . \cos(-315^{\circ}) . \sin 210^{\circ}}{\tan 225^{\circ}}$ g) $\sqrt{4^{\sin 150^{\circ}} . 2^{3 \tan 225^{\circ}}}$ h) $\frac{\tan 330^{\circ} \sin 120^{\circ} \sin 260^{\circ}}{\cos 225^{\circ} \sin^2 315^{\circ} \cos 350^{\circ}}$ 19.4 Prove without using a calculator that:	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} . \cos(-315^{\circ}) . \sin 210^{\circ}}{\tan 225^{\circ}}$ g) $\sqrt{4^{\sin 150^{\circ}} . 2^{3 \tan 225^{\circ}}}$ h) $\frac{\tan 330^{\circ} \sin 120^{\circ} \sin 260^{\circ}}{\cos 225^{\circ} \sin^2 315^{\circ} \cos 350^{\circ}}$ 19.4 Prove without using a calculator that : a) $\cos 180^{\circ} . \sin 225^{\circ} . \cos 80^{\circ} \sqrt{2}$	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} .\cos(-315^{\circ}).\sin 210^{\circ}}{\tan 225^{\circ}}$ g) $\sqrt{4^{\sin 150^{\circ}}.2^{3 \tan 225^{\circ}}}$ h) $\frac{\tan 330^{\circ} \sin 120^{\circ} \sin 260^{\circ}}{\cos 225^{\circ} \sin^{2} 315^{\circ} \cos 350^{\circ}}$ 19.4 Prove without using a calculator that: a) $\frac{\cos 180^{\circ}.\sin 225^{\circ}.\cos 80^{\circ}}{\sin 170^{\circ}.\tan 135^{\circ}} = -\frac{\sqrt{2}}{2}$	
tan 240° sin 120° f) $\frac{\sin 315^{\circ} \cdot \cos(-315^{\circ}) \cdot \sin 210^{\circ}}{\tan 225^{\circ}}$ g) $\sqrt{4^{\sin 150^{\circ}} \cdot 2^{3 \tan 225^{\circ}}}$ h) $\frac{\tan 330^{\circ} \sin 120^{\circ} \sin 260^{\circ}}{\cos 225^{\circ} \sin^{2} 315^{\circ} \cos 350^{\circ}}$ 19.4 Prove without using a calculator that: a) $\frac{\cos 180^{\circ} \cdot \sin 225^{\circ} \cdot \cos 80^{\circ}}{\sin 170^{\circ} \cdot \tan 135^{\circ}} = -\frac{\sqrt{2}}{2}$ b) $\cos 315^{\circ} + 1$	

Downloaded from Stanmorephysics.com				
c)	$\theta = 30^{\circ}$ is a solution to $(\sin \theta)^{\sin \theta} = \frac{1}{\sqrt{2}}$			
d)	Show that $\tan 89^\circ \times \tan 88^\circ \times \tan 87^\circ \times \dots \times \tan 1^\circ = 1$ without the use of			
	a calculator. Show all steps.			
e)	Calculate the value of $\sin^2 89^\circ + \sin^2 88^\circ + \sin^2 87^\circ + \dots + \sin^2 2^\circ + \sin^2 1^\circ$ without the use of a calculator. Show all steps.			
19.5	Prove that: (Day 3)			
a)	$\sin x \cdot \tan x + \cos x = \frac{1}{\cos x}$			
b)	$\frac{\cos x}{1-\sin x} - \frac{\cos x}{1+\sin x} = 2\tan x$			
c)	$\tan x + \frac{1}{\tan x} = \frac{1}{\sin x \cdot \cos x}$			
d)	$\frac{\tan x}{\cos x(1+\tan^2 x)} = \sin x$			
e)	$\frac{(1-\sin^2 x)^2}{\sin^2 x} = \frac{\cos^2 x}{\tan^2 x}$			
f)	$\frac{1 - \sin^2 x}{\sin^2 x + 2\sin x + 1} = \frac{1 - \sin x}{1 + \sin x}$			
g)	$\sin^2 x + \sin^2 x \cdot \tan^2 x = \tan^2 x$			

Downloaded from Stanmorephysics.com TOPIC: TRIGONOMETRY						
LESSON 20						
Term	2	Week	Grade	11		
Duration	2 HOURS	Weighting	Date			
Sub-topics	<u> </u>	Trig. Equations : Gener specified domains.	al solutions & solution:	s in		
RELATED CONCEPTS	/ TERMS/VOCA	BULARY				
• Integers • Domain • Factorisation $a^2 - b^2 = (a+b)(a-b)$ $\cos^2 x = 1 - \sin^2 x$ $\sin^2 x = 1 - \cos^2 x$ PRIOR-KNOWLEDGE	/ BACKGROUN	D KNOWLEDGE				
 Solving algebraic equations. Rounding off. Special Angles. 						
 Solving trigonome CAST diagram if u RESOURCES 	tric angles less that using the quadrant	approach.				
Platinum Mathema	atics, Scientific cal	culator.				
ERRORS/MISCONCEP	TIONS/PROBLI	EM AREAS				
$\sin ax = a \sin x i.e \sin 2$	$2x = 2\sin x$					
$\cos ax = a \cos x i.e \ \cos 2$ $\tan ax = a \tan x i.e \ \tan 2$	$2x = 2\cos x$ $x = 2\tan x$					
• Working with calculators not on DEGREES mode. • Early rounding off. • Forgetting to include $k \in \mathbb{Z}$ in the general solution • Learners not linking identities and expressions with algebra. METHODOLOGY • Recap Activity from grade 10 Trig Equation. Domain $x \in [0^0; 90^0]$						
 How to solve trigo We use the Shift b 	nometric equation utton on the calcul	s with one ratio. lator to solve for an angle.				

Downloaded from Stanmorephysics.com Example 1: Solve for \mathcal{X} : Here we are solving for an angle

 $\sin 2x = \frac{1}{2}$ $2x = \sin^{-1}(\frac{1}{2})$ 2x = 30 x = 15<u>Example 2:</u> $4\cos(2x+30^{\circ}) + 1 = 1$ $4\cos(2x+30^{\circ}) = 0$ $\cos(2x+30^{\circ}) = 0$ $2x + 30 = \cos^{-1}(0)$ $2x + 30^{\circ} = 90^{\circ}$ $2x = 60^{\circ}$ $x = 30^{\circ}$

Illustrative Example for general solution:

Using the diagram below, solve for **x** if $\sin x = 0.5$ and $x \in [-360^\circ; 540^\circ]$.

Downloaded from Stanmorephysics.com 1. General Solutions: Method to follow when calculating the general solution for sin, cos, and tan.

If
$$\sin x = p$$
 and $-1 \le p \le 1$, then:
 $x = \sin^{-1}(p) + 360^{\circ}k$ or $x = 180^{\circ} - \sin^{-1}(p) + 360^{\circ}k; k \in \mathbb{Z}$
If $\cos x = p$ and $-1 \le p \le 1$, then:
 $x = \pm \cos^{-1}(p) + 360^{\circ}k; k \in \mathbb{Z}$

If $\tan x = p$ and $p \in \mathbb{R}$, then:

 $x = RA + 180^{\circ}k; k \in \mathbb{Z}$

Types of equations and approaches to solve them: **TYPE 1:** A ratio = a value

Example 1:

For the following equations, determine the general solution, correct to 2 decimal places, where necessary, then determine the specific solution for $x \in [-360^\circ; 360^\circ]$.

$$3\sin x + 1 = -1$$
(The intention is to isolate the trig ratio, in this
case 'sin x') using algebraic methods. $3\sin x = -2$ (Subtract 1 both sides of the equation). $\sin x = -\frac{2}{3}$ (Divide by 3 both sides of the equation). $RA = \sin^{-1}\left(\frac{2}{3}\right)$ (Use a calculator to find the reference angle) $RA = 41,81^{\circ}$ General solution: $x = 41,81^{\circ} + 360^{\circ}k$ or $x = 138,19^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$ Specific solutions: $x = -318,19^{\circ}$ or $x = -221,81^{\circ}$ or $x = 41,81^{\circ}$ or $x = 138,19^{\circ}$

Downloaded from Stanmorephysics.com Example 2:

(The intention is to isolate the trig ratio, in this case ' $\tan x$ ').

(Add 1 both sides of the equation)

(Divide by 3 both sides of the equation).

(Square root both sides of the equation)

 $x = \tan^{-1}(1,73)$ or $x = \tan^{-1}(-1,73)$ = 59,97° or = -59,97° (Use a calculator)

General solution: $59,97^{\circ}+180^{\circ}k$ or $-59,97^{\circ}+180^{\circ}k; k \in \mathbb{Z}$

Specific solutions:

k	-2	-1	0	1	2
X	$-300,03^{\circ}$	$-239,97^{\circ} \text{ or } 120,03^{\circ}$	-59,97° or 59,97°	120,03° or 239,97°	300,03°

You may use a graph to further illustrate or make the 8 specific solutions visual:

ACTIVITIES/ASSESSMENTS

For the following equations, determine the general solution, correct to 2 decimal places, where necessary, then determine the specific solution for the specified domain.

