

CURRICULUM GRADE 10 -12 DIRECTORATE

NCS (CAPS) SUPPORT

LAST PUSH LEARNER REVISION DOCUMENT

MATHEMATICS: PAPER 1&2

GRADE 12

2024

Mathematics KZN-GRADE 12 Downloaded from Stanmorephysics.com

5	20	TOPIC	PAGE
<pre>Het</pre>	Ц		NUMBER
Ш	n/		
	7	ALGEBRA, EQUATIONS AND INEQUALITIES	3-6
	2.	SEQUENCES AND SERIES	7 – 12
	3.	FUNCTIONS AND INVERSES	13 – 24
<u></u>	4.	FINANCE, GROWTH AND DECAY	25 - 30
	5.	CALCULUS	31 - 38
	6.	PROBABILITY	38-44
	7.	DATA HANDLING	45 – 54
	8.	ANALYTICAL GEOMETRY	54 - 65
	9.	TRIGONOMETRY	66 – 76
	10.	EUCLUDEAN GEOMETRY	77 – 88
	11.	ANSWERS	89 - 100

TABLE OF CONTENTS

Mathema	ıti	cs
	D	0

1.

natics KZN-GRADE 12 Downloaded, from, Stanmorephysics, com

TOPIC	I. Algebra, Equations and Inequalities: [:	± 25]								
	GUIDELINES, SUMMARY NOTES, & STRATEGIES									
CONCEPT	HOW TO LEARN IT	RELEVANT FORMULAE AND KEYWORDSE								
Surd equations	Isolate the surd and square both sides. Remember to check solutions of a surd equation.									
Simultaneous equations	Solve equations with two unknowns, one of which is linear and the other quadratic, algebraically.	Involves making y or x subject of the formula in the linear equation								
		and then substituting into the other equation.								
Quadratic formula	completing the square and using quadratic formula)	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$								
Solve exponential equations	Apply the laws of exponents to expressions involving rational exponents									
Inequalities	Remove brackets, standard form, factorise, critical values, method and solve									
Nature of roots	The nature of roots and the conditions for which the roots are real, non-real, equal, unequal, rational and irrational.	$\Delta = b^{2} - 4ac$ $\Delta < 0 \text{ non-real/imaginary}$ $\Delta \ge 0 \text{ real}$ $\Delta = 0 \text{ real and equal (1 root)}$ $\Delta > 0 \text{ real and unequal (2 roots)}$ $\Delta > 0 \text{ and a perfect square}$ eg $\Delta = 16$ $\Delta > 0 \text{ and not a perfect square}$ eg $\Delta = 20$								

ACTIVITIES

Solve	for <i>x</i>		
1.1	-5x(1-4x) = 0	(2)	L1
1.2	(1-3x)(x+4) = 0	(2)	L1
1.3	(x+3)(x-1) = -x+1	(2)	L1
1.4	$2x^2 - 5x + 3 = 0$	(3)	L1
15	$r = \frac{5}{1}$		
1.0	$x = \frac{1}{3x-2}$	(4)	L2
1.6	$10x = 3x^2 - 8$	(3)	L1
1.7	2x + p = p(x+2) (stating any restriction)	(4)	L2
1.8	$3x^2 = 4x$	(3)	L1
1.9	$x^{\frac{1}{2}} - 3x^{\frac{1}{4}} - 10 = 0$	(4)	L2
1.10	x(x-1) = 2(x-1)	(3)	L2
1.11	$x = \frac{a^2 + a - 2}{a - 1}$ if $a = 888\ 888\ 888\ 888$	(2)	L2

Mat	hematics	KZN-GRADE 12 Spring	Revisio	n 2024
	1.12	$x^{-1} - x^{-2} = 20$	(4)	L2
	1.13	$x^x = 2^{2048}$	(4)	L3
		MIXED PROBLEMS		
	1.14	Solve for x if: $x = \sqrt{12 + \sqrt{12 + \sqrt{12 +}}}$ (NW SEPT 2019)	(4)	L.4
	1.15	If $(x-3)(y+4) = 0$ determine x if:	(+)	LT
	Ë	a) $y = 4$ (NW SEPT 2021)	(1)	L1
	ų L	<i>b</i>) $y = -4$	(1) (1)	L1
	1.16	Given $k + 5 = \frac{14}{k}$		
		a) Solve for k	(3)	L2
		b) Hence or otherwise, solve for x if $\sqrt{x+5} + 5 = \frac{14}{\sqrt{x+5}}$	(3)	L2 L2
	1 17	If $r = 6 - 0$ is one of the solutions of the equation $r = \frac{40}{16} - 16$ determine	(-)	
	1.1/	If $x - 0 = 0$ is one of the solutions of the equation $x + \frac{-10}{x}$, determine		
		ONE value of y for which $2y+3+\frac{40}{2y+3}=16$.	(3)	L2
	1.18	Calculate the maximum value of S if $S = \frac{6}{r^2 + 2}$	(2)	L2
	1.19	Consider the equation: $x^2 + 5xy + 6y^2 = 0$	(-)	
		a) calculate the values of the ratio $\frac{x}{y}$. (ANSWER SERIES, A3,5)	(5)	L3
		b) Hence, calculate the values of x and y if $x + y = 8$	(2)	L3
	1 20	Given: $(3x - y)^2 + (x - 5)^2 = 0$		
	1.20	Solve for x and y	(A)	T 2
	1 21	Consider: $5r^2 - kr + 16 - (r + 2)Q(r) + 10$ where k is a	(4)	LJ
	1.21	constant and $Q(x)$ is a polynomial in terms of x Calculate k (NW SEPT 2020)	(A)	13
	1.22	Prove that $r^2 + 2rv + 2v^2$ cannot be negative for $r, v \in R$	(4)	
			(4)	L4
2	Solve	for x (leave your answer to TWO decimal places not unless otherwise stated)		
	2.1	x(3x-5) = 7	(4)	L2
	2.2	$x^2 - 2x = 5$ (correct to THREE decimal places)	(4)	L1
	2.3	$3x^3 + x^2 - x = 0$	(5)	L2
	2.4	$-4x^2 + 3x + 6 = 0$ (answer correct to TWO decimal place)	(3)	L1
	2.5	$2x^2 - 1 = -7x$ (correct to ONE decimal place)	(4)	L2
3		Inequalities		
	Solve t	for x		
	3.1	$x^2 - 4 \ge 5$	(3)	L2
	3.2	(x+1)(x-3) > 12	(4)	L2
	3.3 2.4	$x^2 - 2x \le 15$	(4)	L2
	5.4	(x-1)(x-4) > x+11	(5)	L2

Math	nematics	KZN-GRADE 12 Sp wnloaded from Stanmorephysics.com	ring Revisi	on 2024
	3.5	$\frac{1}{(x-1)(x-5)} < 0$	(4)	L3
	3.6	$(2-x)(1-x)^2 \le 0$	(3)	L3
	3.7	Given: $x^2 - x - 20 < 0$		
		a) Solve for x if $x^2 - x - 20 < 0$.		
	Ī	b) Hence, or otherwise, determine the sum of all the integers satisfying the	(3)	L2
	h	inequality $x^2 - x - 20 < 0$.	(2)	L2
	3.8	Solve for x if $x^2 - 4x \le 21$	(4)	L3
4		SURDS AND EXPONENTS		
	4 1	Solve for x		T 1
	4.1 4.2	$12^{-12} = 1$	(4)	LI
	т.2	$\sqrt[3]{32} = 128$	(3)	L2
	4.3	$3^{x+1} - 4 + \frac{1}{2^x} = 0$	(4)	1.2
	44	$12^{2x} - 8.36^{x}$	(4) (4)	L2 I 3
	4.5	$2\sqrt{2-7r} = \sqrt{-36r}$	(4)	1.2
	4.6	$\sqrt{2-x} - x = -2$	(3)	12
	4.7	$\sqrt{2}$ $x - \frac{1}{2}$ $26 - 5^{2x} - (5^{x} - 6)^{2}$	(4)	L2 L 2
	4.8	Show that the equation $2^{2x+1} + 7 2^x - 4 = 0$ has only ONE solution	(4)	
	4.0	Sinow that the equation 2 17.2 4 = 6 has only ONE solution. SIMPLIFICATION	(4)	LZ
		x^2 is $\sqrt{2}$		
	4.9	Simplify the following, $\frac{1}{1+x}$ if $x = 1 + \sqrt{3}$	(4)	L2
	4.10	If $\frac{1}{\sqrt{m} + \sqrt{m+1}} = \sqrt{m+1} - \sqrt{m}$, determine, without the use of a calculator, the		
		exact value of: $\frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \dots + \frac{1}{\sqrt{1680} + \sqrt{1681}}$	(3)	L3
	4.11	Consider the product: $1 \times 2 \times 3 \times 4 \times \dots \times 30$		
		Determine the largest value of k such that 2^k is a factor of this product.	(4)	L4
	4.12	If $3^{9x} = 64$ and $5^{\sqrt{p}} = 64$, calculate, WITHOUT the use of a calculator,		
		the value of: $\frac{(3^{x-1})^3}{(1-1)^3}$	2018)	
	4.13	If <i>n</i> is the largest integer for which $n^{200} < 5^{300}$ determine the value	(4)	L4
		of n .	0) (3)	L4
		Simplify the following WITHOUT the use of a calculator. Show all working	igs.	
	4.14	$2^{x+3}-2^{x+1}$		
		$\sqrt{2.2^x}$ +1	(4)	L2
	4.15	$15^{x}.3^{x}$		
		$\sqrt{9^{x+1}.5^{x-2}}$	(4)	L2
	4.16	$\sqrt{m^{2022}-m^{2020}}$		
		$\sqrt{25m^{2024}-25m^{2022}}$	(4)	L4

Mat	hematics	KZN-GRADE 12 Stanmorenbysics com	Spring	Revisio	n 2024
	4. µ	$n \frac{10 + 2}{2\pi}$ where $n \neq 0$			
		$\sqrt{5^{2n}+4.(5^n)}$		(4)	L3
	4.18	$\frac{8^{n-3}.10^{n+2}}{1.10^{n+2}}$			
5	1	$8^{n-1}.5^{n-1}$		(4)	L2
3	5 1	EXAMPLE 1 Without solving the equation show that $r^2 + 5mr + 6m^2 - 1 = 0$ has real			
	3.1	without solving the equation, show that $x + 5mx + 6m^2 - 1 = 0$ has real, unequal roots for all values of m		(4)	тэ
	5 2	Given $2mr^2 - 3r = 8$ where $m \neq 0$		(4)	LJ
	5.2	Determine the value(s) of m for which the roots of the equation are non-real.		(4)	тэ
	5 2	Determine the value(s) of <i>m</i> for which the roots of the equation are non-real. Given that $f(x) = x^2$, $nx + 8 + 2n$ has two equal root and $n < 0$ determine		(4)	LJ
	3.3	Given that $f(x) = x^2 - px + 8 + 2p$ has two equal root and $p < 0$, determine the coordinates of the turning point $h(x) = f(x) - 3$		(5)	1.2
	5 4	the coordinates of the turning point, $n(x) = f(x) = 3$.		(5)	LJ
	5.4	Given: $(x+5) = 1-p^2$			
		Calculate the values of p for which the roots of the equation are non-real.		(5)	L3
	5.5	The roots of a quadratic equation are given by $x = \frac{-5 \pm \sqrt{20 + 8k}}{6}$,			
		where $k \in \{-3; -2; -1; 0; 1; 2; 3\}$			
		a) Write down TWO values of k for which the roots will be rational.		(2)	L1
		b) Write down ONE value of k for which the roots will be non-real.		(1)	L1
	5.6	What value(s) should k represent so that the nature of the roots of the			
		following two equations will be the same?			
		$x^{2} - x + 3 = 0$ and $kx^{2} + kx + 4 = 0$		(4)	L3
6		SIMULTANEOUS EQUATIONS			
	6.1	If $f(2) = 0$ and $f(-6) = 0$, determine an equation for $f(x)$ in the form			
		$f(x) = x^2 + bx + c$		(3)	L2
	(\mathbf{a})	Solve for the UNKNOWN in the following simultaneous equations:			
	6.2	$y + 7 = 2x$ and $x^2 - xy + 3y^2 = 15$		(6)	L2
	6.3	$-2y + x = -1$ and $x^2 - 7 - y^2 = -y$		(6)	L2
	6.4	xy = 9 and x - 2y - 3 = 0		(6)	L2
	6.5	$y = -2x + 7$ and $\frac{y+5}{x-1} = \frac{1}{2}$		(6)	L2
	6.6	$\frac{1}{x} + \frac{1}{y} = 3$ and $x - y = \frac{1}{2}$		(6)	L2
	6.7	6r + 5rp - 5p = 8 and $r + p = 2$		(6)	L2
•	6.8	$2^{y-3x} = \frac{1}{16}$ and $x^2 + xy = 24$			
	60	$\frac{16}{2^{x}} = 0^{y+2} = 0 \text{ and } x^{2} + x^{2} + 2 \text{ and } x^{2} = 26$		(7)	L2
	0.9	$3 - 9^{\circ} = 0$ and $x^{-} + y^{-} + 2xy + y^{-} = 36$		(7)	L2