Classwork

Homework

- 1. $\sin x = 0.42$ $x \in [-180^\circ; 180^\circ]$
- 2. $\tan(x 10^\circ) = 1,015$
- 3. $\cos(x + 20^\circ) = -0.242 \text{ x} \in [0^\circ; 360^\circ]$
- 4. $\cos 2x = \tan 40^\circ$

- 1. $2,7 + \cos x = 3$
- 2. $2\sin(x+18^\circ) + 1 = 0 \ge [-90^\circ; 270^\circ]$
- 3. $2\tan\left(\frac{x}{2}-15^\circ\right)+3=0$
- 4. $\cos 2x = \cos 40^\circ x \in [-180^\circ; 360^\circ]$

TOPIC: TRIGONOMETRY					
Da		LESSON 21			
Term	2	Week	Grade	11	
Duration	2 HOURS	Weighting	Date		
Sub-topics	Т	rig Equations: General	& Specified domain soluti	on	
RELATED CONCI	EPTS/ TERMS/	VOCABULARY			
PRIOR-KNOWLE	DGE/ BACKGI	ROUND KNOWLEDO	E		
 Solvin Solvin Round Speci 	ng algebraic equang trigonometric ding off. al Angles.	ations. equations.			
• Perio	d of Trig ratios.	$\sin\theta$ and $\cos\theta = 360^{\circ}$	whereas $\tan \theta = 180^{\circ}$		
RESOURCES					
• Maths	s Handbook and	Study Master, Platinum	Mathematics, Scientific ca	lculator.	
ERRORS/MISCONC	CEPTIONS/PRO	BLEM AREAS			
• $\sin ax = a \sin x$ <i>i.e.</i>	$e \sin 2x = 2\sin x$	x			
• $\cos ax = a \cos x$ i	$e \cos 2x = 2\cos x$	x			
• $\tan ax = a \tan x$ <i>i</i> .	$e \tan 2x = 2 \tan x$	x			
 Working with calculators not on DEGREES mode. Early rounding off. Dividing by a trig ratio instead of factorising. 					
METHODOLOGY					
Factorization, as in the solution of algebraic equations, is often used. Look out for:					
Common factor					
Difference of squares					
Quadratic trip	Quadratic trinomials				
• Grouping of terms					
TYPE 2: A ratio = a co-ratio					
For the following equation, determine the general solution, correct to 2 decimal places, where necessary, then determine the specific solution for $x \in [-360^\circ; 360^\circ]$.					
then determine the specific solution for $x \in [-500, 500]$.					

Downloaded from Stanmorephysics.con Example 1: co-ratio on either side of equal sign. Different angles.

Approach: Use reduction to co-ratio.

Co-ratios with different angles. $\sin(2x-5^\circ) = \cos(x-35^\circ)$ $\cos[90^{\circ} - (2x - 5^{\circ})] = \cos(x - 35^{\circ})$ (Choose any side) and change to co-ratio. $95^{\circ} - 2x = \pm (x - 35^{\circ}) + 360^{\circ} k; k \in \mathbb{Z}$ Drop/cancel trig ratio on both sides. Apply the rule for general solution of cos. $-3x = -130^{\circ} + 360^{\circ}k$ or $-x = -60^{\circ} + 360^{\circ}k$ Remove brackets and add like terms. Divide by the respective coefficients both sides $x = 43, 3^{\circ} - 120^{\circ}k$ or $4x = 60^{\circ} - 360^{\circ}k$

General solution: $x = 43, 3^{\circ} - 120^{\circ}k$ or $4x = 60^{\circ} - 360^{\circ}k; k \in \mathbb{Z}$

Specific solutions: $x = -316, 7^{\circ}; -300^{\circ}; -196, 7^{\circ}; -77^{\circ}; 43, 3^{\circ}; 60^{\circ}; 163, 3^{\circ}; 283, 3^{\circ}$

Example 2: co-ratio on either side of equal sign. Same angles.

For the following equation, determine the general solution, correct to 2 decimal places, where necessary, then determine the specific solution for $x \in [-360^\circ; 360^\circ]$.

Approach: Divide both sides by cos ratio. (NB. This is the only case where we divide by a trig ratio, because the angles are the same and therefore there is no chance of division by zero)

$\sin x = \cos x$	Co-ratios with the same angles.				
$\tan x = 1$	Divide both side by $\cos x$ (Note why we do this only in this case.)				
$\tan^{-1}(1) = 45^{\circ}$	Special angle or Calculator.				
General solution : $45^0 + 180^\circ k; k \in \mathbb{Z}$	Apply the rule for general solution of tan.				
Specific solutions: $x = -315^{\circ}; -135^{\circ}; -45^{\circ}; 225^{\circ}$					
TYPE 3: A Ratio = ratio [Involving identities and/or factorisation]					
For the following equation, determine the general solution, correct to 2 decimal places, where necessary, then determine the specific solution for $x \in [-360^\circ; 360^\circ]$.					
Example 1: same trig ratio on either side of equal sign.					
Approach: drop trig ratios on both sides.					
$\sin(3x-20^\circ) = \sin(x+10^\circ)$	Drop/cancel trig ratio on both sides				

Downloaded from Stanmorenhy	veice com			
$3x - 20^\circ = x + 10^\circ + 360^\circ k$; or $3x - 20^\circ = 180 - (x + 10^\circ)$	$(0^{\circ}) + 360^{\circ}k; k \in \mathbb{Z}$ Apply the rule for general solution of sin.			
$2x = 30^\circ + 360^\circ k$ or $3x = 190^\circ - x + 360^\circ k$	Remove brackets and add like terms			
$2x = 30^\circ + 360^\circ k$ or $4x = 190^\circ + 360^\circ k$	Divide by the respective coefficients both sides			
General solution: $x = 15^\circ + 180^\circ k$ or $= 47, 5^\circ + 90^\circ k$	$k; k \in \mathbb{Z}$			
Specific solutions –345°; –312, 5°; –222, 5°; –165°; –1	32,5°;-42,5°;15°;47,5°;137,5°;195°;227,5°;317,5°			
NB: Only workout the specific solution when asked to do so. Read the question and note the interval you are instructed to work out the specific solution for.				
ACTIVITIES/ASSESSMENTS				
ACTIVITIES/ASSESSMENTS				
ACTIVITIES/ASSESSMENTS Classwork	Homework			
ACTIVITIES/ASSESSMENTS Classwork For the following equations, determine the general so specified.	Homework olution and the specific solution where the domain is			
ACTIVITIES/ASSESSMENTS Classwork For the following equations, determine the general so specified. 1. $\cos (2x + 25^\circ) = \cos (38^\circ - x)$	Homework blution and the specific solution where the domain is 1. $sin(x - 30^\circ) = cos 2x \ x \in [-90^\circ; 180^\circ]$			
ACTIVITIES/ASSESSMENTS Classwork For the following equations, determine the general so specified. 1. $\cos (2x + 25^\circ) = \cos (38^\circ - x)$ 2. $\cos (2x - 10^\circ) = \sin (x - 40^\circ) \ x \in [0^\circ; 360^\circ]$	Homework blution and the specific solution where the domain is 1. $sin(x - 30^\circ) = cos 2x \ x \in [-90^\circ; 180^\circ]$ 2. $cos \theta - \frac{1}{cos \theta} = \frac{5}{6} cos \theta \neq 0$			
ACTIVITIES/ASSESSMENTS Classwork For the following equations, determine the general so specified. 1. $\cos (2x + 25^\circ) = \cos (38^\circ - x)$ 2. $\cos (2x - 10^\circ) = \sin (x - 40^\circ) \ x \in [0^\circ; 360^\circ]$ 3. $\sin x (2 \cos x - 1) = 0$	Homework blution and the specific solution where the domain is 1. $sin(x - 30^\circ) = cos 2x \ x \in [-90^\circ; 180^\circ]$ 2. $cos \theta - \frac{1}{cos \theta} = \frac{5}{6} cos \theta \neq 0$ 3. $sin(x - 30^\circ) = cos(x - 30^\circ) \ x \in [-30^\circ; 360^\circ]$			

TOPIC: TRIGONOMETRY					
LESSON 22:					
Term	2	Week		Grade	11
Duration	1 HOUR	Weighting		Date	
Sub-topics		Trig Faustions: (Restrictions)		
Sub-topics	4	Ting. Equations.	Resultations).		
RELATED C	ONCEPTS/	TERMS/VOCABU	JLARY		
	3				
PRIOR-KNO	WLEDGE/	BACKGROUND	NOWLEDGE		
•	Solving alge	braic equations.			
•	Rounding of	f.			
•	Special Ang	les.			
•	Period of Tr	ig ratios. $\sin\theta$ and	$\cos\theta = 360^{\circ}$ whe	ereas $\tan \theta = 18$	0°
RESOURCES	5				
•	Maths Hand	book and Study Ma	ster, Platinum Ma	athematics, Scie	entific calculator.
ERRORS/MI	SCONCEPT	TIONS/PROBLEM	AREAS		
METHODOI	JOGY				
An expression	or equation y	vill be undefined if	division by 0 occ	urs For this rea	ison it is important to
note the follow	ving propertie	es of the trig ratio ta	n:		ison, it is important to
tor () (009					
$\tan\theta \neq 90^{\circ}$					
$\tan \theta = \frac{\sin \theta}{\cos \theta}$					
$\cos\theta$				Fi I	
$\tan \theta$ is undefined when $\cos \theta = 0$					
$\therefore \text{ when } \theta = \pm 90^{\circ} + 360^{\circ} k; k \in \mathbb{Z}$					
Example 1: Solve for θ if $\tan \theta \sin \theta = \tan \theta$					
$\tan\theta\sin\theta=\tan\theta$					
$\therefore \tan\theta \sin\theta - \tan\theta = 0$					
$\tan \theta (\sin \theta - 1) = 0$ Never divide by $\tan \theta = 0$.					
$\tan \theta = 0$ or $\sin \theta = 1$					
$\theta = 180^{\circ} k$ or $\theta = 90^{\circ} + 360^{\circ} k$ $\theta = 90^{\circ} + 360^{\circ} k$ makes $\cos \theta = 0$					
The equation is undefined when $\cos \theta = 0$					
$\therefore \cos \theta = 0$ when $\theta = 90^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$					
Downloaded from Stanmo	rephysics.com				
--	---				
Example 2: For which values of <i>x</i> is the equation	ation $\frac{\sin^2 x}{\sin 2x} = \frac{\tan x}{2}$ undefined?				
For the equation to be undefined $\sin 2x = 0$ of	r $\cos x = 0$ (the equation contains $\tan x$)				
$\sin^{-1}(0) = 0^{\circ} \text{ or } \cos^{-1}(0) = 90^{\circ}$					
$2x = 0^{\circ} + 360^{\circ}k$ or $2x = 180^{\circ} - 0^{\circ}k$ or $x = \pm 90^{\circ}$	$^{0} + 360^{0} k$				
$\therefore x = 180^{\circ}k \text{ or } x = 90^{\circ} + 180^{\circ}k \text{ or } x = \pm 90^{\circ} + 3$	$60^{0}k; k \in \mathbb{Z}$				
ACTIVITIES/ASSESSMENTS					
For which values of x are the following identities	ities undefined?				
Classwork	Homework				
22.1	22.2a				
$\frac{1-2sin^2x}{cosx-sinx} = cosx + sinx$	$\frac{1}{\cos\beta} + \tan\beta = \frac{\cos\beta}{1 - \sin\beta}$				
22.2	22.2.b				
$\frac{\cos\beta}{1+\sin\beta} = \frac{1-\sin\beta}{\cos\beta}$	$\frac{1 - \cos^2 x + \sin x}{\cos x \cdot \sin x + \cos x} = \tan x$				