KZN-GRADE 12

arithmeti	ic sequence have the same		-	,		MPUMALANGA JUNE 202	4		
first term	l.								
The com	mon ratio of the gemoetric $\frac{1}{1}$				1.5	Write the following series in sigma notation			
sequence	$\frac{15}{3}$					-			
The com arithmat	mon difference of the					$\frac{1}{3} + \frac{4}{9} + \frac{7}{27} + \frac{10}{81} + \dots + \frac{22}{6561}$	(4)		
sequence	e is 3				1.6	Consider the geometric series:			
The sum	of 22 terms of the					$(2x-4)+(4x^2-16)+$			
arithmet	C								
sequance	e_{1s} /34 more than the sum					For which value(s) will the series converge?	(A)		
Calculate	the value of the first term.	.е. (5) I	.4		series converge?	(4)		
					тісе				
Given a d	KZN J	UNE .	2024 1	2 3 2 2	Give	A PAPER			
_120·_0	$0 \cdot -80 \cdot -63 \cdot$			2.5	231		(1)		
-120,-9	9,-80,-03,	(A)	12		2.3.1	Determine the n^{m} term.	(1)		
2.1.1	Determine the <i>n</i> ⁻ term.	(ד)	177		2.3.2	18 terms.	(2)		
2.1.3	Which value must be added	to							
	T_n for the sequence to			2.4	The	first and the second terms of a			
	have								
	only one value of n for whi	ch			geometric first term of 2 and $r = \frac{1}{\sqrt{2}}$				
	$T_n = 0$	(4)	L3		Calc	culate the sum to infinity divide			
Given a f	nite arithmetic series:				by tł	ne sum of two terms	(3)		
9+14+1	9++124.								
2.2.1	Determine the general	(2)	Τ1						
2.2.2	Write the series in sigma	(2)	LI						
	notation.	(3) V7	L2	DCH	2024				
Consider	the arithmatic sequence.	KZ	IN IVLA	ксн	2024	0			
8;15;22;									
3.1.1	Determine the 36^{th} term	(2)	L1		1				
3.1.2	Calculate the sum of the						7		
	first 36 terms.	(2)	L1		L	81cm V V			
3.1.3	If it is given that								
	$T_{72} + T_{72-m} = 786 ,$								
	determine the value of m .	(4)	L3		3.2.1	If his first jump is 81 <i>cm</i>			
						long, calculate the length of	(1)		
The diagr	am alongside represents a from	g mak	ing a		322	2 Determine the length of his	(1)		
series of j	umps. With every next jump,	he has	5 5		3.2.1	ninth jump.	(2)		
only enou	gh energy left to jump $\frac{2}{3}$ the	distan	ce		3.2.3	3 If the frog continues to jump in this way, will he be able to			
of his prev	vious jump					catch a trapped insect that is 230 <i>cm</i> away from his tarting position? Show all your			

2.1.1 2.1.3 2.2 Given 9 + 142.2.1 2.2.2 3.1 Consid 8;15;2

2.1

- 3.1.1 3.1.2 3.1.3
- 3.2 The dia series c only en of his p

L2

(3)

R

L1

L1

Mathematics KZN-GRADE 12 RownleadedntramnStanmorephysics.com 1.4

	$\frac{3}{9} + \frac{9}{27} + \frac{1}{81} + \dots + \frac{1}{6561}$ 1.6 Consider the geometric series: $(2r - 4) + (4r^2 - 16) +$	(4)	L3
e. (5) L4	For which value(s) will the series converge?	(4)	L3
J NE 2024 PRAC 2.3	TICE PAPER Given: 5;10;20; a geometric		
	2.3.1 Determine the n^{th} term.	(1)	L1
(4) L2	2.3.2 Calculate the sum of the first 18 terms.	(2)	L1
0 2.4	The first and the second terms of a		

calculations.

L1

Mathe	matics	KZ	ZN-GR	ADE	12	Spring Re	vision	2024
3.3	combination of a quadratic sequer	nce	epi	3 2	Calcul	ate: $\sum_{k=1}^{9} 2(-3)^{k}$	(4)	L2
	and an arithmetic sequence:					k=3	(1)	
				35	T	KZN JUNE 2023 $2w^2 + 40w + 102$ is the general		
	LOOL			5.5	$I_n = -$	-2n + 40n + 103 is the general		
	$16 \cdot 32 \cdot 0 \cdot 28 \cdot -12 \cdot 24 \cdot -20 \cdot 20 \cdot$				351	Ta quadratic sequence. Determine T the first term		
	10,52,0,20, 12,24, 20,20,				5.5.1	of		
	3.3.1 Determine the general term	n of				the quadratic sequence.	(2)	L1
	the quadratic sequence.	(4)	L2		3.5.2	Determine the second		
		2				difference		
	3.3.2 Determine the general term	n of (2)	12		353	of this quadratic sequence. Which term of the quadratic	(2)	Ll
	3.3.3 The given number patterns	(2)			5.5.5	sequence has a value of 301?	(2)	L2
	has two consecutive terms						(-)	
	that are equal in value.				3.5.4	Which term is the largest		
	Determine the positions of	,				term in this quadratic	(2)	т э
	the two terms	(4)	L3			sequence?	(2)	LZ
		K	ZN JU	INE 2	023			
4.1	The following sequence is a comb	ination of			4.1.2	Determine $T_{20} - T_{21}$	(5)	L3
	arithmetic and geometric sequence	e:		4.2	The fir	st two terms of an infinite geome	tric	
	3;3;9;6;15;12;					C C		
	4.1.1 Write down the next TV	VO (2)	L1			8		
					sequen	ice are 8 and $\frac{1}{\sqrt{2}}$		
	4.2.1 Prove, without the use of	of a			4.4.1	If he follows the new eating		
	calculator, that the sum	of				plan, how many kilograms		
	the series to infinity is $1 < -2$	(4)	13			will be lose on the eighth		
12	$16+8\sqrt{2}$	(+) vidad inta N	1.5			agreet to 2 desired places	(2)	Т 1
4.3	Sectors in such a way that the ang	les are in	5		442	If he follows the new eating	(2)	LI
	Arithmetic sequence. If the smalle	est angle is	8°			plan indefinetely, write		
	And the largest angle is 52° , calc	sulate n , the	e			weight loss in sigma		
	Number of sectors.					notation.	(2)	L2
					4.4.3	If he follows the new eating		
						his new weight eventually		
	8°					be?	(3)	L3
						WBHS/SEPT 2017		
				5.1	The p	th term of the first difference		
		(4)	L3		of a qu	adratic sequence is given by		
4.4	George is currently 115 kilograms	s and his			$T_p = 3$	p-2		
	doctor has advised him to take up	a healthy			5.1.1	Determine between which		
	eating plan so as lose some of the	Weight in				two consecutive terms of the quadratic sequence the first		
	diet will enable him to lose 5 kilos	gram in				difference is equal to 1450	(4)	L3
	the	-					、 <i>)</i>	-
	First week, thereafter he would los	se $\frac{3}{-}$			5.1.2	If $T_{40} = 2290$ and $T_n = an^2 + an^2 +$	bn+c	
		4				n^{th} term of the quadratic seque	nce	
	of the previous week's weight loss	s each week	ζ.			Calculate the value of c.	(4)	L3

of the previous week's weight loss each week.

9

Mathe	matics	oodod from Sta	KZ	N-GR	ADE	12	Spring Re	evision	2024
6.1	Consider th	ne geometric series:		BE <mark>1</mark> 94	AYS	6.5	Calculate the value of the first	term	
	4+2+1+	$\frac{1}{2}$ +					of the new arithmetic sequence KZN SEP 2023	(4)	L3
	6.1.1 I	Does this series			7.1	The va	lues below are the consecutive te	erms of	•
		onverge? Justify your	(2)	L1		a quad	ratic sequence the 4^{th} term is 49		
	6.1.2 (Calculate S_{∞}	(2)	L1		-;-;-	;49;77;111;151;		
6.2	Given: $\sum_{p=k}^{10}$	$3^{p-1} = 29520$. Calculate				7.1.1	Determine the third term of the quadratic sequence.	(1)	L1
	the value o	f k	(5)	L3		7.1.2	Determine the general term,		
6.3	Consider th pattern:	ne quadratic number					T_n of the quadratic		
	3;7;12;						sequence.	(4)	L2
	6.3.1 S	Show that the general erm of this number is $1 - \frac{1}{2} - \frac{5}{2}$				7.1.3	Between which two consecutive terms of the quadratic sequence is the first		
	g	given by $T_n = -n^2 + -n^2$					difference 418?	(3)	L2
	6.3.2 V	What must be added to T_{n-1} so that $T_n = 13527$?	(3)	L2	7.2	The fin	The formula of a geometric formula $x + 1$.		
6.4	Given an a	rithmetic sequence with	$T_1 = 8$			7.2.1	Write down the common		
	And $T_2 = 1$	1					ratio.	(1)	L1
	Calculate t	he value of <i>n</i> if $T_n = 41$.	(3)	L2		7.2.2	Write down the third term.	(2)	L2
6.5	A new arith term positi arithmetic	hmetic sequence P is forme on and the term value of the sequence. For the new sequence	ed using e given ience,	the		7.2.3	If $x = 2$, will the sequence converge? Motivate your answer.	(2)	L2
							DBE/MAY-JUNE 2023		
7.3	The given	sequence below has four			8.1	Given	the first three terms of		
	terms only	$V_{\rm r}$, such that the first three				an arit	hmetic sequence: $\frac{27}{12}$		
	terms, I_1 ; I	I_2 and I_3 form an				x + 3	$x_{1}, y_{1}, y_{2}, x_{1}, $		
	$T_2; T_2$ and	T_{4} form a geometric				8.1.1	Determine the value of x	(3)	L1
	sequence:	6; <i>a</i> ; <i>b</i> ;16				8.1.2	Determine the general $T_{\rm of}$ of		
	Calculate t	he values of a and b .	(5)	L3			the sequence.	(3)	L2
		KZN SEPT 2023					LIMPOPO PRE-MIDYEAR	2024	
9.1	Consider th 3; 7; 1 1;;	ne arithmetic sequence: 399.			9.3	Given 36 ; -1	a geometric sequence: 8 ; 9 ;		
	9.1.1 D	etermine the twentieth	(2)	т 1		9.3.1	Determine the value of r ,	(1)	Т 1
	9.1.2 H	ow many terms are in	(2)	LI		9.3.2	the common ratio.	(1)	LI
		5					Calculate <i>n</i> if $T_n = \frac{1}{4096}$	(3)	L2
	th	is sequence?	(2)	L1		9.3.3	Calculate S_{∞}	(2)	L1
9.2	The first te <i>a</i>	rm of an arithmetic sequen	ce is			9.3.4	Calculate the value of		
	and the thi	rteenth term $a + 24$					$\frac{T_1 + T_3 + T_5 + T_7 + \ldots + T_{499}}{T_2 + T_1 + T_2 + T_3 + T_4 + T_4}$	(4)	L3
	9.2.1 D	etermine the common			9.4	The fi	2^{-4} st three terms of an arithmetic		

10

Mathe	ematics	mlandad from Cta	KZ	ZN-GR	ADE	12	Spring R	evision	2024
	9.2.2	Hence determine the sum of the first 200 terms in terms of a .	(2,9)	L2	iysi	9.4.1 9.4.2	Show that $p = 11$. Calculate the smallest value of n for which	(2)	L1
	Ţ		(-)				$T_n < -55$.	(3)	L3
	Ī		GAU	TENG	JUN	E 2024	11		
10	Given 85 ;82 10.1 10.2	the arithmetic sequence ;79 ;76 ; Determine a simplified expression for T_n . Which term would be the	(3)	L1	14	The figure for the form a	gure below shows a pattern of 5 s, touching externally, whose s lie on a straight line of length s. The radii of these circles a geometric pattern, where the		
11	A quad term T_n	first negative number in the sequence? dratic sequence, with general , has the following properties:	(3)	L3		radius and th	of the smallest circle is 3 units at of the fifth (largest) circle is 4	8 units.	
12	$T_{11} = 19$ $T_n - T_n$ Determine quadratii	90 $_{-1} = 4n - 2; n \ge 2$ ine the first term of the ic sequence. of the first 50 terms of an	(5)	L3) C			
12	arithmet Calcula	tic sequence is 1 275. ate the sum of T_{25} and T_{26}	(3)	L3		14.1	Determine the common ratio of the geometric pattern		
13.1	For wh	hich values of x will					formed by the radii of the		
	$\sum_{k=1}^{\infty} (4x)$	$(c-1)^k$ exist?	(4)	L2			circles.	(3)	L2
13.2	Given -5 ; 1	the quadratic sequence: 2;27;				14.2 14.3	Determine the value of <i>L</i> . The pattern is extended by 5 n	(3) nore	L3
	Calcul	ate the value of:					circles to circles. Calculate, in the total area of the 10 circles	terms o of	of π ,
	$\sum_{n=3}^{10} T_n -$	$-\sum_{n=11}^{17}T_n$	(3)	L2			the new pattern.	(4)	L3
DOF		009							
15	Tebogo asked 1	o and Matthew's teacher has that they use their own rule to			17	Given 17.1	$\sum_{t=0}^{99} (3t-1)$ Write down the first THREE		
	constru starting they	act a sequence of numbers, g with 5. The sequences that				17.2	terms of the series. Calculate the sum of the	(1)	L1
	have co Matthe 5;9;13	onstructed are given below. ew's sequence: 3;17;21;			18	The fo	series. Ilowing sequence of ers forms a quadratic	(4)	L2
	Tebog 5;125;	o's sequence: ;3 125;78 125;1 953 125;				sequer $-3; -2$	nce: 2;-3;-6;-11		
	15.1	Write down the n^{th} term (or the rule in terms of <i>n</i>) of:				18.1	The first differences of the above sequence also form		
16	(a) (b) Nomsa	Matthew's sequence: Tebogo's sequence a generates a sequence which is	(3) (2)	L1 L1			a sequence. Determine an expression for the general term of the first		
									11

Mather	natics	KZ	N-GR	RADE	12	Spring	g Revision	2024
PLAT	first term is 1. She claims that there is only one such sequence. Is that correct? Show ALL your workings to justify your answer. TINUM CONTROL TEST BOOK	(5)	L3	DBE	18.2 C /FEB. -	Calculate the first difference between the 35th and 36th terms of the quadratic sequence. - MAR. 2011	(3) ce (2)	L2 L2
19	If the second term of an arithmetic sequence is 15 and the fifth term is 24, determine the			22	The surgiven a	m to n terms of a sequence of as $S_n = \frac{n}{2}(5n+9)$ Calculate the sum to 23	of numbers	is
	third and fourth terms of the sequence.	(5)	L2			terms of the sequence.	(2)	
20	The sum of the first 53 terms of an arithmetic series is 4 240, while the				22.2	Hence calculate the 23rd term of the sequence.		L1
	seventh term is equal to 20. Find the first term and the common			23	The fir sequen	st two terms of a geometric ce and an arithmetic sequence	(3) ce are the	LI
21	difference. If $\sum_{m=2}^{8} x \cdot 2^{1+m} = 612$	(6)	L3		same. The first sequent	The first term is 12. The sum t three terms of the geometri ce is 3 more than the sum of	i of ic the	
	 a) Find the value of x b) Hence, Write down the first 2 terms 	(6) (2)	L3 L1		first the Determ	ree terms of the arithmetic se nine TWO possible values fo	equence. or	
		N		01100	the con sequen	nmon ratio, r, of the geometr	ric (6)	L3
24	Civen the sequence:	N	SC N	OV 20	11			
24	 4; x; 32 24.1 Determine the value(s) of x if the sequence is 			26	Consid	er: 3;3;9;6;15;12;		
	(a) Arithmetic (b) Geometric	(2)	L1		26.1	Write down the next TWO	(2)	T 1
25	Prove that for any arithmetic sequence	of	LI		262	Calculate $T = T$	(2) (5)	LI L3
	which the first term is a and the constar difference is d, the sum to n terms can b	nt De		27	Prove t infinite	that ALL the terms of this esquence	(*)	
	expressed as $S_n = \frac{n}{2} [2a + (n-1)d]$	(4)	L2		will be	divisible by 3.	(2)	L2

Mathematics KZN-GRADE 12 Downloaded from Standarsphysics 1200

Straight Line	Parabola	Hyperbola	Exponential
<i>y</i> = <i>mx</i> + <i>c</i> <i>m</i> gradient and <i>c y</i> -intercept	$y = a(x+p)^2 + q$ Axis of symmetry with equation $x = -p$ Maximum or minimum value (-p;q) Turning point	$y = \frac{a}{x+p} + q$ Vertical asymptote with equation $x = -p$ Horizontal asymptote with equation $y = q$	$y = a.b^{x+p} + q$ $b > 0$ and $b \neq 1$ Horizontal asymptote with equation $y = q$
m < 0 graph is decreasing m > 0 graph is increasing	a < 0 graph faces downwards(concave down) and has a minimum turning point a > 0 graph faces upwards (concave up) and has a maximum turning point	$a < 0 \dots$ graph is on the second and the fourth quadrant $a > 0 \dots$ graph is on the first and the third quadrant	a < 0 graph is below the asymptote a > 0 graph is above the asymptote
Domain: $x \in R$	Domain: $x \in R$	Domain: $x \in R$, $x \neq -p$	Domain: $x \in R$
Range: $y \in R$	Range: $y > q$ if $a > 0$ y < q if $a < 0$	Range: $y \in R$, $y \neq q$	Range: $y > q$ if $a > 0$ y < q if $a < 0$
$y - y_1 = m(x - x_1)$	$y = ax^{2} + bx + c$ Axis of symmetry: $x = \frac{-b}{2a}$ $y = a(x - x_{1})(x - x_{2})$ $x_{1} \text{ and } x_{2} \text{ are x-intercepts}$	Axis of symmetry/lines of symmetry: $\begin{cases} y = x + c \\ y = -x + c \end{cases}$ substitute point of intersection of asymptotes OR $\begin{cases} y = (x - p) + q \\ y = -(x - p) + q \end{cases}$	

INVERSE FUNCTION					
Straight line	Parabola	Exponential			
y = mx + c	$y = ax^2$	$y = b^x$			
Inverse is a function	Inverse is not a function	Inverse is a function			
x = my + c	$x = ay^2$	$x = b^{y}$			
$y = \frac{x}{m} - \frac{c}{m}$	$y = \pm \sqrt{\frac{x}{a}}$	$y = \log_b x$			
	Restrict domain of $y = ax^2$ so that				
	the inverse is a function				
	Restrictions: $\begin{cases} x \ge 0 \\ x \le 0 \end{cases}$				
Domain: $x \in R$	Domain: $x \ge 0$ or $x \le 0$	Domain: $x > 0$			
Range: $y \in R$	Range: $y > 0$ if $a > 0$	Range: $y \in R$			
	y < 0 if $a < 0$				

Mathematics KZN-GRADE 12 **Downloaded from Starwaycopyreices som**

QUESTION 1

GP/JUNE 24

If given f(x).g(x) < 0 for all values of x when -6 < x < -3 or x > 2, determine the value of a in terms of m (show all workings). (5) L4

Mathematics KZN-GRADE 12 QUEST Rownloaded from Stanmorephysics.com

Spring Revision 2024 **GP/JUNE 24**

The sketch below shows the graphs of $g(x) = 2^x + q$ and $f(x) = \log_1 x$.

2.1	write down the coordinates of A, the x-intercept of <i>J</i> .	(1)	LI
2.2	Determine the domain of <i>f</i> .	(1)	L1
2.3	Determine the equation of f^{-1} in the form of $y =$	(2)	L2
2.4	Sketch the graph of f^{-1} . Indicate on your graph the intercept(s) with the axis and the coordinates of one other point on the graph.	(3)	L2
2.5	Determine the equation of the asymptotes of g.	(1)	L2
2.6	Describe in words the transformation of g to f^{-1} .	(2)	L3

QUESTION 3

LIMPOPO/ SEPT 23

[10]

3.1 The graph of $f(x) = \frac{a}{x+p} + q$ is sketched below. The asymptotes of f intersect at (1; -3). The y-intercept of f is (0; -5).

3.1.1 Determine the values of p and q.

(2) L1

Mathe	matics KZN-GRADE 12 3 Downloaded villion, Stanmorephysics.com	Spring Re	vision (3)	2024 L1
	3.1.3 If $f(x) = \frac{2}{x-1} - 3$ is translated to g such that $g(x) = \frac{2}{x-3} + 3$, describe the		(2)	L3
	transformation from f to g .			
	3.1.4 Write down the equation of the horizontal asymptotes of g .		(1)	L1
3.2	The graph of $f(x) = \log_b x$ is sketched below. A(25; -2) is a point on f.			
	3.2.1 Write down the domain of <i>f</i> .		(1)	L1
	3.2.2 Calculate the value of <i>b</i> .		(2)	L2
	3.2.3 Determine the equation of f^{-1} in the form of $y = \dots$		(2)	L2
	3.2.4 For which values of x is $\left(\frac{1}{5}\right)^{x+3} - 5 < 20$?		(2)	L3
			[15]	
QUI	ESTION 4	EC/SEPT 22		
Give	$f(x) = -3^x + 1$			
4.1	Draw the graph of f . Clearly show all the intercepts with the axis as well as the asymptoty graph.	totes of the	(3)	L3

- 4.2 Write down the range of f.
- 4.3 Determine the equation of the asymptotes of g, given that g(x) = -f(x). (2) L2
- 4.4 If g is shifted 1 unit upwards to give a new function h, determine the equation of h^{-1} , the inverse (3) L3 of h in the form y = ...

(2)

[10]

L1

Mathematics

Atics KZN-GRADE 12 Downloaded from Stanmorephysics.com

QUESTION 5

LIMPOPO/SEPT 23

The graphs of $f(x) = ax^2 + bx + c$ and g(x) = 2x + 10 are sketched below.

- Graph of f intersects the x-axis at P(-5;0) and T(-1;0), and y-axis at W(0;5)
- The two graphs intersect at points Q and P.
- R and S are points on f and g respectively such that SR is perpendicular to the x-axis.

5.1	Show that $f(x) = x^2 + 6x + 5$.	(3)	L2
5.2	Calculate the coordinates of Q.	(4)	L3
5.3	Show that $f(x) \neq -5$ for all values of x.	(3)	L2
5.4	Consider point R when SR is at maximum in the interval $x_P < x < x_Q$. Determine:		
	5.4.1 The gradient of the tangent to f at R.	(4)	L3
	5.4.2 The equation of the tangent to f at R.	(3)	L2
5.5	Consider $x > x_p$. For which values of x is $g(x) - g^{-1}(x) > 15$?	(3)	L4
		[20]	
QUI	ESTION 6 DBE/JUNE 24(ADA	PTED)	
Give	en: $g(x) = -\frac{1}{1-x} + 2$		
6.1	Write down the equation of the asymptote of <i>g</i> .	(2)) L1
6.2	Draw a graph of g, indicating any intercepts with the axes and asymptotes.	(4)) L2
6.3	Determine the values of x where $g(x) > 0$.	(2)) L2
6.4	Determine the equation of the axis of symmetry of g which has a negative gradient.	(2)) L2
6.5	For what values of x will the graph of f increase	(2)) L2
		[12	2]

Mathematics KZN-GRADE 12 **Downloaded from Stanmorephysics.com**

Spring Revision 2024

EC/SEPT 22

In the diagram below, the graph of a hyperbolic function, $f(x) = \frac{x+k}{x+p}$, where k is a constant, is

drawn. A(1, 0) and B are the x-intercept and y-intercept of f, respectively. The vertical asymptote goes through the x-axis at 3.