]	COPIC	C: TR	RIGON	OMETR	RY		
				LF	ESSON 2	3			
	L.	2	Wee	k			Grad	le	11
uration	2 H	OURS	Weig	ghting	5		Date	!	
b-topics	\$	Т	rig. Gr	aphs: S	Sketching	ц			
ELATED CO	ONCEPT	S/ TERM	IS/VO	CABU	LARY				
•	Intercepts	5							
•	Turning p	oints							
•	Amplitud	e							
•	Period								
•	Domain								
•	Range								
•	Asymptot	te							
•	Vertical s	hift							
	Stretch	DACKCD							
	LEDGE/	DACKGR	OUND	KNU	WLEDG	Ľ			
•	Effects of	paramete	rs <i>a</i> , an	nd q .					
•	Amplitud	Maxi	mum va	alue –	Minimur	n value			
•	Ampitue	ie – —		2					
•		0.1	•	!					
- ade 10 re-cai	Basic sha n. Make u	pes of the se of a calo	sine, co culator	osine a	and tan g erwise to	aphs complete f	the table a	nd to plot	points on a
rade 10 re-caj aph paper.	Basic sha p. Make u	pes of the se of a cald	sine, co culator	osine a	and tan g erwise to	aphs complete t	he table a	nd to plot	points on a
rade 10 re-caj aph paper. Θ	Basic sha p. Make u 0°	pes of the se of a calo	sine, co culator	or othe	erwise to	complete t	the table a	nd to plot	points on a
rade 10 re-caj aph paper. $\frac{\theta}{y = \sin \theta}$	Basic sha p. Make u 0° 0	se of a calo 30° 0,5	sine, co culator 45° 0,7	60° 0,9	erwise to	raphs complete f 120° 0,9	the table a	nd to plot	points on a
rade 10 re-caj aph paper. $\frac{\theta}{y = \sin \theta}$	Dasic sha p. Make u 0 210°	30° 30° <td>45° 0,7</td> <td>60° 0,9</td> <td>erwise to</td> <td>raphs complete t 120° 0,9 300°</td> <td>the table a 135° 0,7 315°</td> <td>150° 0,5 330°</td> <td>points on a</td>	45° 0,7	60° 0,9	erwise to	raphs complete t 120° 0,9 300°	the table a 135° 0,7 315°	150° 0,5 330°	points on a
rade 10 re-caj aph paper. θ $y = \sin \theta$ ψ $y = \sin \theta$	0° 01 210° -0, 5	30° 30° <td>sine, co culator 45° 0,7 240 -0,</td> <td>60° 0,9</td> <td>90° 90° 1 270° -1</td> <td>raphs complete 1 120° 0,9 300° -0,9</td> <td>the table a 135° 0,7 315° -0,7</td> <td>150° 0,5 330° -0,5</td> <td>points on a 180° 0 360° 0</td>	sine, co culator 45° 0,7 240 -0,	60° 0,9	90° 90° 1 270° -1	raphs complete 1 120° 0,9 300° -0,9	the table a 135° 0,7 315° -0,7	150° 0,5 330° -0,5	points on a 180° 0 360° 0
rade 10 re-caj aph paper. θ $y = \sin \theta$ θ $y = \sin \theta$	0° 01 210° -0, 5	30° 30° 0,5 225° -0,7	$\begin{array}{c c} sine, co\\ culator \\ \hline \\ 45^{\circ} \\ \hline \\ 0,7 \\ \hline \\ 240 \\ \hline \\ -0, \\ \hline \\ 45^{\circ} \\ \hline \end{array}$	60° 0,9	90° 90° 1 270° -1	raphs complete t 120° 0,9 300° -0,9	135° 0,7 315° -0,7	150° 0,5 330° -0,5	points on a 180° 0 360° 0 180°
rade 10 re-caj aph paper. θ $y = \sin \theta$ θ $y = \sin \theta$ θ $y = \sin \theta$	0° 0 210° -0, 5 0° 1	$\begin{array}{c c} \text{pes of the} \\ \text{se of a calc} \\ \hline 30^{\circ} \\ \hline 0,5 \\ \hline 225^{\circ} \\ \hline -0,7 \\ \hline 30^{\circ} \\ \hline 0.8 \\ \hline \end{array}$	sine, co culator 45° $0,7$ 240 $-0,$ 45° 0.7	60° 0,9 0° ,9 60° 0,5	90° 90° 1 270° -1 90°	120° 0,9 300° -0,9 120°	135° 0,7 315° -0,7 135° -0,7	150° 0,5 330° -0,5 150°	points on a 180° 0 360° 0 180°
rade 10 re-caj aph paper. θ $y = \sin \theta$ θ $y = \sin \theta$ θ $y = \cos \theta$	0° 01 210° -0,5	30° 30° 0,5 225° -0,7 30° 0,9	$ \begin{array}{c c} \text{sine, co} \\ \text{culator} \\ \hline 45^{\circ} \\ 0,7 \\ \hline 45^{\circ} \\ 0,7 \\ \hline 0,7 \\ \hline \end{array} $	60° 0,9 0° ,9 60° 0,5	90° 90° 1 270° -1 90° 0	120° 120° 0,9 300° -0,9 120° -0,5	135° 0,7 315° -0,7 135° -0,7	150° 0,5 330° -0,5 150° -0,9	points on a 180° 0 360° 0 180° -1
rade 10 re-caj aph paper. θ $y = \sin \theta$ θ $y = \sin \theta$ θ $y = \cos \theta$ θ	0° 0 210° -0, 5 0° 1 210° 210°	30° 30° 0,5 225° -0,7 30° 0,9 225°	$ \begin{array}{c c} \text{sine, co} \\ \hline \text{culator} \\ \hline 45^{\circ} \\ \hline 0,7 \\ \hline 240 \\ \hline -0, \\ \hline 45^{\circ} \\ \hline 0,7 \\ \hline 240 \\ \hline \end{array} $	60° 0,9 0° ,9 60° 0,5	90° 90° 1 270° -1 90° 0 270°	raphs complete t 120° 0,9 300° -0,9 120° -0,5 300°	135° 0,7 315° -0,7 135° -0,7 315° 315°	150° 0,5 330° -0,5 150° -0,9 330°	points on a 180° 0 360° 0 180° -1 360°
rade 10 re-caj aph paper. θ $y = \sin \theta$ θ $y = \sin \theta$ θ $y = \cos \theta$ $y = \cos \theta$	0° 0° 0° 210° $-0, 5$ 0° 1 210° $-0, 9$	30° 30° 0,5 225° -0,7 30° 0,9 225° -0,7	$ \begin{array}{c c} \text{sine, co} \\ \hline \text{culator} \\ \hline 45^{\circ} \\ \hline 0,7 \\ \hline 240 \\ \hline -0, \\ \hline 240 \\ \hline -0, \\ \hline 240 \\ \hline -0, \\ \hline \end{array} $	60° 0,9 0° ,9 60° 0,5 0,5 0°	90° 90° 1 270° -1 90° 0 270° 0	raphs complete 1 120° 0,9 300° -0,9 120° -0,5 300° 0,5	the table a 135° 0,7 315° -0,7 135° -0,7 315° 0,7	150° 0,5 330° -0,5 150° -0,9 330° 0,9	points on a 180° 0 360° 0 180° -1 360° 1
rade 10 re-caj aph paper. θ $y = \sin \theta$ θ $y = \sin \theta$ θ $y = \cos \theta$ θ $y = \cos \theta$	0° 0° 210° -0,5 0° 1 210° -0,5	30° 30° 0,5 225° -0,7 30° 0,9 225° -0,7	$ \begin{array}{c c} \text{sine, co} \\ \hline \text{culator} \\ \hline 45^{\circ} \\ \hline 0,7 \\ \hline 240 \\ \hline -0, \\ \hline 240 \\ \hline -0, \\ \hline 240 \\ \hline -0, \\ \hline \end{array} $	60° 0,9 0° ,9 60° 0,5 0,5 0°	90° 90° 1 270° -1 90° 0 270° 0	raphs complete to 120° 0,9 300° -0,9 120° -0,5 300° 0,5	135° 0,7 315° -0,7 135° -0,7 315° 0,7	150° 0,5 330° -0,5 150° -0,9 330° 0,9	points on 180° 0 360° 0 180° -1 360° 1

- Sketching of basic trig functions $(y = \sin \theta; y = \cos \theta \text{ and } y = \tan \theta)$.
- Effect of the value of the parameters 'a' and 'q'.