7.1 Write down the value of p. (1) L1

- 7.2 Determine the value of k. (2) L1
- 7.3 Calculate the coordinates of B.(2)L2
- 7.4 Determine the values of x for which $x f(x) \le 0$. (3)

7.5 Rewrite the equation of f in the form
$$f(x) = \frac{a}{x+p} + q$$
. (2) L2

QUESTION 8

KZN PRACTICE/ JUNE 24

The line y = x+1 and y = -x-7 are the axis of symmetry of the function $f(x) = \frac{-2}{x+p} + q$.

- 8.1 Show that p = 4 and q = -3(3) L3 8.2 Calculate the *x*-intercept of *f*. (2)L2 8.3 Sketch the graph of f. Clearly label ALL intercepts with the axis and the asymptotes. (4) L3 Write down the equation of the vertical asymptotes of the graph of h if h(x) = f(x+5). 8.4 (2)L2
- 8.5 Determine the values of x for which f(x) > 0.

8.6 Determine the value(s) of x for which
$$\frac{-2}{x+4} \ge x+4$$
 (2)

8.7 Explain how would you use a graph to determine the value(s) of x for $\frac{-2}{x+4} = -x-4$ (3) L3

[18]

(2)

L2

L2

L3

[10]

Mathematics KZN-GRADE 12 Downloaded from Stanmorephysics.com QUESTION 9

DBE/JUNE 24

In the diagram, the graphs of $f(x) = \log_a x$ and g are drawn. Graph g is the reflection of f in the line y = x. Graph f passes through the point P(4; 2). Q is the x-intercept of f and R is the *y*intercept of g.

- 9.1 Write down the coordinates of P', the image of P on g. (2) L1 (2) L2
- 9.2 Show that a = 2.

QUESTION 10

- 9.3 Write down the equation of g in the form of $y = \dots$
- T is a point on f in the first quadrant where TR is parallel to the x-axis. Calculate the area of 9.4 (4) L4 $\Delta RTP'$.

[9]

(1)

L2

DBE/JUNE 24

The graph of $f(x) = x^2 - 2x - 3$ and g(x) = mx + c are drawn below. D and E are the x-intercepts and P is the y-intercept of f. The turning point of f is T(1; -4). The graph of f and g intersect at P and E.

atics KZN-GRADE 12 Downloaded from Stanmorephysics.com Mathematics **QUESTION 11**

EC/ SEPT 22

The diagram below shows the graphs of $f(x) = x^2 - 4x - 11$ and g(x) = f'(x). A and B are the xintercepts of f and C is the x-intercept of g. D is the turning point of f. f and g intersect at M(-1;t) and N(7;10)

Calculate the: 11.1

	11.1.1	Coordinates of D.	(3)	L2
	11.1.2	Distance CN.	(4)	L2
11.2	For whi	ch value(s) of x is:		
	11.2.1	f(x) < g(x)?	(2)	L2
	11.2.2	g(x) - f(x) a maximum?	(4)	L3
11.3	Determ	ne the average gradient of f between $x = 2$ and $x = 7$	(2)	L2
11.4	Determ	ne the value(s) of k for which $f(x) + k = 0$ have two roots with different signs.	(2)	L2

QUESTION 12

The graph of a hyperbola with equation y = f(x) has the following properties:

- Domain: $x \in \mathbb{R}, x \neq 5$ •
- Range: $y \in \mathbb{R}, y \neq 1$
- Passes through the point (2;0)•

Determine f(x)

(4) L3

[18]

Mathematics KZN-GRADE 12 QUES Downloaded from Stanmorephysics.com

The graphs of $f(x) = k^x$ and $g(x) = ax^2 + bx + c$ are sketched below. The graphs intersect at A and g touch the x-

axis at $\left(\frac{1}{2}; 0\right)$. The coordinate of B, on the graph of f are indicated. AC is parallel to the x-axis.

QUEST	TION 14 DBE/NOV	/ 15	
		[21]	
13.10	Write down the equation of f if the graph of f is shifted 2 units to the left.	(1)	L2
13.9	Use the graphs to determine the value of k for which $f(x) = k$ will have non-real roots.	(2)	L2
13.8	For which values of $g g'(x) \cdot f(x) \ge 0$?	(2)	L3
13.7	Determine the equation of the tangent to g at point C.	(5)	L3
13.6	Write down the range of <i>g</i> .	(1)	L1
13.5	Determine the coordinate of h if h is reflection of f about the y -axis	(2)	L2
13.4	Determine the equation of f in the form $y =$	(1)	L1
13.3	Show that $a = 4$, $b = -4$ and $c = 1$	(4)	L2
13.2	Determine the value of k.	(2)	L2
13.1	Determine the coordinate of A.	(1)	L1

The function defined as $y = \frac{a}{x+p} + q$ has the following properties:

- The domain is $x \in \mathbb{R}, x \neq -2$.
- y = x + 6 is an axis of symmetry.
- The function is increasing for all $x \in \mathbb{R}, x \neq -2$.

Draw a neat sketch graph of this function. Your sketch must include all the asymptotes. (4) L4

Mathematics KZN-GRADE 12 **Downloaded from Stanmorephysics.com** QUESTION 15

Spring Revision 2024

[10]

KZN/JUNE18

Given $h(x) = a^x$ passes through the point $A\left(-2; \frac{1}{9}\right)$.

15.1	Calculate the value of <i>a</i> .	(2)	L1
15.2	Write down the equation of h^{-1} , the inverse of <i>h</i> , in the form $y =$	(2)	L2
15.3	Writ down the coordinates of any point on the graph of the inverse of <i>h</i> .	(2)	L1
15.4	Determine the value(s) of x for which $h^{-1}(x) \le -2$	(2)	L3
15.5	Write down the equation of <i>f</i> if $f(x) = h^{-1}\left(\frac{x}{2}\right)$	(2)	L2

QUESTION 16

The graph of g is defined by the equation $g(x) = \sqrt{ax}$. The point (8;4) lies on g.

16.1	Calculate the value of <i>a</i>	(2)	L2
16.2	If $g(x) > 0$, for what values of x will g be defined	(2)	L1
16.3	Determine the range of g.	(1)	L1
16.4	Write down the equation of g^{-1} , the inverse of g, in the form $y =$	(2)	L2
16.5	If $h(x) = x - 4$ is drawn, determine ALGEBRAICALLY the point(s) of intersection of h and g.	(2)	L2
16.6	Hence, or otherwise, determine the values of x for which $g(x) > h(x)$	(2)	L3
		[11]	

QUESTION 17

Given $f(x) = 3^x$

17.1	Determine the equation for f^{-1} in the form $f^{-1}(x) =$	(1)	L1
17.2	Sketch the graphs of f and f^{-1} , showing clearly ALL intercepts with the axes.	(4)	L2
17.3	Write down the domain of f^{-1} .	(2)	L1
17.4	For which values of $x f(x) \cdot f^{-1}(x) \le 0$?	(2)	L3
17.5	Write down the range of $h(x) = 3^{-x} - 4$	(2)	L1
17.6	Write down an equation for g if g is the image of the graph of f after f has been translated two units to the right and reflected about the x-axis.	(2)	L3
		[13]	

Wathematics KZN-GRADE 12 **Downloaded from Stanmorephysics.com** QUESTION 18 **Mathematics**

DBE/MARCH 2016

х

FS/JUNE 24

Determine the range of the function $y = x + \frac{1}{x}, x \neq 0$ and x is real.

QUESTION 19

(6) L4

Sketched below is the graph of $f(x) = k^x, k > 0$. The point $\left(2; \frac{1}{9}\right)$ lies on *f*.

19.1 Determine the value of k(2) L1 19.2 Write down the range of f(1) L1 Explain the transformation of f to f^{-1} . 19.3 (1) L1 Determine the equation of f^{-1} in the form $y = \dots$ 19.4 L1 (2)19.5 Sketch the graph of f^{-1} . Indicate on your graph the coordinate of ONE point. L2 (3) Prove that $[f(x)]^2 - [f(-x)]^2 = f(2x) - f(-2x)$. 19.6 L4 (3)

QUESTION 20

20.1

FS/JUNE 24

[12]

In the sketch below the graph of $f(x) = \frac{a}{x+p} + 4$ is given. Asymptotes of f intersect at point A. The graph of f cuts the y-intercept at B(0; -2). The axis of symmetry of f, is the line h. Point C coordinates C(2; 3) is the point on h.

(2) L1

(2)

20.2 Determine the coordinates of point A L2

QUESTION 21

DBE/NOV 18 (AMENDED)

In the diagram below, the graph of $f(x) = ax^2, x \le 0$. P(-6;-12) is a point on f.

21.1	Is f^{-1} a function? Motivate your answer.	(2)	L1
21.2	If R is a reflection of P in the line $y = x$, write down the coordinates of R.	(1)	L1
21.3	Calculate the value of <i>a</i> .	(2)	L1
21.4	Write down the equation of f^{-1} in the form of $\mathcal{Y} = \dots$	(3)	L2
21.5	Sketch the graph of f^{-1} , showing one other point on your graph.	(2)	L2
21.6	Determine the value(s) of x for which $\frac{f^{-1}(x)}{f(x)} \le 1$	(5)	L3
		[15]	
QUES	STION 22		
The ec maxin	quation of parabola is given by $f(x) = ax^2 + bx + c$. The roots of f are $(m-5)$ and $(m+3)$ The num value of f occurs at $x = 2$.		
22.1	Determine the value of <i>m</i> .	(2)	L2
22.2	Determine the equation of f in the form $f(x) = ax^2 + bx + c$ if it is also given that $f(1) = 15$.	(4)	L2
22.3	Determine the range of g if $g(x) = f(x) - 4$.	(3)	L3
		[09]	

Mathematics KZN-	JRADE 12	Sprin	ig Revision 2024
Downloaded from StanmoreTOPICFINANCIAL MATHEMATIC	S (15±3)		
GUIDELINES, SUMMAR	RY NOTES, & STRAT	EGIES	
SIMPLE INTEREST AND COMPOUND INTERES	T		
$(\mathbf{A} > \mathbf{P})$	COMPOUNDING	INTEREST	Period
 On the Simple interest, the interest is calculated on the 	ne PERIOD	(<i>i</i>)	(<i>n</i>)
original amount invested or borrowed.	Monthly	i	$n \times 12$
A = P(1 + in)	v	$\overline{12}$	
• On the Compound interest , the interest is calculated of	on	12	
the accumulated amount.	Quarterly	<u>i</u>	$n \times 4$
$A = P(1+i)^n$		4	
DEPRECIATION (A < P)	Half yearly/Semi-	i	$n \times 2$
• For depreciation we use :	annually	$\frac{1}{2}$	
A = P(1-in) Straight line depreciation		2	
$A = P(1-i)^n$ Reducing balance depreciation			
EFFECTIVE AND NOMINAL INTEREST RATES	1		
• For the annual effective rate, we use the formula: 1+	$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m$		
• When working with different compounding periods us	se the formula: $(1+i_{new})^m$	$= (1 + i_{nom})^n$	
ANNUITIES			
• An annuity is a series of equal payments made at	regular time intervals.		
• The annuity formulae are used under the followin	g conditions:		
\checkmark All payments are equal			
\checkmark The payments are made at regular intervals			
\checkmark The interest rate remains fixed and the compo	unding period for interest	is the same as the	payment intervals
THE FUTURE VALUE	THE P	RESENT VALU	E
• We can use the following formula to calculate the futu	• We can use the fo	ollowing formula to	o calculate the
value of an annuity:	presen	t value of an annu	ity:
$x\left[\left(1+i\right)^{n}-1\right]$		$x \left[1 - (1+i)^{-n} \right]$	
$F = \frac{\Gamma[(1,1)]}{\Gamma[(1,1)]}$	P =		
i		i	
F is the future value.	P is t	he present value.	
x is the payment.	<i>x</i> 1	s the payment.	
<i>i</i> is the interest rate per interval.	<i>i</i> is the inf	erest rate per inter	val.
<i>n</i> is the number of payments.	<i>n</i> is the i	number of paymen	its.
SINKING FUND	THE OUTSTANDING	BALANCE ON	A LOAN
• $A = P(1-i)^n$ (Scrap value of old asset)	Outstanding Balance = Repayments with inter-	= Loan with inter rest to date	est to date –
• $A = P(1+i)^n$ (Cost of new asset)	pa, monto with mite		
• Sinking fund = new – old	$r \left[\left(1 \right] \right]$	$(i)^n - 1$	$r \left[1 - (1 + i)^{-n} \right]$
• Calculate x	$OB = P(1+i)^n - \frac{x \lfloor \sqrt{1+i} \rfloor}{2}$	$\frac{\gamma}{2} = \frac{\gamma}{2}$ OR $P = -\frac{\gamma}{2}$	
• Withdrawals (calculate Y) treat it congrately and		i on i -	i
• wither awars (calculate x_{new}) treat it separately and	Note:		
add it back	• When using the P for	ormula, use the rer	naining number
	of payments.		
	• When using OB=A	-F, use <i>n</i> as numbe	er of
	payments made.		

Mathematics

KZN-GRADE 12

(3) L1

(2) L2

DELAY EDUDENCIALES CALIFICICI CON	IAD LAST/VINAL PAYMENT
• When the first payment of a loan is made more than one	Last payment = Outstanding balance after the last full
 when the first payment of a four is made more than one is period after the loan was received, this payment is referred to as a <i>deferred annuity</i>. Apply the compound interest to the loan to move it to the same point on the timeline as the present value of the annuity 	 payment "outstanding outside after the last run" MISSED PAYMENTS To calculate the new payment: We calculate the outstanding balance immediately after the last payment made. We then apply the compound interest to this outstanding balance, till one period before payments resume. The result is the present value of the new annuity consisting of all the remaining payments.

DBE/NOV. 2023

1.1	Patric deposited an amount of R18 500 into an account earning r% interest p.a, compounded
	monthly. After 6 months, his balance was R19 319,48.

1.1.1 Calculate the value of r.

1.1.2 Calculate the effective interest rate.

- 1.2 Kuda bought a laptop for R 10 000 on 21 January 2019. He will replace it with a new one in 5 years' time on the 31 January 2024.
 - 1.2.1 The value of the old laptop depreciates annually at the rate of 20% p.a. according to the straight-line method. After how many years will the laptop have a value of R0? (2) L2
 - 1.2.2 Kuda will buy a laptop that cost R 20 000. In order to cover the cost price, He made his first monthly deposit into a savings account on the 28 February 2019. He will make his 60th monthly deposit on 31 January 2024. The savings account pays an interest rate of 8,7% p.a. compounded monthly. Calculate Kuda's monthly deposits into this account. (4) L2
- 1.3 Tino wins the jackpot of R 1 600 000. He invests all his winnings in a fund that earns interest of 11,2% p.a. compounded monthly. He withdraws R 20 000 from the fund at the end of each month. His first withdrawal is exactly 1 month after his initial investment. How many withdrawals f R 20 000 will Tino be able to make from this fund? (5) L3

2.1	Lufezo deposits R 97 000 into an account that offered interest at 9,1% p.a. compounded		
	quarterly. Calculate how many years it took for his investment to reach R 166 433.	(4)	L2
2.2	On 1 January 2018 a school bought a new bus for R 482 000. On that day they also started the		

- 2.2 On 1 January 2018 a school bought a new bus for R 432 000. On that day they also started the sinking fund to make provisions for new bus in 5 years' time.
 2.2.1 Over the part 5 years the value of the bug depreciates at 14.7% is a space reducing.
 - 2.2.1 Over the next 5 years the value of the bus depreciates at 14,7% p.a. on a reducingbalance method. Calculate the trade-in value of the bus after 5 years.
 - 2.2.2 The price of these buses increases by 8,1% per year. Calculate the price of the new bus on 1 January 2023, i.e. after 5 years.(2) L1
 - 2.2.3 The bank offered an interest rate of 7,3% p.a., compounded monthly, for the sinking fund. The first payment, x rands, was made in the fund on 1 January 2018 and thereafter the same amount was deposited on the 1st day of every month. The last payment was made on 1 December 2011. On 31 December 2022 the school bought a new bus and used the trade-in value of the old bus as a deposit Calculate the monthly payment into the sinking fund.
 (6) L3

NW/ SEPT.2023

- 3.1 Convert an effective interest rate of 11,3% p.a. to its equivalent nominal rate per annum, compounded quarterly
- 3.2 Lisa opened a savings account and deposited R 10 000 immediately into the account. The account paid interest at 5,3% per annum, compounded monthly. She started making additional (5) L3

(3) L2

(2) L2

Math	hematics KZN-GRADE 12 Spring Rev mchayalpartsorkform the accurre the physics after the account was opened. Her la	vision (st	2024				
33	monthly deposit of R 500 was made 5 years after the account was opened. How much money was in the account 5 years after the account was opened? Sam wants to buy a house and takes out a loan of R 860 000. He can only afford to pay R						
5.5	7 200 per month starting 1 month after the loan is granted. The interest rate is compounded monthly at 9.5%						
	 3.3.1 Calculate the number of payments that Sam will make to repay the loan. 3.3.2 How much will Sam pay in the last month to settle the loan? 	(4)	L2				
4 1	GP/SEP.2023	(3)	LJ				
4.1	with HIV. The researchers used a model of exponential growth $A = P(1+i)^n$ to predict that						
	there will be 6 million people living with HIV in December 2022.						
4.2	Calculate, as a percentage, the annual rate of increase that researchers used for the 7 years. Shimmy invests R 4 000 000 into an account earning interest of 6% per annum, compounded monthly. She withdraws R 30 000 per month. Her first withdrawal is exactly one month after	(3)	L2				
	she deposited the R 4 000 000. 4 2 1 How many withdrawals of R 30 000 will Shimmy be able to make?	(5)	L3				
	4.2.2 How many withdrawals will Shimmy be able to make if she changes the amount withdrawn per month to R 20 000?						
	Substantiate your answer.	(3)	L3				
	Estrid opened a saving account with a single deposit of R 1 000 on 1 April 2022. She then	(-)					
4.3	makes 18 monthly deposits of R 700 at the end of every month. Her first payment is made on						
	15% per annum, compounded monthly.						
	Determine the amount that should be in her savings account immediately after her last deposi	t					
	is made (30 September 2023).	(4)	L3				
51	Jane deposits R x rands into an investment account How long will it take for the value for the x	e					
0.1	investment to double if the interest rate is 5,4% p.a. compounded annually?	(3)	L2				
5.2	Thabo starts a printing company and needs to borrow money for start-up costs. He can make equal monthly payment of R 3 300. What amount can Thabo borrow if the interest rate on the						
53	Ioan is 12% per annum compounded monthly and the Ioan is granted over 5 years? A group of investors consider investing in a fund that promises growth at a rate of 5% p a	(4)	LZ				
	compounded quarterly. Calculate the effective annual percentage rate of the growth promised	. (3)	L1				
5.4	Sarah is 18 years old and wishes to accumulate R 10 000 000 by the month before her 50 th birthday. She will deposit equal monthly payment into an account that pays 15% p.a. compounded monthly. The first payment starts on her 18 th birthday and the last payment one month before her 50 th birthday.						
	Calculate the monthly instalments that Sarah will make. IEB/NOV. 2006	(3)	L2				
6.1	Ashika takes out loan of R 450 000 at an effective interest rate of 14% p.a. in order to purchas	se					
	a town house. She repays a loan with equal monthly installments of R7 500, starting one month from the granting of a loan. The interact is compounded monthly						
	6.1.1 Show that the nominal interest rate is approximately 13,17% p.a.	(3)	L2				
6.2	Calculate:						
	6.2.1 The time span of the loan in months.	(2)	L2				
()	6.2.2 The value of the last payment (less than R7 500).	(3)	L2				
0.3	Calculate now much interest is paid: 6.3.1 In the first month	(2)	1 .1				
		(2)	27				
			- '				

Math	nematics	KZN-GRADE 12 Spring Revis	sion 2	2024
	6.3.20	While a deplat fagments tanmor ephysics. com	(3)	L2
		RUSTERNBURG GIRLS' HIGH		
7.1	Lynne	purchases a new car for R 350 000. They take out a 6-year loan on 1 January 2019. The		
	month	ly instalments are paid at the end of every month. Interest is fixed at 18% p.a.		
	compo	bunded monthly.		
	7.1.1	Calculate the monthly repayment.	(4)	L2
	7.1.2	Due to financial difficulty, Lynne misses the 40^{th} , 41^{st} and 42^{th} payments. Determine	(A)	т э
	7 1 20	the outstanding balance at the end of 42^{110} month.	(4)	LZ
	/.1.5	hack the rest of the loan	(4)	L2
8.1	Siphol	sazi bought a house. She paid a deposit of R102 000, which is equivalent to 12% of the	()	
	selling	price of the house. She obtained a loan from the bank to pay the balance of the selling		
	price.	The bank charges her interest of 9% per annum compounded monthly.		
	8.1.1	Determine the selling price of the house.	(1)	L1
	8.1.2	The period of the loan is 20 years, and she starts repaying the loan one month after it		
		was granted. Calculate her monthly instalments	(4)	L2
	8.1.3	How much interest will she pay over the period of 20 years? Round off your answer to	$\langle \mathbf{a} \rangle$	T 4
	0.1.4	the nearest rands	(2)	
	8.1.4	Calculate the balance of her loan immediately after the 85 th instalment	(3)	L2
	8.1.5	She experiences financial difficulties after the 85 th instalment and did not pay any instalment for 4 months (that is 86 to 80). Calculate how much Sinhakari awas on her		
		hond at the end of the 80 th month	(2)	1.2
	816	She decides to increase her monthly payments to R 8 500 per month from the end of	(2)	
	0.1.0	the 90 th month. How many months will it take to repay the bond after the new payment		
		of R 8500?	(4)	L3
		UNUSED PAPER NOV. 2009		
9.1	A new	cell phone was purchased for R 7 200. Determine the depreciation value after 3 years if		
	the cel	l phone depreciates at 25% p.a. on a reducing-balance method.	(3)	L1
9.2	Jill neg	gotiates a loan of R 300 000 with a bank which has to be repaid by means of monthly		
	repayr	nents of R 5 000 and a final payment which is less than R 5 000. The repayments start		
	one m	onth after the granting of the loan. Interest is fixed at 18% per annum, compounded		
	month	ly. Determine the number of neuments required to gettle the loop	(6)	т 2
	9.2.1	Coloulate the balance outstanding after Jill has noid the last P 5 000	(0)	
	9.2.2 0 2 2	Calculate the value of the final payment made by Jill to sottle the loss	(3)	L2 I 1
	9.2.3 Q 7 1	Calculate the total amount that Iill repaid to the bank	(2) (1)	
	7.4.4		(1)	LI
		KEVIN SMITH STUDY GUIDE		

10.1 Mr Dasoo wants to take out a loan for a house over 20 years. He approached two banks and has been offered two different options. Two options are shown in the table below. Which option should Mr Dasoo choose?

Variables	Option 1	Option 2
Loan amount	R 800 000	R 800 000
Interest rate (compounded monthly)	12%	11,8%
Repayments	Monthly	Monthly
Bank charges	R0	R 200 per month
Commissions	R6 000	R 0

atics KZN-GRADE 12 **Downloaded from Standsone Psysics coure**

(5) L3

(3) L3

11.1	Ted invests R 10 000 into an account that offers an interest rate of 3,25 % p.a. compounded		
	quarterly. After 2 years he deposits an additional R 2 500 into the account and 3 years later		
	withdraws R 5 000. How much will he have in his account after 10 years?	(4)	L2
11.2	x Rand is invested into an account offering an interest rate of 12% p.a. compounded		
	monhtly.3 years later $2x$ Rand is deposited into the account. After 7 years there is R 27 655,		

87 in the account. Determine the value of x.

IEB/MAY. 2021

- 12.1 Simon wants to buy a car that costs R 345 000. He opens a saving account and six month after opening an account makes a deposit of R 12 895 and continues depositing R 12 895 at the end of every six-month period. Interest is paid at 13% p.a. compounded half yearly.
 - 12.1.1 How much money will be in Simon's account three years after opening the account? (3) L2
 - 12.1.2 Ignoring the effects of inflation on the price of the car, Determie how long will take Simon to save the money needed to buy the car? (5) L3
 - 12.1.3 If the effect of inflation is considered, determine the cost of the car 8 years after opening the bank account. Inflation for this period is calculated at 3,5% per annum (3) L2
- 12.2 Instead of the savings plan he considered a second plan which is getting loan for R R 345 00 under the following agreement:
 - Interest is charged at 13% per annum compounded half yearly.
 - The loan must me settled in 8 years

Determine the minimum monthly repayment.