RESOURCES

Mind action series grade 11 textbook, Pervious question papers, & Maths handbook.

ERRORS/MISCONCEPTIONS/PROBLEM AREAS

- Working with calculators not in DEGREES mode.
- Relying only on the calculator for sketching without checking the values of *a*, *p* and *q* from the given equation. These two aspects must be linked.

METHODOLOGY

- Use the table method and calculator to sketch graphs.
- Investigate the effect of parameter *p*.
- Investigations and consolidation afterward.

ACTIVITIES/ASSESSMENTS

Downloaded from Stanmorephysics. com The influence of the value of p on the graphs of the different trigonometric functions

Outcomes:

At the end of this activity, you should be able to:

- tell the effect that the value of p has on the graphs of the different trigonometric functions. 1.
- draw the graphs of the different trigonometric functions for different values of p. 2.

The sine function: $y = \sin(x + p)$ 1.

23.1a Complete the following table with assistance of your calculator:

x	- 360°	- 330°	- 300°	- 270°	- 240°	- 210°	- 180°	- 150°	- 120°	-90°	-60°	-30°	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
sin x																									
$sin(x + 30^{\circ})$																									
$sin(x - 60^{\circ})$																									

23.1b Use the table to plot the different sets of points in different colours on the set of axes, below and join each set of points with a smooth curve of the same colour.

											1				>					•		•		
	 -							 			- - 			4	L .				, ,	+ ! !		T		1
	 -													1007	7					 	;	1]	.i
1								1					!	000	5				1	1	1	-	1	!
												1			3					+				
i L	i i	i		I		i							i	IDDN					; 	i	į	i	j	i.
[!				!		!!			[[1]	.i
 																				 +	 			
								i					i								i		1	<u>:</u>
<u>-330</u>	<u>-300</u>	<u>-270</u> °	240°	<u>-210°</u>	<u>-180°</u>	<u>-150°</u>	-120°	_ <u>-90°</u> ¦	<u>-60°</u>	<u>-30°</u>	L0.		<u> 30°</u>	<u>60°</u>	<u>90°</u>	<u>120°</u>	<u>150°</u>	<u>180°</u>	<u>210°</u>	<u>1240°</u>	<u> 270°</u>	<u>1300°</u>	<u> 330°</u>	13
 																			 	¦ +	¦ 			
; 																				; +		+		÷
	1 1						-	1			1		1	1	1			I L		' 	 	1 1	<u>.</u>	l
! 	4!	!			;																			
 	+' +'					¦		} 					·	 						 				4
 							·	¦			 			 					 	 +	 	 +		
- - - - - - - - - - - - - - - - - - -							·							 					 	 + +	 	+		

	р		x-intersect	ts		Turnin	g points	Amplitude	Period
sin x									
$\sin(x+30^{\circ})$		9							
$\sin(x-60^\circ)$		4							

- 23.1d How did a change in the value of p affect the x-intercepts of the sine function?
- 23.1d How did a change in the value of p affect the turning points of the sine function?
- 23.1e How did a change in the value of p affect the amplitude of the sine function?
- 23.1f How did a change in the value of p affect the period of the sine function?

22. **Downloaded from Stanmorephysics.com** The cosine function: $y = \cos(x + p)$

22.1a Complete the following table with assistance of your calculator:

							00	3																	
x	- 360°	- 330°	- 300°	- 270°	- 240°	- 210°		- 150°	- 120°	-90°	-60°	-30°	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
sin x								5																	
$ cos(x + 60^{\circ}) $																									
$\cos(x-30^{\circ})$																									

22.1b Use the table to plot the different sets of points in different colours on the set of axes below and join each set of points with a smooth curve of the same colour.

78

Down	loade	dfror	n Sta	nmorenhys	sice co				
	р		x	-intersects		Turning	points	Amplitude	Period
						-	-	_	
$\cos x$									
				Innat					
$\cos(x + 60^{\circ})$									
$\sin(x-30^\circ)$									

- 22.2b How did a change in the value of p affect the x-intercepts of the cosine function?
- 22.2c How did a change in the value of p affect the turning points of the cosine function?
- 22.2c How did a change in the value of p affect the amplitude of the cosine function?
- 22.2d How did a change in the value of p affect the period of the cosine function?

22.3. The tangent function: $y = \tan(x + p)$

22.3a **Downloaded from Stanmorephysics.com** Complete the following table with assistance of your calculator:

x	-360°	-315º	-300°	-284°	-270°	256 °	240°	-225	- 180°	-135°	- 120 °	- 104 o	- 90°	-76º	-60º	-45°	0°	45 °	60 °	76 °	90 °	10 4º	12 0°	135 °	180 °	225 °	240 °	256 °	270	284	300	315 °	360°
tan x																																	
$\tan(x+15^\circ)$																																	
$\tan(x-30^\circ)$																																	

22.3b Use the table to plot the different sets of points in different colours on the set of axes below and join each set of points with a smooth curve of the same colour.

	р	<i>x</i> -inter	sects		Turning	g points		Asymp	ototes	Amplitude	Period
tan x		<u>j</u>									
$\tan(x+15^{\circ})$			Ш								
$\tan(x-30^\circ)$											

22.3d How did a change in the value of p affect the x-intercepts of the tangent function?

22.3e How did a change in the value of p affect the turning points of the tangent function?

22.3f How did a change in the value of p affect the amplitude of the tangent function?

22.3h Downloaded from Stanmorephysics.com How did a change in the value of *p* affect the asymptotes of the tangent function?

22.3i Make a general conclusion on the effect of the value of p on the graph of the tangent function.

	TOPIC: TRI	GONOMETRY											
	LES	SON 24											
Term 2	Week	Grade	11										
Duration 2 HOURS	Weighting	Date											
Sub-topics '	Frig. Graphs: Sketchin	g											
RELATED CONCEPTS/ 1	ERMS/VOCABULA	RY											
 Intercepts Period Amplitude Asymptotes Turning point(s) PRIOR-KNOWLEDGE/ BACKGROUND KNOWLEDGE													
PRIOR-KNOWLEDGE/ B	ACKGROUND KNO	OWLEDGE											
Effects of para RESOURCES	ameters a and q and p .												
Mind action s	eries grade 11 textbool	k. Pervious question papers	. & Maths- handbook.										
ERRORS/MISCONCEPTI	ONS/PROBLEM AR	REAS	,										
Not knowingIgnoring the g	which angle to use as a iven domain and sketc	a "step" angle when using a ching on own domain.	a calculator.										
METHODOLOGY													
 Use the table Investigate the Investigations 	method and calculator e effect of parameter k and consolidation afte	to sketch graphs. erwards.											
ACTIVITIES/ASSESSME	NTS		4										

Downloaded from Stanmorephysics.com The influence of the value of k on the graphs of the different trigonometric functions

Outcomes:

At the end of this activity, you should be able to:

- 1. tell the effect that the value of *k* has on the graphs of the different trigonometric functions.
- 2. draw the graphs of the different trigonometric functions for different values of *k*.

23. The sine function: $y = \sin kx$

23.1 Complete the following table with assistance of your calculator:

x	-180°	-150°	-135°	-120°	-90°	-60°	-45°	-30°	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin x$																	
$\sin 2x$																	
$\sin \frac{1}{2}x$																	

23.2 Use the table to plot the different sets of points in different colours on the set of axes below and join each set of points with a smooth curve of the same colour.

23.3 **Downloaded from Stanmorephysics.com** Use your graphs to fill out the table below.

			a A						
	k		-intersect	S		Turning	g points	Amplitude	Period
sin x			Ţ						
$\sin 2x$			5						
$\sin \frac{1}{2} x$									

- 23.4 How did a change in the value of k affect the x-intercepts of the sine function?
- 23.5 How did a change in the value of k affect the turning points of the sine function?
- 23.6 How did a change in the value of k affect the amplitude of the sine function?

23.7	How did a change in the value of k affect the period of the sine function?	
23.8	Make a general conclusion on the effect of the value of k on the graph of the sine function.	

24. **Downloaded from Stanmorephysics.com** The cosine function: $y = \cos kx$

24.1 Complete the following table with assistance of your calculator:

					าก												
x	-240°	-210°	-180°	-150°	-120°	-90°	-60°	-30°	0°	30°	60°	90°	120°	150°	180°	210°	240°
$\cos x$																	
$\cos 3x$																	
$\cos\frac{3}{2}x$																	

24.2 Use the table to plot the different sets of points in different colours on the set of axis below and join each set of points with a smooth curve of the same colour.

24.3 **Downloaded from Stanmorephysics.com** Use your graphs to fill out the table below.

	k	x-int	ersects	Turning	Amplitude	Period	
$\cos x$							
$\cos 3x$							
$\cos\frac{3}{2}x$							

- 24.4 How did a change in the value of k affect the x-intercepts of the cosine function?
- 24.5 How did a change in the value of k affect the turning points of the cosine function?
- 24.6 How did a change in the value of k affect the amplitude of the cosine function?
- 24.7 How did a change in the value of k affect the period of the cosine function?
 24.8 Make a general conclusion on the effect of the value of k on the graph of the cosine function.

24.9. Downloaded from Stanmorephysics. com The tangent function: $y = \tan kx$

24.9.1 Complete the following table with assistance of your calculator:

								3																									
x	-360°	-315°	-300°	-284º	-270°	256 °	240°	-225	- 180°	-135°	- 120 °	- 104 o	- 90°	-76º	-60°	-45°	0°	45 °	60 °	76 °	90 °	10 4º	12 0°	135 °	180 °	225 °	240 °	256 °	270	284	300	315 °	360°
tan x																																	
$\tan 2x$																																	
$\tan \frac{1}{2}x$																																	

24.9.2 Use the table to plot the different sets of points in different colours on the set of axes below and join each set of points with a smooth curve of the same colour.

24.9.3 Use your graphs to fill out the table below.

_				i								
	k	x-i	intersed	ets		Turning	points		Asym	ptotes	Amplitude	Period
tan x				5								
tan 2 <i>x</i>												
$\tan \frac{1}{2}x$												

24.9.4 How did a change in the value of k affect the x-intercepts of the tangent function?

24.9.5 How did a change in the value of k affect the turning points of the tangent function?

24.9.6 How did a change in the value of k affect the amplitude of the tangent function?

24.9.7 How did a change in the value of k affect the period of the tangent function?

24.9.8 How did a change in the value of *k* affect the asymptotes of the tangent function?

24.9.9 Make a general conclusion on the effect of the value of k on the graph of the tangent function.

	INTERP	RETATION OF	INTERPRETATION OF TRIG GRAPHS								
		REVISION W	ORK								
Term	2	Week		Grade	11						
Duration	2 HOURS	Weighting		Date							
Sub-topics	T	rig. Graphs: Interpr	etation								
RELATED CON	CEPTS/ TERMS	S/VOCABULARY									
 Peri Dor Ran Asy Determine Amplitude Intersection Increasing a Inequalities Distance be Transforma 	and main age amptotes equations a between TWO g and decreasing gr etween curves ation of functions EDGE/ BACKG	graphs aphs ROUND KNOWL	EDGE								
• Sketching t	rig graphs.										
• Transforma	tions										
• The effects	of parameters.										
Standard for $y = a \sin(kx)$ • $y = a \cos(kx)$ $y = a \tan(kx)$	form of trig graphs (x + p) + q (x + p) + q (x + p) + q (x + p) + q	5.									
a	q		p	k							
Change in ampli	itude	Vertical shift	Horizontal	shift Cł	nange in period						
RESOURCES	I			I							

Maths Handbook and Study Master, Platinum Mathematics, Scientific calculator.

<u>Downloaded from Stanmorephysics.com</u> ERRORS/MISCONCEPTIONS/PROBLEM AREAS

Not knowing which angle to use as a "step" angle when using a calculator.

Ignoring the given domain and sketching on own domain.

METHODOLOGY

• Illustration through an example.

The graphs of $f(x) = a \sin x$ and $g(x) = \cos x + 1$ for $x \in [0^0; 360]$ are sketched above

Answers

1. Write down the value of a a = 22. Write down the period of *f* and *g* Period is 360° 3. Write down the range of *f* and *g* **Range of** $f: -2 \le y \le 2$ **Range of** $g: 0 \le y \le 2$ 4. For which value(s) of x for $x \in [0^\circ; 360^\circ]$ will: a. f(x) - g(x) = 0 $x = 53,13^{\circ} \text{ or } x = 180^{\circ}$ $0^\circ \le x \langle 53, 13^\circ \text{ or } 180^\circ \langle x \le 360^\circ$ b. $f(x) \langle g(x)$ $180^{\circ} \le x \le 360^{\circ}$ $f(x).g(x) \leq 0$ c. $0^\circ \le x \le 180^\circ$ d. $f(x).g(x) \ge 0$

Downloaded from Stanmorephysics.com 5. The graph of g is reflected about the $x - h(x) = -\cos x + 1$

axis and shifted two units upwards to

form the graph of h. Determine the

equation of h.

ACTIVITIES/ASSESSMENTS

Question 1

The diagram below shows the sketch graphs of $f(x) = a \cos bx$ and $g(x) = p \sin (x + r)$ for x [-90°; 180°]

- 1.1.Write down the values of a, b, p and r.
- 1.2.Use the graph to determine the values of x for which f(x) g(x) = 0
- 1.3.Write down the period of f.
- 1.4.Write down the equation of h if h is obtained by first moving the graph of g, 45° to the right and then doubling its period.

Downloaded from Stanmorephysics.com Question 2

The graphs of the functions defined by $f(x) = a \tan x$ and $g(x) = b \cos x$ for $0^{\circ} \le x \le 270^{\circ}$ are shown in the diagram. The point (225°; 2) lies on *f*. The graphs intersect at points P (51, 3°; 2,5) and Q(128,7°; -2,5)

Determine:

- 2.1. The values of a and b.
- 2.2. The minimum value of g(x) + 2
- 2.3. The period of f(x)
- 2.4. The values of *x* for which: 2.4.1. f(x) > g(x)2.4.2. $f(x) \cdot g(x) \le 0$

<u>Homework</u> Question 1

Given $f(x) = 1 + \sin x$ and $g(x) = \tan x$ for $0^\circ \le x \le 180^\circ$

1.1. Give the range of f

1.2. Determine the period of f

1.3. Draw sketch graphs of the functions f and g on the same system of axes. Clearly show all intercepts with the axes, asymptotes, and turning points where applicable.

Downloaded from Stanmorephysics.com Question 2

Given $f(x) = \sin x - 1$ and $g(x) = 2 \cos x$ for $0^\circ \le x \le 270^\circ$

- 2.1. Sketch, on the same system of axes the graphs of f and g for $0^{\circ} \le x \le 270^{\circ}$.
- 2.2. Write down the following:
 - 2.2.1. Amplitude of g.
 - 2.2.2. Range of g.
- 2.3. Use your graph to determine the following:
 - 2.3.1. Number of solutions to f(x) = g(x) in the interval $0^{\circ} \le x \le 270^{\circ}$
 - 2.3.2. Value(s) of x in the interval $0^{\circ} \le x \le 180^{\circ}$ for which $\sin x = 1 + 2\cos x$

2.4. Describe a transformation that the graph of

Question 3

Consider: $g(x) = -4\cos(x+30^\circ)$

3.1. Write down the maximum value of g(x).

- 3.2. Write down the period of g(2x).
- 3.3. Determine the range of $\frac{1}{2}g(x)+1$.

3.4. The graph of g is shifted 60° to the left and then reflected about the x-axis to form a new graph h. Determine the equation of h in its simplest form.

Question 4

Consider the function $f(x) = -2 \tan \frac{3}{2}x$. Describe the transformation of graph f to form the graph of $g(x) = -2 \tan \left(\frac{3}{2}x + 60^{\circ}\right)$.

SOLUTIONS TO LESSONS

	TOPIC 1: ALGEBRA AND	6.1	x = 81
	EQUATIONS	6.2	x = 49
LESS	ON100	6.3	x = 37
1.1	8000	6.4	x = 97
1.2	16	6.5	x = 4
1.3	$\frac{3}{2}$	6.6	x = 7
1.4	2	6.7	9
1.4	2		$x = -\frac{5}{4}$
1.3	$\frac{2}{xy^2}$	6.8	<i>x</i> = 36
1.6	<i>x</i>	6.9	No solution
	$\overline{3}$	6.10	x = -2
1.7	$\frac{5}{a^6}$	LESS	ON 7
1.8	7	7.6	x = 3 or x = 7
1.0	$\frac{7}{12}$	7.7	x = 1
1.9	x + y	7.8	<i>x</i> = 4
1.10	1	7.9	<i>x</i> = 36
	a^2b^2		
LESS	ON 3	LESS	ON 2
3.1	<i>x</i> = 8	2.1	1500
3.2	<i>x</i> = 1		6*
3.3	<i>x</i> = 25	2.2	$\frac{3}{4}$
3.4	<i>x</i> = 9	2.3	
3.5	<i>x</i> = 81		$\frac{1}{3}$
3.6	<i>x</i> = 64	2.4	1
3.7	x = 0 or x = 64		6
3.8	<i>x</i> = 81	2.5	2 ^{<i>n</i>+3}
3.9	$x = -\frac{64}{2}$ or $x = 27$	LESS	SON 4
	27	4.1	5√2
3.10	x = 512	4.2	5 ³ √2
LESS	ON 6	4.3	2√11

4.4	Downloaded from Stanmore	phy	sics.	$\frac{\text{com}}{8(3\sqrt{2}+\sqrt{6})}$
				$=$ $\frac{16}{16}$
5.1	2√2			$=\frac{3\sqrt{2}+\sqrt{6}}{2}$
5.2	$5\sqrt{2}+2\sqrt{5}$			2
5.3	$10 - 2\sqrt{21}$		5.7	Proof
5.4	2			
5.5	$2+\sqrt{3}$		7.1	<i>x</i> = 19
5.6	LHS = $\frac{\sqrt{48}}{\sqrt{24} - \sqrt{8}} \times \frac{\sqrt{24} + \sqrt{8}}{\sqrt{24} + \sqrt{8}}$		7.2	$x = \frac{1}{4}$
	$\sqrt{48 \times 24} + \sqrt{48 \times 8}$		7.3	<i>x</i> = 4
	=24-8		7.4	<i>x</i> = 38
	$-\frac{\sqrt{1152}+\sqrt{384}}{}$		7.5	No solution
	- 16		7.10	$x = \frac{19}{100}$
	$=\frac{24\sqrt{2}+8\sqrt{6}}{16}$			4
	10			