KELVIN SMITH STUDY GUIDE

13.1 Arshad's birthday is on the 1st of January. On the day he turs 20 he stars to save for his 21st birthday party by placing R 200 into a savings account every month with his last payment made on the 21st birthday. How much money will Arshad have for his party, if the account promises an interest rate of 4,5% per annum compounded monthly and his party is to be held on the first of February? (4) L2

MIND ACTION SERIES NEW ADDITION

14.1	Jenny wishes to repay a loan of R 150 000, by mean of 16 equal quarterly payr	nents, starting		
	three months from now. The interest rate on the loan is 21,5% p.a quarterly.			
	14.1.1 Calculate what Jenny's quarterly payments will be.	(4	1)	L2
	14.1.2 Calculate the total interest that Jenny will pay on the loan.	a (3	3)	L2

NW/ SEPT.2020

15.1 Patric take out an annuity that he can live from after he retires in twenty years' time. He needs R 3 000 000 in his annuity when he retires. The bank gives him an interest rate of 10% per annum compounded monthly.

- 15.1.1 Calculate his monthly instalments into the fund if he starts paying immediately and thereafter at the end of each month until his last payment in 20 years' time.
- 15.1.2 After 20 years Patric retires but decides not to let the R 3 000 000 be paid out. Instead, he decides to withdraw monthly amounts of R 20 600 at the end of each month. He withdraws his first amount at the end of the fourth month. The interest that he earns over this period is 8% per year, compounded monthly. Determine how many months can he continue with his lifestyle.
 (7) L3
- 15.1.3 Calculate the amount of Patric's final withdrawal.

(4) L2

(4) L2

KZN-GRADE 12 Mathematics Downloaded from Stanmor sphysics. com

- 16.1 How long will it take (answer to the nearest year) for the value of an investment to depreciate with quarter of its original value? Rate of depreciation is 8,2% p.a. on the reducing balance (4) L2 method. 16.2 Ina wants to travel overseas in 6 years' time. She will need R 58 480 to do that. Calculate her monthly payment into a saving account with an interest rate of 9% p.a. compounded monthly if she makes her first payment immediately and her last payment two months before the end of the 6 years. (5) L2
- 16.3 Jacob- took out a loan of R 1 500 000 to buy a house. He will repay the loan with monthly payments over 20 years. The interest rate is 8% p.a. compounded quarterly.
 - 16.3.1 Showing ALL your calculations and formulae, prove that his monthly instalment will (5) be R 12 499,96 L2 (3) L2
 - 16.3.2 Calculate the outstanding amount after 12 years.

TGP Which a declar the second strangers of the second

GUIDELINES, SUMMARY NOTES, & STRATEGIES

TEACHING APPROACHES (CALCULUS)

1. FIRST PRINCIPLES:

- The learners:
- Need to understand what is meant by determining the gradient from first principles and know the first principles formula.
- \checkmark must be able to copy the first principle formula from the formula sheet correctly.
- ✓ Be able to simplify the first principles expression (It seems as if learners handled this question better when they determine f(x+h) separately and then bring it back to the formula).
- ✓ Need to be mindful of the notation and apply it correctly when they simplify the first principle expression.
- \checkmark At this stage, learners can also determine the equation of the tangent at a point.

2. RULES FOR DIFFERENTIATION

- ✓ The learners:
 - i. need to revise how to simplify surds, rational, irrational exponents.
 - ii. Must know how to simplify expressions before differentiation.
 - iii. Must know how to tell which variable they are required to differentiating with respect to.
- ✓ Must expose themselves to variety of questions having different notations including where a variable is given as constant.
- ✓ Following instructions is once more important, on how the answer should be provided whether with a + positive or - negative.
- ✓ Must always use of correct notation.

3. CUBIC FUNCTIONS $f(x) = ax^3 + bx^2 + cx + d$

The learners need to know and follow these steps when sketching a cubic function:

- ✓ Before learners can sketch a cubic function, they at least need to know the shape of their graph as guided by value of a where a could be a > 0 and a < 0.
- ✓ The learners must be able to Factories a third-degree polynomial using any other method to determine the *x*-intercepts (the *x*-intercepts are known as the: zero, roots, f(x) = 0. It would be an advantage if they can be able factories using a calculator.
- ✓ They must also be able to find the *y* intercept, which is when x = 0, or given by the value of *d*.
- ✓ Learners must be able to use the first derivative to find the coordinates of the turning points, which are also known as the Stationery points or local minima and local maxima. In simple terms, this is finding f'(x) = 0, solve for x, and then find the corresponding y-values to give the coordinate of the turning point.
- ✓ Examiners often require learners to write the intercepts with the axes, stationary points and points of inflection in coordinate form (a; b). Make sure that the learners are aware of this.

4. INTERPRETATION OF A CUBIC FUNCTION:

The learners must be able to:

- ✓ Tell what the domain is, that $x \in R$
- ✓ Understand the relationship between the graph of a function and the graph of its derivative is important in that it explains to the learners why the second derivative is zero at a point of inflection.
- ✓ Understand that the point of inflection is determined by equating the second derivative to zero and solving for *x*. An alternative method is to add up the *x*-coordinates of the turning points and divide by 2 (i.e. determining the midpoint of the two turning points).
- ✓ Tell for which values of x will f(x) be concave up: f''(x) > 0 & Concave down: f''(x) < 0

Mathen	natics	KZ	N-G	RADE 1	2	Spring Revision 2	2024	
✓	F O	While A Andreasing Br dedreasing on	nerea	Bille(, decrease $f'(x) < 0$).		
✓	Dete	rmine the values of x , for which: $x f$	$\dot{x}(x)$	>0, f'	(x) > 0	f'(x).f(x) < 0		
✓	when	n will f have three real roots, two real	root	ts or on	e real	root?		
5. OF T_1		IZATION	1	4 1 [.]	C			
	e lear	ners need to develop the conceptual u	inde	rstandir	ng on C	Optimization		
• Ca		s of motion In this regard, the equation will be give	ven					
		The learners need to know that. Velo	citv i	is the d	erivati	ve of displacement, and		
	1	Acceleration (2 nd derivative) is the de	rivat	tive of v	velocit	y		
• Ra	ites of	° change						
	\checkmark	Knowledge of formulae for the surface	ce ar	ea and	volum	e of right prisms is required from		
	<u> </u>	learners. A list of relevant formulae will only l	na nr	behive	for the	a surface area and volume of		
	• .	cones spheres and pyramids Learner	s mi	ist sele	tor the o	correct one to use		
			0 111					
		REV	ISIC)N QU	ESTIC	ONS		
1.		KZN SEP 23				FS SEP 23		
	1.1	From first principles, determine the			1.2	Determine the derivative of		
		derivative of $f(x) = 2x^2 + 9$.	(5)	L1		$f(x) = 3 - x^2$ using FIRST		
						PRINCIPLES.	(5)	1 2
		MP SEP 23				LP SEP 23	(5)	
	1.3	Civen: $f(r) = -2r^2 + 1$ Determine			1.4	Determine the derivative, from first		
		Given $f(x) = -2x + 1$, Determine				principle of $f(x) = -x^2$	(-)	
		f(x) from first principle.	(5)	L2			(5)	L1
		KZN MAR 16			16	$\mathbf{NW} \mathbf{SEP} 20$		
	1.5	Given: $f(x) = \frac{-5}{x}$, determine			1.0	Given: $f(x) = -x^2 + 7x + 9$,		
		f'(x) from first principles				determine $f'(x)$ from first		
			(5)	L2		principles.	(3)	L2
	17	$\begin{array}{c} \text{MIND ACTION GR12} \\ \text{Determine} f'(x) \text{ from first} \end{array}$			1 0	MATHS HANDBOOK GR12		
	1./	Determine $f(x)$ from first			1.0	Determine $f(x)$ from first	(-)	
		principles if $f(x) = 4$	(3)	L1		principles if $f(x) = x$	(5)	L1
	19	FS SEP 10 Determine $f'(x)$ from first			1 10	KZIN JUIN 20 Determine $c'(x)$ from first principles		
	1.7	Determine $f(x)$ from first			1.10	Determine $f(x)$ from first principles		
		principles if $f(x) = x^3$ and hence				given $f(x) = x^2 - bx$.		
		find $f'(-2)$	(5)	L2			(5)	L2
2		Rules for Differentiation:						
		FS SEP 23				FS SEP 23		
	2 1	Determine $D\left(\frac{2}{\sqrt{r}}\right)$			<u> </u>	Determine $\frac{dy}{dt}$ if $y = (x^3 - 1)^2$		
	2.1	Determine $D_x \left(\frac{-\sqrt{x}}{x}\right)$	(4)	L2	2.2	$\frac{dx}{dx}$ $(x - 1)$	(3)	L1
		GP SEP 23				MP SEP 23		
	2.3	Determine the derivative of			2.4	Determine $f'(x)$ if $f(x) = \frac{1}{r^2} \frac{5}{r^2}$		
		$(2 \Gamma 1)^2$			2.4	Determine $f(x)$ if $f(x) = \frac{-x}{2} - \frac{-x}{x}$		
		$f(x) = \left(2\sqrt{x} - \frac{1}{x}\right)$	(5)	L2			(3)	L1
		LP SEP 23				KZN MAR 20		
	2.5	Determine			26	Determine $f'(x)$ if $f(x) = x^3 - 8$		
		$\frac{dy}{dt}$ given that $v = 2t^5 + \sqrt[4]{t^7}$			2.0	Determine $f(x) = \frac{1}{2-x}$		
		dt dt	(3)	L2			(4)	L2
							32	

Mather	natics	KZN-GRADE 12 Spring Revision 202	24
	2.7	$\frac{dy}{dx} \text{ if } y = -2\sqrt{x} + x - \frac{1}{\sqrt{x}} $ (4) L2 KZN SEP 23 KZN SEP 23 (4) KZN SEP 23 (4) L2 (4) L2	4) L 2
	2.9	Determine $\frac{dy}{dx}$ if $\sqrt{y+x} = x+3$ (3) L2 2.10 Determine $\frac{d}{dx} \left[\frac{4+\sqrt{3x}}{x} \right]$ EC SEP 20 (3)	3) L2
	2.11	Differential with respect to x, $xy = \left(x - \frac{1}{x^2}\right) \left(x + \frac{1}{x^2}\right)$ (4) L3 2.12 Determine $D_t \left[\frac{1}{2}gt^2 - \frac{5}{t} + 3g\right]$ (4) L3	4) L 3
3	2 1	EC SEP16 FS SEP 17	,
	3.1	Given $s(t) = t^3$. Show that the 5.2 Given $f(x) = x^3 - 2x^2$ Determinegradient of any tangent to s willthe equation of the tangent to f atnever be negative.(2) L3NSC NOV 16	6) L2
	3.3	The line $g(x) = -\frac{1}{8}x + p$ is a tangent to the graph of $f(x) = 5 - 2x^2$ the state of a state of the values of a and b.	
		$f(x) = 5 - 2x^{2} \text{ at the point A.}$ Determine the coordinates of A. (5) L3 $KZN SEP 17$ (3)	5) L 3
	3.5	Given: $f(x) = x^2 - \frac{1}{x^2}$	
		3.5.1 Determine the gradient of the tangent to f at the point where $x=2$ (1)	3) L2
		3.5.2 Determine the equation of the tangent to f at $x=2$ (). NW SEP 17	3) L2
	3.6	The graph $h(x) = ax^3 + px$ passes through the point $(3; -2)$. The gradient of the tangent to h at $(0; 0)$ is 3.	
		3.6.1 Determine the value of a and p. (4)	4) L3
		3.6.2 Determine the gradient of the tangent to h at x	2) L2
	3.7	PLATINUM MATHS GR12 Given: $g(x) = -x^3 - 2x^2 + 11x + 12$.	,
		3.71 Determine the equation of the tangent to g at $x = 2$. (3.7.2 Determine the coordinates of point where tangent intersects $g(x)$ a second time. (3.7.2 PLATINUM MATHS GR12	5) L2 5) L3
	3.8	Consider the graph $f(x) = -x^3 - 3x^2 + 4$ and $g(x) = \frac{23}{9}x^2 - \frac{19}{3}x$	
4		 3.8.1 State the point where the graphs share a common tangent. 3.8.2 Determine the equation of the common tangent at this point. FS SEP 23 	5) L4 4) L3
-	4.1	Given: $f(x) = x^3 - 12x - 16$	
		4.1.1Calculate the coordinates of the turning points of the graph of f (1)4.1.2Calculate the x-intercepts of f (1)	5) L2 3) L2