TOPIC 2: EUCLIDEAN GEOMETRY

LES	SON 8:	GR. 11 EUCLIDEAN GEOMETRY
8.1.	8.1.1	$x = 70^{\circ} (\text{sum of } \angle \text{s in } \Delta)$
	8.1.2	$B\widehat{Z}Y$ and $Z\widehat{Y}C$
		$A\widehat{Z}Y$ and $Z\widehat{Y}D$
		$A\hat{X}Y$ and $X\hat{Y}D$
		$B\hat{X}Y$ and $X\hat{Y}C$
	8.1.3	$B\widehat{Z}Y$ and $Z\widehat{Y}D$
		$A\widehat{Z}Y$ and $Z\widehat{Y}C$
	8.1.4	Supplementary
	8.1.5	$X\widehat{Y}D = 70^{\circ}$ (Alt. \angle s equal, AB DC
8.2		$y^2 = 2^2 + \left(\frac{3}{2}\right)^2$ (Pythagoras theorem)
		$y = \frac{5}{2}$

8.3	(50	waioaded from Stanmorephysics.com A ₃ = 48 (∠s opp. Equal sides)
	($\widehat{D}_1 = 96^\circ (\text{Ext. } \angle \text{ of } \Delta)$
	(a) 2	$143^{\circ} + \hat{E}_2 = 180^{\circ} (\angle s \text{ in a straight line})$
	ĥ	$\hat{E}_2 = 37^{\circ}$
	Б	$\hat{E}_2 = \hat{B}_3 = 37^\circ$ (Corr. \angle s equal $PQ \parallel RS$)
		$\hat{B}_1 = \hat{B}_3 = 37^\circ$ (Vert. opp. \angle s)
	(a) 3	$\hat{B}_1 + 85^\circ = \hat{A}_2 + \hat{D}_1$ (Ext. $\angle \text{ of } \Delta$) 37° + 85° = $\hat{A}_2 + 96^\circ$
		$\hat{A}_2 = 26^{\circ}$
	(b)	$\hat{B}_3 = \hat{E}_2$ (Corr. \angle s equal $PQ \parallel RS$)
		$R\hat{E}F = \hat{E}_2$ (Vert. opp. \angle s)
		$R\hat{E}F = \hat{B}_3$

LES	LESSON 9: GR. 11 EUCLIDEAN GEOMETRY								
9.1		$BC^2 + 6^2 = 10^2$ (Pythagoras theorem)							
		<i>BC</i> = 8							
		$AC = BC + AB$ (\perp from centre to chord)							
		AC = 8 + 8 = 16							
9.2	(a)	$AC = CB = 24 (\perp \text{ from centre to chord})$							
		$OB^2 = 24^2 + 7^2$ (Pythagoras theorem)							
		<i>OB</i> = 25 <i>cm</i>							
	(b)	$MQ^2 = 25^2 - 5^2$ (Pythagoras theorem)							
		$PM = MQ = 10\sqrt{6}cm \ (\perp \text{ from centre to chord})$							
		$PQ = 20\sqrt{6}cm$							
9.3	(a)	OB = OE = x + 8 (Radii)							
	(b)	DB = 12 (Line from centre to midpoint of chord)							
		$OB^2 = x^2 + 12^2$ (Pythagoras theorem)							
		$(x+8)^2 = x^2 + 12^2$							

	D	ownigaded from Stanmorephysics.com
		<i>x</i> = 5
		$\therefore OB = 13cm$
9.4	(a)	$AO^2 = 25$
		$AC^2 + OC^2 = 9 + 16 = 25$
	ĺ	$\therefore AO^2 = AC^2 + OC^2$ (converse Pythagoras Theorem)
	I	$OC \perp AB$
	(b)	The perpendicular bisector of a chord passes through the centre of the circle
9.5		AB = BF = EF = EA = x
		Area of square = $EF^2 = x^2$
		In $\triangle OBF$
		$OF^2 = 25 - x^2$ (Pythagoras theorem)
		In $\triangle OAE$
		$OE^2 = 25 - x^2$ (Pythagoras theorem)
		OF = OE
		EF=2OF
		$x = 2\sqrt{25 - x^2}$
		$x^2 = 20$
		\therefore Area of square = 20 square units

LESS	LESSON 10: GR. 11 EUCLIDEAN GEOMETRY		
10.1	(a)	$x = 47,5^{\circ}$ (\angle at centre $= 2 \times \angle$ at circumference)	
		$B\hat{O}D = 265^{\circ}$ (Revolution)	
		$y = 132, 5^{\circ} (\angle \text{ at centre } = 2 \text{ x} \angle \text{ at circumference})$	
	(b)	$x = 40^{\circ} (\text{sum } \angle \text{s of } \Delta)$	
		$y = 20^{\circ} (\angle \text{ at centre } = 2 \text{ x } \angle \text{ at circumference})$	
	(c)	$P\hat{O}Q = 20^{\circ} (\text{Alt.} \angle \text{s equal } OQ \parallel RP)$	
		$x = 10^{\circ}$ (\angle at centre = 2 x \angle at circumference)	
10.2	(a)	$\hat{O}_1 = 2(32^\circ) = 64^\circ (\angle \text{ at centre } = 2 \text{ x } \angle \text{ at circumference})$	

D	$a_{2B_1 + 64} = 180^{\circ} (sum of \ \ sin \ \ \Delta)$ or ephysics. com
	$\hat{B}_1 = 58^{\circ}$
(b)	$\hat{B}_2 + 32^\circ + 15^\circ + 58^\circ + 58^\circ = 180^\circ (\text{sum } \angle \text{ s of } \Delta)$
ļ	$\hat{B}_2 = 17^{\circ}$
4	

LESS	LESSON 11: GR. 11 EUCLIDEAN GEOMETRY			
11.1	(a)	$\hat{Q} = 90^{\circ} \ (\ \ \ \text{in semicircle})$		
		$x = 180^\circ - 90^\circ - 55^\circ \text{ (sum of } \angle \text{ s in } \Delta\text{)}$		
		$x = 35^{\circ}$		
	(b)	$x = 90^{\circ} - 52^{\circ}$ (\angle in semicircle)		
		$x = 38^{\circ}$		
	(c)	$a = 120^{\circ}$ (\angle s on a straight line)		
		$x = \hat{A}_2$ (OA=OB, Radii)		
		$2x = 180^\circ - 60^\circ$ (\angle in semicircle)		
		$x = 60^{\circ}$		
		$\hat{C} = 90^{\circ} \ (\ \angle \ \text{in semicircle})$		
		$y = 68^\circ (\text{sum of } \angle \text{s in } \Delta)$		
	(d)	$y = 22^{\circ} (\angle s \text{ in the same segment})$		
		$x = 18^{\circ}$ (\angle s in the same segment)		
	(e)	$\hat{E} = 35^{\circ}$ (Alt. \angle s, DE GF		
		$x = 35^{\circ}$ (\angle s in the same segment)		
	(f)	$x = 32^{\circ}$ (\angle s in same the segment)		
		$\hat{B}_1 = 180^\circ - 92^\circ - 32^\circ = 56^\circ \text{ (sum of } \angle \text{ s in } \Delta \text{)}$		
		$x = 56^{\circ}$ (\angle s in same the segment)		
11.2	(a)	$x = 15^{\circ}$ (equal chords sub. Equal $\angle s$)		
	(b)	$\hat{R}_1 = x$ (equal chords sub. Equal $\angle s$)		
		$2x = 180^\circ - 35^\circ (\text{sum of } \angle \text{s in } \Delta)$		
		$x = 145^{\circ}$		

LESSON 12: GR. 11 EUCLIDEAN GEOMETRY

12.1	la po	wnioadeoipf Zom Stiannor ephysics.com
		$x = 75^{\circ}$ (Opp. \angle s of cyclic quad)
	(b)	$y = 180^{\circ} - 40^{\circ} - 82^{\circ} (\angle s \text{ of } \Delta)$
	Į	$y = 58^{\circ}$
		$x = 98^{\circ}$ (Opp. \angle s of cyclic quad)
		$z = 180^\circ - 62^\circ - 98^\circ \text{ (sum of } \angle \text{ s in } \Delta \text{)}$
		$z = 20^{\circ}$
	(c)	$\hat{C} = 96^{\circ}$ (Opp. \angle s of cyclic quad)
		$2x = 180^\circ - 96^\circ (\operatorname{sum of} \angle \operatorname{sin} \Delta)$
		$x = 42^{\circ}$
	(d)	$x = 130^{\circ}$ (Opp. \angle s of cyclic quad)
		$y = 90^{\circ}$ (\angle in semicircle)
		$z = 180^{\circ} - 90^{\circ} - 50^{\circ} = 40^{\circ} \text{ (sum of } \angle \text{ s in } \Delta \text{)}$
	(e)	$x = 110^{\circ}$ (Ext. \angle of cyclic)
	(f)	$x = 125^{\circ}$ (Ext. \angle of cyclic = int opp. \angle)
		$y = 90^{\circ}$ (\angle in semicircle)
		$z = 125^\circ - 90^\circ = 35 \text{ (Ext. } \angle \Delta \text{)}$
12.2		$\hat{Q} = \hat{R}$ (equal chords sub. Equal $\angle s$)
		$P\hat{M}L = \hat{R}$ (equal chords sub. Equal $\angle s$)
		$\therefore \hat{Q} = P\hat{M}L$
		LMRQ is a cyclic quad. (converse Ext. ∠ of cyclic
12.3		ADEB is a cyclic quad (Converse Ext. \angle of cyclic)
		EMDC is a cyclic quad (converse Opp. \angle s of cyclic quad)
LESS	ON 1	3: GR. 11 EUCLIDEAN GEOMETRY
13.1	(a)	$x + 40^\circ = 90^\circ \text{ (rad } \perp \text{ tan)}$
		$x = 50^{\circ}$
		$y = 90^{\circ} (\angle \text{ in semicircle})$
		$m + 50^\circ + 90^\circ = 180^\circ (\text{ sum of } \angle \sin \Delta)$
		$m = 40^{\circ}$
	(b)	$x + 60^\circ = 90^\circ (\text{rad} \perp \tan)$