Mathematics	which	KZN-GRADE 12 Spring	Revision 2024
	4.1.5	y = 15x + y is a contact	ne (4) I 3
	414	For which value(s) of x will the given function be concave up?	(4) L3 (3) L2
4.2	Cirron	$f(r) = 3r^3 - 3r^2 + 6r - 2$	(3) L2
E E	Given:	f(x) = 5x - 5x + 6x - 2	
L.	FOI W	NSC MAPC16	(4) L4
43	Given:	$f(r) = 2r^3 - 23r^2 + 80r - 84$	
h	4.3.1 F	Prove that $(r-2)$ is a factor of	
F		Hence or otherwise factorize $f(x)$ fully	(2) LI
	4.3.2 1	Determine the x -coordinates of the turning points of f	$\begin{array}{c} (2) \mathbf{L2} \\ (4) \mathbf{L2} \end{array}$
	4.3.31	Sketch the graph of f clearly labelling AIL turning points and intercents with the graph of f clearly labelling AIL turning points and intercents with the graph of f clearly labelling AIL turning points and intercents with the graph of f clearly labelling AIL turning points and intercents with the graph of f clearly labelling AIL turning points of f clearly labelling and the graph of f clearly labelling and the gr	(4) LZ
	ч.J.+ С я	oxes	(3) L2
	4.3.5 I	Determine the coordinates of the y-intercept of the tangent to f that has a s	slope of
	4	10 and touches f at a point where the x-coordinate is integer	(6) L3
4.4		NSC JUN 17	
	Given:	$f(x) = x^3 - x^2 - x + 1$	
	4.4.1	Write down the coordinates of the y -intercept of f .	(1) L1
	4.4.2	Calculate the coordinates of the x -intercepts of f .	(1) L2 (5) L2
	4.4.3	Calculate the coordinates of the turning point of f .	(6) L_2
	4.4.4	Sketch the graph of f . Clearly indicate all intercepts with the axes and the	e turning
		points.	(3) L2
	4.4.5	Write down the values of x for which $f'(x) < 0$.	(2) L 2
4.5		KZN JUN 18	
	f(x) =	$(-x^3 + 3x^2 + 9x - 27) = -(x+3)(x-3)^2$ is the equation of a cubic function.	
	4.5.1	Write down the intercepts of f .	(3) L2
	4.5.2	Calculate the co-ordinates of the stationary points of f .	(5) L 2
	4.5.3	Sketch the graph of f on a system of axes. (Clearly indicate the coordinate	es of the
		stationary points and the intercepts with the axes).	(4) L2
	4.5.4	Determine the value(s) of x for which the graph is concave down.	(2) L 2
	4.5.5	Determine the equation of the tangent to the graph of f at $x=0$.	(3) L2
	4.5.6	If $f(x) = k$ has 3 unequal real roots, determine the values(s) of k.	(3) L2
	4.5.7	Write down the equation of t if f is shifted 3 units horizontally to the left	· (2) L3
16	<u> </u>	$\frac{1}{10000000000000000000000000000000000$	
4.0	Given:	f(x) = x(x-3) with $f'(1) = f'(3) = 0$ and $f(1) = 4$	
	4.6.1	Show that f has a point of inflection at $x = 2$.	(5) L3
	4.6.2	Sketch the graph of f , clearly indicating the intercepts with the axes and the f	ne turning
	163	points. For which values of r will $y = -f(r)$ be concave down?	(4) L2
	4.6.4	Use your graph to answer the following question:	(2) L 3
	т.0.т	4641 Determine the coordinates of the local maximum of h if	
		h(x) = f(x-2)+3	$(2) \mathbf{I} 2$
		4.6.4.2 Claire claims that $f'(2) = 1$.	(2) L2
		Do you agree with Claire? Justify your answer.	(2) L3
		, <u> </u>	(-) =-

4.9

MP SEP 23

In the diagram, the graph of $f(x) = -x^3 + 5x^2 + 8x - 12$ is drawn. A, B and C are the xintercepts of f.E is a turning point of f.T is a point f and G is a point on the x-axis such that TG is perpendicular to the x-axis. D is the y-inercept of f.

Mathematics KZN-GRADE 12 **Downloaded from Stanmorephysics.com** 4.10 GP SEP 23

Sketch below is the graph of f'. The derivative of $f(x) = -2x^3 - 3x^2 + 12x + 20$. Points A, B and C are the intercepts of f' with the axes.

4.10.1 Write down the coordinates of A.	(1)	L2
4.10.2 Determine the coordinates of B and C	(3)	L2
4.10.3 Which points on the graph of f will have exactly the SAME x -value(s) as B and	1	
C?	(1)	L3
4.10.4 For which values of x will f be increasing?	(3)	L2

4.10.5 Determine the y-coordinate of the point of inflection of f. (4) L2

4.11

FS SEP23

The diagram shows the straight-line h, where h(x) = f'(x). The x-intercept of h is 1. The following is true for function f: f(1) = -3 and f(3) = 0.

Draw a sketch graph of the function f, clearly indicating all x-intercepts and turning point(s) (3) L4

Mathematics **KZN-GRADE 12 Downloaded from Stanmorephysics. 691** Calculate the dimensions of the (3) L2

Spring Revision 2024

(5) L4

mirror with largest area that can fit into the frame.

5.6 **STUDY AND MASTER GR12** Motsumi is making model of a rondavel out of clay for his design project. Motsumi's model has a radius of x cm and a height of h cm. The height of the roof itself(the cone) is (h-3) cm and the volume of the conic roof is $90 \, \text{cm}^3$

5.6.1 Show that $h = \frac{270 + 3\pi r^2}{\pi r^2}$. (Volume of a cone $= \frac{1}{3}\pi r^2 h$)

5.6.2 Motsumi wants to paint the entire clay model. Determine the maximum surface area for the clay rondavel, without a floor. Leave your answer correct to the nearest cubic cm. (Total surface area without base = $\pi rs + 2\pi h$) (7) L3

TOPIC

6. PROBABILITY [±15 MARKS]

GUIDELINES, SUMMARY NOTES, & STRATEGIES

The probability scale: $0 \le P \le 1$. If P (an event) = 0, the event is impossible; If P (an event) = 1, the event is certain to happen.

The definition of probability: $P(E) = \frac{n(E)}{n(S)}$

Addition Rule for any 2 events A and B: P(A or B) = P(A) + P(B) - P(A and B)Mutually exclusive events A and B: P(A or B) = P(A) + P(B)NOTE: Since P(A and B) = 0**Independent events** A and B: $P(A \text{ and } B) = P(A) \times P(B)$ The complementary rule: P(not A) = 1-P(A)

Venn-Diagram, Tree diagram and Contingency Table

The fundamental counting principle: If one operation can be done in *m* ways and a second operation can be done in *n* ways then the total possible number of different ways in which both operations can be done is $m \times n$.

- Pin codes and Passwords
- ➤ Arrangements [(a) Different/Selection (b) Identical)]
- *Re-arrangements*

REVISION OUESTIONS KZN SEPTEMBER 2018 QUESTION 12

1

Study the table below and answer the questions that follow.

	Like Sport	Do not Like Sport	Totals
Males	80	b	С
Females	а	90	d
Totals	200	150	350

1.1 Write down the values of *a*, *b*, *c* and *d*.

1.2 Is the event liking a sport independent of gender? Show all working (4) L1

(4) L2

Mathematics **KZN-GRADE 12** Downloaded from Starmer Approximation 13 2

(3) L2

Consider the letters of the word "DEPENDENT". Determine, using all letters:

- 2.1 the number of unique arrangements of the letters that can be formed? (3) L2
- 22 the number of unique arrangements of letters that can be formed in 2.1 starting with the letter "N"? (3) L2
- 2.3 the number of unique arrangements of letters that can be formed in 2.1 starting and ending with the letter "N"?
- 3

EC SEPTEMBER 2018 QUESTION 11

In a survey done at a local traffic department, the following information was 3.1 obtained.

	Failed	Passed	Total
Male	A	В	1200
Female	С	D	400
Total	200	1400	1600

3.1.1 Calculate the probability that a person selected at random will be male (1) L1 Calculate the probability that a person selected at random failed the test 3.1.2 (1) L1 3.1.3 If being male and failing the test are independent events, show that the value of A = 150. (3) L3 3.1.4 Use the value of **A** to determine the values of **B**, **C** and **D**. (3) L1 3.1.5 Calculate the probability of choosing a female who failed. (2) L2 9 cars of different makes of which 4 are black are to be parked in a straight line. 3.2 In how many different ways can all the cars be parked? 3.2.1 (2) L1 3.2.2 If the 4 black cars must be parked next to each other, determine in how many different ways the cars can be parked. (3) L2 **GAUTENG TRIAL 2023 QUESTION 12** When Marge turned eight, her friends Emily, Klara, Cory, Liza, Shirley and Penny 4.1 were invited to her birthday party. Marge and her friends sat in a row and played a game. In how many ways can they be seated if: They sit in alphabetical order 4.1.1 (1) L1 Emily and Klara do NOT want to sit next to each other? 4.1.2 (3) L3 4.2 The probability that a certain rugby team has all its players fit to play is 70%. The probability that they will win a game if all their players are fit is 90%. When they are not fit the probability of them winning becomes 45%. Calculate the probability of them winning the FIRST game. (2) L2 **KZN SEPT 2019 PREPARATORY EXAMINATIONS QUESTION 12** A bag contains 12 blue balls, 10 red balls and 18 green balls. 2 balls are chosen at random without replacement. Determine the probability: if the two balls chosen at random are green. 5.1 (3) L3 5.2 if the two balls chosen at random are blue and red. (3) L3 **KZN TRIALS 2023 QUESTION 12** A group of 40 people was asked which bus company they liked to travel by: Elto, Greybound or

6

5

4

Translucky bus company.

- 3 people like travelling by all 3 bus companies.
- 7 people liked to travel by Translucky and Elto. •
- 3 people did not like using any of the bus companies.

Natics KZN-GRADE 12 Spring Rev Mathematics is $\frac{2}{5}$

The probability of a randomly selected person liking to travel by Greybound and Translucky is $\frac{1}{5}$

• The probability of a randomly selected person liking to travel by Translucky only is $\frac{1}{10}$

The probability of a randomly selected person liking to travel by Elto is $\frac{13}{20}$

The partially completed Venn diagram drawn below represents the given information.

7

6.1	Use the given information to determine the values of <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> and <i>e</i>	(5)	L3
6.2	How many people liked to travel by Greyhound bus company?	(1)	L2
6.3	Calculate the probability of a randomly selected person liking to travel by only		
	one bus company.	(2)	L2
	KZN TRIALS 2023 QUESTION 13		
Nonh	le who is a Grade 12 learner has 8 textbooks from eight different subjects:		
Math	ematics, English, Accounting, History, Tourism, Afrikaans, Geography and Drama		
whicl	h she wants to arrange in a line on a shelf.		
7.1	In how many ways can the textbooks be arranged?	(1)	L1
7.2	In how many ways can the textbooks be arranged if the Mathematics textbook and		
	the Accounting textbook must be on each end of the shelf?	(3)	L2
7.3	If the Mathematics textbook and the Accounting textbook must be on each end of		
	the shelf, what is the probability that the History textbook and the Tourism textbook		
	are not next to each other?	(4)	L3
	SEPT 2019 PREPARATORY EXAMINATIONS QUESTION 13		
The c	ligits 1, 2, 3, 4, 5, 6, 7, 8, 9 are used to form 3 - digit codes, eg. 567, 218, etc.		
Deter	rmine the number of different codes that can be formed:		
8.1	if repetition is allowed.	(2)	L2
8.2	such that the code is greater than 500 and repetition is NOT allowed	(2)	L2
8.3	such that the middle digit is 5 and repetition is allowed	(2)	L2
		(-)	

(4) L2

(3) L3

(2) L2

Mathematics

9

10

KZN-GRADE 12 Downloaded from Stanmone physices con 10

9.1 In a survey, 1 530 people were asked whether they had ever broken a limb. The results of the survey were as follows:

Ind	Broken a limb	Not Broken a limb	Total
Male	463	Ь	782
Female	а	с	d
Total	913	617	1530

9.1.1 Calculate the values of a, b, c, and d.

- 9.1.2 If a person is chosen at random, what is the probability that it will be a female who has not broken a limb? (2) L2
- 9.1.3 Is having a broken limb dependent on gender? Motivate your answer. (3) L2
- 9.2 Two learners are selected at random from a group of 10 boys and 12 girls. Determine the probability that ... (2) L2

9.2.1 they are both girls.