	Do	wnigaded from Stanmorephysics.com
		$\hat{O}_1 + 30^\circ + 30^\circ = 180^\circ (\text{ sum of } \angle \text{ s in } \Delta)$
	9	$\hat{O}_1 = 120^\circ$
	Ę	$\hat{O}_1 = 2y \angle$ at centre = 2 x \angle at circumference)
	l h	$y = 60^{\circ}$
	(c)	$2y = 140^{\circ} \angle$ at centre $= 2 \times \angle$ at circumference)
	Ċ	$y = 70^{\circ}$
		$y = A\hat{B}C$ (Alt. \angle s, DE GF)
		$A\hat{B}C = 70^{\circ}$
		$A\hat{B}C + m = 90^{\circ} \text{ (rad } \perp \text{ tan)}$
		$m = 90^{\circ} - 70^{\circ}$
		$m = 20^{\circ}$
		$O\hat{D}B = O\hat{B}D$ (OB=OD, Radii)
		$2O\hat{B}D = 180^\circ - 140^\circ$
		$O\hat{B}D = 20^{\circ}$
		$x = 90^\circ - 20^\circ \pmod{1} \tan{1}$
		$x = 70^{\circ}$
13.2		$x = 30^{\circ}$ (equal chords sub. Equal $\angle s$)
		$y+30^\circ+30^\circ=180^\circ (\text{sum of } \angle \text{s in } \Delta)$
		y = 120°
		$D\hat{B}C = B\hat{D}C = 60^{\circ}$ (tans from same point)
		$z + 60^\circ + 60^\circ = 180^\circ (\operatorname{sum of} \angle \operatorname{sin} \Delta)$
		$z = 60^{\circ}$
LESS	ON 1	4: GR. 11 EUCLIDEAN GEOMETRY
14.1	(a)	$a = 33^{\circ}$ (tan-chord theorem)
		$b = 33^{\circ}$ (Alt. \angle s, OP SR)
	(b)	$c = 72^{\circ}$ (tan-chord theorem)
		$2d + 72^\circ = 180^\circ (\operatorname{sum of} \angle \operatorname{sin} \Delta)$
		$d = 54^{\circ}$

	Q o	wpigadiod =1180msuStalemakephysics.com
		$i = 40^{\circ}$
		$j = 101^{\circ}$ (tan-chord theorem)
]	$k = 40^{\circ}$ (tan-chord theorem)
	(d)	$\hat{O}_1 = \hat{Q}_1 = 66^\circ$ (tan-chord theorem)
		$l = 180^\circ - 66^\circ - 66^\circ \text{ (sum of } \angle \text{ s in } \Delta\text{)}$
	L	$l = 48^{\circ}$
	(e)	$n = 34^{\circ}$ (tan-chord theorem)
		$o+34^\circ+90^\circ=180^\circ(\operatorname{sum of} \angle \operatorname{sin} \Delta)$
		$o = 56^{\circ}$
		$m = o = 56^{\circ}$ (tan-chord theorem)
14.2	(k)	$x = 40^{\circ}$ (tan-chord theorem)
		$\hat{B}_1 = 90^\circ - 59^\circ (\angle \text{ in semi-circle})$
		$\hat{B}_1 = 31^\circ$
		$y = \hat{B}_1 = 31^\circ \ (\angle s \text{ in same segment})$
	(j)	$x = 40^\circ + 56^\circ$ (tan chord theorem)
		$x = 96^{\circ}$
		$x + y = 180^{\circ}$ (Opp. \angle s of cyclic quad)
		$y = 180^{\circ} - 96^{\circ}$
		$y = 84^{\circ}$
L		

		-4401	
LESS	LESSON 15: GR. 11 EUCLIDEAN GEOMETRY		
15.1	(a)	ABCD and BCDE	
	(b)1	$\hat{B}_1 = \hat{A} (Corr. \ \angle s, BC \parallel AD)$	
		$\hat{E} = \hat{A} \ (\angle s \text{ in same segment})$	
		$\therefore \hat{B}_1 = \hat{E}$	
	(b)2	$\hat{B}_1 = \hat{A}$ (Corr. $\angle s$, BC AD)	
		$\hat{B}_1 = \hat{D}_1$ (Ext. \angle of cyclic quad)	
		$\hat{D}_1 = \hat{A}$	

15.2	<u>Q</u> ov	vploaded from Stanmorephysics.com
		$P\hat{C}A = \hat{A}_2$ (Alt. $\angle s$, AD PC)
	4	$\hat{A}_2 = P\hat{A}C$
	l l	: AC bisects PÂD
	(b)	$\hat{C}_4 = \hat{B}_1$ (tan-chord thm)
		$\hat{C}_4 = \hat{D}$ (Alt. \angle s, AD PC)
		$\hat{D} = \hat{B}_1$
		$\hat{D} = \hat{B}_3$ (Ext. \angle of cyclic quad)
		$\hat{B}_1 = \hat{B}_3$
	(c)	$\hat{A}_1 = A\hat{B}D$ (tan chord theorem)
		$\hat{A}_1 = A\hat{P}C$ (Corr. $\angle s$, AD PC)
		$\therefore A\hat{P}C = A\hat{B}D$
15.3	(a)	$B\hat{A}T = A\hat{B}T$ (2 tans from a common point)
		$2A\hat{B}T + x = 180^{\circ} (\text{ sum of } \angle \text{ s in } \Delta)$
		$A\hat{B}T = 90^{\circ} - \frac{x}{2}$
	(b)	$O\hat{B}A + A\hat{B}T = 90^{\circ} \text{ (rad } \perp \text{ tan)}$
		$O\hat{B}A = \frac{x}{2}$
	(c)	$A\hat{B}T = \hat{C}$ (tan chord theorem)
		$\hat{C} = 90^{\circ} - \frac{x}{2}$
15.4	(a)	$B\hat{A}P = 90^{\circ}$ (given, BA AO)
		$P\hat{C}O = 90^{\circ}$ (χ in semicircle)
		$\therefore P\hat{C}Q = B\hat{A}P$
	(b)	$\therefore P\hat{C}Q = B\hat{A}P \text{ (proven)}$
		BAPC is a cyclic quad (Converse Ext. \angle of cyclic quad)
	(c)	$B\hat{C}A = 90^\circ - A\hat{C}P \ (\angle s \text{ in a str. Line})$
		$C\hat{P}Q = 90^\circ - C\hat{Q}P (\text{sum of } \angle \text{s in } \Delta)$

	Do	but coped to om Stanmorephysics. com
		$B\hat{C}A = C\hat{P}Q$
	R	$\therefore \hat{BCA} = A\hat{B}C$
	۲ ۲	AB=AC (side opp. = \angle s)
LESS	ON 16	: GR. 11 EUCLIDEAN GEOMETRY
16.1	(a)	$\hat{C} = 90^{\circ} \ (\angle \text{ in semicircle})$
		$O\hat{D}C + \hat{C} = 180^{\circ}$ (Co-int. \angle s suppl, OE BC)
		$O\hat{D}C = 90^{\circ}$
		\therefore AD = DC (\perp from centre to chord)
	(b)	$A\hat{B}E = O\hat{E}B$ (OB=OE, Radii)
		$C\hat{B}E = O\hat{E}B$ (Alt. \angle s, OE BC)
		$\therefore A\hat{B}E = C\hat{B}E$
		EB bisect $A\hat{B}C$
	(c)	$A\hat{B}E = C\hat{B}E = x$
		$B\hat{A}C + \hat{C} + \hat{B} = 180^{\circ} (\angle \text{ s of } \Delta)$
		$B\hat{A}C = 90^{\circ} - 2x$
	(d)	$OA^2 = OD^2 + AD^2$ (Pythagoras theorem)
		$OA^2 = (OA - 1)^2 + 5^2$
		<i>OA</i> = 13°
16.2	(a)	$S\hat{Q}V = V\hat{S}Q = x$ (2 tans from a common point)
		$T\hat{VS} = S\hat{Q}V + V\hat{S}Q = x + x$
		$T\hat{V}S = 2x$
		$S\hat{Q}V = Q\hat{R}S = x$ (tan chord theorem)
		$T\hat{VS} = 2Q\hat{RS}$
	(b)	$S\hat{Q}V = Q\hat{R}S = Q\hat{P}S = x$ (tan chord theorem)
		$P\hat{S}R = Q\hat{P}S = x$ (Alt. $\angle s$, RS QP)
		$Q\hat{W}S = P\hat{S}R + Q\hat{R}S$ (Ext. $\angle \text{ of } \Delta$)
		$Q\hat{W}S = 2x$

	Do	nicaded from Stanmorephysics.com
		$T\hat{VS} = Q\hat{WS}$
		QVSW is a cyclic quad.
	Lí	(Converse Ext. \angle of cyclic quad)
	(c)	$Q\hat{R}S = Q\hat{P}S = x$ (proven)
		$P\hat{S}R = Q\hat{P}S = x$ (Alt. $\angle s$, RS QP)
		$Q\hat{R}P = Q\hat{S}P = y \ (\ \ \ \ s \ in \ the \ same \ segment)$
		$P\hat{R}T = x + y$
		$Q\hat{S}R = T\hat{Q}S + \hat{T} (\text{Ext. } \angle \text{ of } \Delta)$
		$x + y = x + \hat{T}$
		$\hat{T} = y$
		$\therefore Q\hat{P}S + \hat{T} = P\hat{R}T$
	(d)	$Q\hat{P}S = x$ (tan chord theorem)
		$Q\hat{W}S = 2x$ (proven)
		$Q\hat{W}S = 2Q\hat{P}S$
		(converse \angle at centre = 2 x \angle at circumference)
16.3	(a)	$\hat{D}_3 = 90^\circ \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
		$\hat{B} = 90^{\circ}$ (given, AB \perp BE)
		$\hat{D}_3 = \hat{B}$
		ABCD is cyclic quad. (Converse Ext. ∠ of cyclic quad)
	(b)	$\hat{D}_1 = \hat{E}$ (tan chord theorem)
		$\hat{A}_1 = \hat{D}_1 \ (\angle s \text{ in the same segment})$
		$\therefore \hat{A}_1 = \hat{E}$
	(c)	$\hat{C}_3 = \hat{A}$ (Ext. \angle of cyclic quad)
		$\hat{C}_3 = \hat{D}_4$ (tan chord theorem)
		$\hat{D}_4 = \hat{A}$
		$\hat{D}_4 = \hat{D}_2 (\text{vert. opp. } \angle s)$

	Dou	nipaded from Stanmorephysics.com
		Δ BDA is isosceles
	(d)	$\hat{D}_4 = \hat{D}_2$ (vert. opp. \angle s)
	l H	$\hat{C}_3 = \hat{D}_4$ (tan chord theorem)
	h	$\hat{C}_3 = \hat{D}_2$
		$\hat{C}_2 = \hat{D}_2$ (\angle s in the same segment)
		$\hat{C}_2 = \hat{C}_3$
16.4		$\hat{A}_1 = \hat{C}$ (tan chord theorem)
		$\hat{K}_1 = \hat{M}_1$ (\angle s opp.= sides)
		$\hat{K}_1 = \hat{P}_2 + \hat{C} (\text{Ext. } \angle \text{ of } \Delta)$
		$\hat{M}_1 = \hat{P}_1 + \hat{A}_1 (\text{Ext. } \angle \text{ of } \Delta)$
		$\hat{P}_1 = \hat{P}_2$
		KP bisects $A\hat{P}C$
16.5	(a)	$\hat{D}_1 = \hat{B}_1$ (given, AB=AD)
		$\hat{D}_2 = \hat{B}_2$ (given, DC=BC)
		$(\hat{D}_1 + \hat{D}_2) + (\hat{B}_1 + \hat{B}_2) = 180^\circ (\text{ Opp. } \angle \text{ s of cyclic quad})$
		But $\hat{D}_1 + \hat{D}_2 = \hat{B}_1 + \hat{B}_2 = 90^\circ$
		AC is a diameter of the circle
	(b)	$\hat{D}_3 = \hat{A} \text{ (Ext. } \angle \text{ of cyclic quad)}$
		$F\hat{B}E = \hat{A}$ (Ext. \angle of cyclic quad)
		$\hat{D}_3 = F\hat{B}E$
		DBEF is acyclic quad (Converse \angle s in the same segment)
	(c)	$\hat{G}_1 = 90^{\circ}$
		ABF=90°
		$\hat{G}_1 = A\hat{B}F=90^{\circ}$
		\therefore ABGF is a cyclic quad. (converse \angle s in the same segment)
		$\hat{B}_3 = \hat{A}_1$

LESS	NOW	accontram Stan	morephy	sics.	Com	k
ACTIVITY 17						$\sqrt{1-k^2}$
17.1	7.1 $\cos x$				b	$\sqrt{1-k^2}$
17.2	$-\tan^2\beta$				c	1
17.3		Ĩ		18.8		
17.4	17.4 $\frac{2}{\sin x}$				a	$-\frac{p}{q}$
17.5 $\tan \theta$					b	p
LESS	ON 18: T	RIGONOMETRY				$\frac{-\frac{1}{q}}{q}$
ACTIVITY 18					c	-1
18.1	a)	OP = 5 units		18.9	a)	- <i>t</i>
	b)	$\sin\theta = \frac{4}{5}$			b)	$-\frac{1}{\sqrt{1+t^2}}$
18.2	a)	<i>k</i> = -7			c)	
	b)	$\tan\theta = -\frac{24}{7}$				$\sqrt{1+t^2}$
		/			d)	t
	C)	$-\frac{24}{25}$			e)	$-\frac{1}{t\sqrt{1+t^2}}$
	d)	$-\frac{527}{625}$		18.10		
18.3					a)	$\sqrt{1+p^2}$
	18.3.1a	t = -15			b)	p
	18.3.2a	$\frac{-8}{17}$			c)	p
	10.0.01	17			d)	-p
	18.3.26	$-\frac{32}{17}$			e)	$-\frac{p}{\sqrt{1-p^2}}$
18.4	_73					N ¹ P
	60			LESS	ON 19: T	RIGONOMETRY
18.5	$\frac{7}{6}$					
18.6	a	2 /24		19.1	a)	
10.0	u la	$\frac{3\sqrt{34}}{34}$			D)	U
	b	8			c)	0
		17			d)	-1
18.7					e)	$-\tan\theta$
L	<u> </u>			19.2		

	D own	loaded from Stanmore	physics. con
		4	
	b)	1	
		$\overline{2}$	
	c)	3	
19.3		l I	
	a)	1	
	b)	3	
		$-\frac{1}{2}$	
	c)		
		2	
	d)	1	
	e)	2	
		3	
	f)	1	
		4	
	g)	4	
	h)	$-\sqrt{2}$	
19.4	a)	Proof	
	b)	Proof	
	c)	Proof	
	d)	Proof	
	e)	6	
19.5	a)	Proof	
	b)	Proof	
	c)	Proof	
	d)	Proof	
	d)	Proof	
	e)	Proof	
	f)	Proof	
	g)	Proof	

LESS	ownicadoxiomomyStanmorep	hy <mark>sics. c</mark> o	OM Homework	
Classwork			Question 1	
1	$24,83^{\circ}+360^{\circ}k$ or	1.1	$1 \le y \le 2$	
	$155,17^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$	1.2	360°	
	24,83°;155,17°	1.3		
2	$55,43^{\circ}+180^{\circ}k; k \in \mathbb{Z}$			
3	$84,83^\circ + 360^\circ k \text{ or } 124^\circ + 360^\circ k; k \in \mathbb{Z}$		1 B(x)	
	84°;236°			
4	$16,48^{\circ}+180^{\circ}k$ or			
	$16,48^{\circ}+180^{\circ}k; k \in \mathbb{Z}$		-2 ¹ /	
	24,83°;155,17°			
	Homework			
1	$\pm 72,54^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$			
2	-48°;192°			
3	$-82,62^{\circ}+360^{\circ}k; k \in \mathbb{Z}$	2.2.1	2	
4	$\pm 20^{\circ} + 180^{\circ}k; k \in \mathbb{Z}$	2.2.2	$-2 \le y \le 2$	
	-160°· -20°· 20°· 160°· 200°· 340°	2.3.1	2	
INTER	PRETATION OF TRIC CRAPHS	2.3.2	$x = 90^{\circ}$	
DEVIS	ION WORK			
		LESSO	N 21:	
	0		Classwork	
1 1	Question 1	1	4,33°+120°k or $-63°+360°k; k \in \mathbb{Z}$	
1.1	$a = -2; b = 2; p = 1; r = 45^{\circ}$	2	$35^\circ + 90^\circ k \text{ or } -120^\circ + 360^\circ k; k \in \mathbb{Z}$	
1.2	-75°;105°		35°:125°:215°:240°	
1.3	180°	3	$360^{\circ}k \text{ or } 180^{\circ} \pm 360^{\circ}k \text{ or }$	
1.4	$h(x) = \sin \frac{1}{2}x$		$\pm 60^{\circ} \pm 360^{\circ} l \cdot l = 7$	
			$100 + 300 k, k \in \mathbb{Z}$	
0.1	Question 2	4	$30^\circ + 360^\circ k$ or $150^\circ + 360^\circ k; k \in \mathbb{Z}$	
2.1	a = 2; b = 4		30°	
2.2	-2		Homework	
2.3	180°	1	$40^{\circ} + 120^{\circ}k \text{ or } -120^{\circ} - 360^{\circ}k; k \in \mathbb{Z}$	
2.4.1	$45^{\circ}\langle x\langle 90^{\circ} \text{ or } 135^{\circ}\langle x\langle 270^{\circ} \rangle$		-80°;40°;160°	
2.4.2	$90^{\circ}\langle x \leq 180^{\circ}$	2	$\pm 131,81^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$	

3 Do	wnjoadedi,t≣rom Stanmorephysics.com
	75°;255°
4	$\pm 90^{\circ} + 360^{\circ}k$ or $30^{\circ} + 360^{\circ}k$ or
Į	$150^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$
LESSON	22:
<u>la</u>	Classwork
22.1	$45^{\circ} + 180^{\circ}k; k \in \mathbb{Z}$
22.2	$\pm 90^{\circ} + 360^{\circ}k \text{ or } 270^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$
	Homework
22.2a	$\pm 90^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$
22.2b	$\pm 90^{\circ} + 360^{\circ}k$ or $270^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$
LESSON	23:
	Classwork: Investigation
	Teacher gives feedback and own answers.
LESSON	24:
	Classwork: Investigation
	Teacher gives feedback and own answers.

Downloaded from Stanmorephysics.com

Page 113 of 114

Downloaded from Stanmorephysics.com