- 9.2.2 one is a boy and one is a girl.
- 9.3 In the Venn diagram below, M and N are independent events.

Calculate, giving answers correct to two decimal places:

9.3.1 The value of x(3) L3

9.3.2 The value of v

GAUTENG TRIAL 2023 QUESTION 11

Machine A and machine B are two different coin-pressing machines that operate at 10.1 the same time. The probability that machine A ONLY presses a R5 coin, is x and the probability that machine B ONLY presses a R5 coin, is 0,3. The probability that both the machines press R5 coins at the same time is 0,1.

- 10.1.1 If A and B are independent events, determine the values of x and y.
- 10.1.2 Determine the probability that exactly one of the machines is pressing a R5 coin
- 10.2 Wilson takes a driver's test. The probability that he will succeed on bis first attempt is
 - $\frac{3}{7}$. For each attempt that he redoes the test, the probability of passing increases to $\frac{3}{5}$

(1) L2

(4) L2

Math	ematics	KZN-GRADE 12 Spring Rev	vision	2024
	00	10.2.2. Determine the probability that Wilson will succeed after 2 attempts?	(2)	L2
11		CAUTENC TRIAL 2021 OUESTION 10	(2)	L2
11	Event	s A B and C occur as follows, where A and B are independent events:		
	L vent	P(A) = 0.38		
		P(B) = 0,42		
		P(A and B) = 0,1596		
	5	P(C) = 0,28		
	11.1	Are A and B mutually exclusive events? Motivate your answer.	(2)	L2
	11.2	By using an appropriate formula, show that the value of $P(A \text{ or } B) = 0,64$	(2)	L2
	11.3	Calculate the number of people in the sample space.	(2)	L2
	11.4	Determine <i>n</i> (<i>not C</i>)	(2)	L3
12		GAUTENG TRIAL 2021 QUESTION 11		
	12.1	Each of the digits: 1; 1; 2; 3; 4; 7 is written on a separate card. The cards are then placed next to each other to create a 6 digit number.		
		12.1.1 How many numbers start and end with the same digit?	(1)	L2
		12.1.2 Find the probability that the number is 112347 or 743211.	(1) (4)	L4
			(.)	2.
	12.2	<i>n</i> people (numbered 1; 2; 3; 4; 5; 6;; n) are arranged randomly in a line.		
		12.2.1 Find the number of ways, in terms of <i>n</i> , that person 1 and person 2 are		
13		standing next to each other. (You do not need to simplify your answer.) DBE NOVEMBER 2021 QUESTION 12	(3)	L4
	13.1	A and B are independent events. It is further given that: P(A and B) = 0,3 and P(only B) = 0,2		
		13.1.1 Are A and Bmutually exclusive? Motivate your answer.	(1)	L2
		13.1.2 Determine:		
		(a) $P(\text{only A})$	(4)	L2
	122	(b) P (not A of not B) A tascher has 5 different postry books 4 different drames and 2 different poyels	(2)	L3
	13.2	She must arrange these 12 books from left to right on a shelf		
		13.2.1 Write down the probability that a novel will be the first book placed on the		
		shelf.	(1)	L2
		13.2.2 Calculate the number of different ways these 12 books can be placed on the shelf if any book can be placed in any position	(2)	L3
		13.2.3 Calculate the probability that a poetry book is placed in the first position, the	(_)	10
		three novels are placed next to each other and a drama is placed in the last		
11		position.	(4)	L4
14				
	14.1	A and B are independent events. $P(A) = \frac{1}{3}$ and $P(B) = \frac{3}{4}$		
		Determine		
		14.1.1 <i>P</i> (A and B)	(2)	L2
		14.1.2 <i>P</i> (at least ONE event occurs)	(2)	L3
	14.2	The probability that it will snow on the Drakensberg Mountains in June is 5%.		
		• When it snows on the mountains, the probability that the minimum temperature in Central South Africa will drop below 0°C is 72%.	1	

Mathe	matics	KZN-GRADE 12 Spring R	evision	2024
		temperature in Central South Africa will drop below 0°C is 35%. 14.2.1 Represent the given information on a tree diagram. Clearly indicate the	(2)	13
	R	14.2.2 Calculate the probability that the temperature in Central South Africa will	(3)	
	14.3	Ten learners stand randomly ina line, one behind the other.	(3)	LJ
	ĥ	14.3.1 In how many different ways can the ten learners stand in the line?14.3.2 Calculate the probability that there will be 5 learners between the 2 youngest	(1) t	L2
15	F	learners in the line. IEB NOV 2023 OUESTION 11	(4)	L4
10	After s	some research you decide that the best option for your online security is to have two		
	unique 15.1.	e passwords before opening important documents. The first ten-digit password consists of two parts.		
		15.1.1 The first part is made up of six numbers. The numbers that can be used are the numbers from 1 to 9. How many unique six-digit codes can be created if	he (2)	10
		15.1.2 The second part is a four-digit code compiled from the digits 1 to 9, repetition is not allowed. How many even ten-digit passwords can be created by	on (2)	L2
	15.2	combining these two parts? The second nine-digit password has to be a number greater than 600 000 000 with the	(3) he	L2
16		last digit being divisible by 3. How many nine-digit passwords are possible if you cause the digits from 1 to 9, no repetition is allowed? IEB NOV 2014 QUESTION 6	an (4)	L3
	16.1	In a sample space S, the number of elements in S, $n(S) = 30$ and there are two events A and B such that $n(A) = 15$, $n(B) = 20$ with $n(A \text{ and } B) = 6$.		
		16.1.1 Draw a Venn diagram to represent this situation.	(3)	L2
		16.1.2 Write down the value of $n(A \text{ or } B)$.	(1)	L1
		16.1.3 An element is randomly selected from S.		
		 Write down the probability that the element is in both events A and B. That is, P(A and B). Showing all working, determine whether the events A and B are 	(1)	L1
		• Showing an working, determine whether the events A and B are independent	(3)	L3
	16.2	Steve needs to set up a format for passwords onto his website. He has decided on having letters from the alphabet (of 26 letters), followed by digits 0 to 9. Letters and digits can be repeated. 16.2.1 Calculate the number of passwords that can be created using 2 letters followed	l ed	
		by 2 digits. 16.2.2 Steve thinks that he will need to cater for 3 million different passwords. He will stick with 2 letters but will need more digits. Determine the least number	(2) er	L2
		of the digits he will need.	(4)	L4
17		IEB NOV 2019 QUESTION 11		
	17.1	 Ten coins are arranged in a row: five are R1 coins three are R2 coins two are R5 coins How many different arrangements are possible, knowing that all the coins of the sam value are identical? 	ne (3)	L2
	17.2	The trees in an orange orchard are harvested twice a year. During the first harvest, 70% of the oranges are picked while the rest are left. At the second harvest, 35% of the remaining oranges are picked while the rest are not picked. Assume no oranges were added between harvests.	(-)	_

Mathe	ematics	KZN-GRADE 12 Spring Rev	ision	2024
	5	 17.2.2 If it is further given that all the oranges that are picked are packaged with: 9% from each harvest selected for export 31% sold to the local market and the rest are sent to a factory to be made into juice. 	(3)	L3
18		 What percentage of oranges will be sent to the factory to be made into juice? There are 120 oranges in an export box. If 172 export boxes are produced, then how many oranges were there in the total crop? THE ANSWER SERIES KZN 2024 MATHS WORKSHOP 	(4) (4)	L3 L3
	18.1 18.2	Six friends go to watch a movie. They will sit next to each other in a straight row. Themba and Linna have had an argument and refuse to sit next to each other. How many possible seating arrangements are there? Mr and Mrs Brown and their four children line up for a photograph.	(3)	L4
		18.2.1 In how many ways can they line up if anyone may sit anywhere?	(1)	L1
		18.2.2 In how many ways can they line up if Mr and Mrs Brown must each sit at an end?	(1)	13
		18.2.3 In how many ways can they line up if Mr and Mrs Brown must sit next to each other in the middle?	(2)	13
		18.2.4 In how many ways can they line up if Mr and Mrs Brown must sit next to each other anywhere?	(2)	13
	18.3	Consider the letters AHMST. If all five letters are used, and all the possible arrangements that can be formed are placed in alphabetical order, in which position is the word MATHS?	(3)	
	18.4	A four-digit code is made from the digits 0 to 6.	(3)	174
		How many four-digit codes can be made if the code has to be greater than 2 000, less than 3 000, and must be even?		
		You may not repeat digits.	(3)	13
	18.5	Consider the word MILLION	(3)	LJ
		18.5.1 Determine the number of seven-letter words that can be made.	(2)	Г.2
		18.5.2 Determine the probability that the vowels will be next to each other.	(2)	
			(3)	13

KZN-GRADE 12

Downloaded from Stannos nesdars from bling

GUIDELINES, SUMMARY NOTES, & STRATEGIES

Definition:

Data Handling is a process during which data (information) is collected, recorded, and presented. **Terminology:**

- ◆ Ungrouped data a set of random data elements gathered for analysis.
- ✤ Grouped data data elements aggregated into different classes, groups, or intervals.
- Measures of central tendency single numbers around which all data items seem to be spread.
 - The Mean, also known as the average, is the sum of all the data values in a set, divided by number of all elements in the set.
 - The Median, (Q₂) it presents the middle value in a data set.
 - The Mode is the most frequent data item in a set. In grouped data, the modal group will have the highest frequency. Data sets may have no mode, two modes (bimodal), three modes (trimodal), etc.
- Measures of dispersion numbers that describe the spread of the data.
 - The Range is the difference between the maximum and the minimum data values in a given data set.
 - ★ The Inter-Quartile-Range (IQR) is the difference between the third and first quartiles, i.e. $IQR = Q_3 - Q_1$
 - Standard Deviation (σ) is a measure of how dispersed data is around the mean. The square of the standard deviation is the variance.
- Five Number Summary five numbers that separate a data set into quarters.
 - ✤ Minimum value
 - Lower quartile (Q_1) position $\frac{1}{4}(n+1)$
 - Median
 - Upper quartile Q_3 position $\frac{3}{4}(n+1)$
 - ✤ Maximum value
- Box and Whisker Diagram (drawn using the five number summary)
 - ✤ It is important in analysing the distribution of data in a given set.
 - If mean median = 0, then the distribution is symmetric.
 - If mean median > 0, then the distribution is positively skewed.
 - If mean median < 0, then the distribution is negatively skewed.
- Outliers data items that are a lot bigger or smaller than the rest of the elements in the data set. They are determined as follows:
 - Lower outliers are numbers $< Q_1 1.5 \times IQR$
 - Upper outliers are numbers $> Q_1 + 1.5 \times IQR$
- Graphical representations
 - Histogram represents grouped data as condensed bars whose widths and lengths represent class intervals and frequency respectively.
 - Ogive (Cumulative Frequency Curve) an s-shaped smooth curve drawn by plotting upper limits of class intervals of a grouped data against cumulative frequency of a set.
 - Scatter plot representation of bivariate data as discrete data points.
- Bivariate data summaries
 - Regression line (line of best fit) a line drawn on the scatter plot that shows a general trend that bivariate data seems to follow.
 - Least squares regression line is a straight line that passes through the mean point relating bivariate data
 - Correlation Coefficient indicates the strength of the relationship between the variables in bivariate data.

2

3

KZN-GRADE 12

Downloaded from Stappingphysics

FS/ PREPARATORY EXAM 2023

1 To celebrate Pi Day at school, learners participate in a competition to write down the value of Pi (π) , up to the most correct decimal places, Eleven learners make it to the final round of the competition where their number of correct decimal places is counted.

The judges stop counting after the first mistake. The results of the eleven learners are shown in the table below:

63	79	50	74	75	66	150	86	72	74	60		
~ 1	nn											
Calc	Mean of th	e data									(2)	L1
1.2	The standa	rd devia	tion for t	he giver	ı data						(2) (1)	L1
1.3	Number of	results	that lie of	utside O	NE stand	lard devia	ation of t	he mean			(3)	L2
1.4	Identify th	e outlie	r in the gi	iven res	ults.						(1)	L1
1.5	The result	with the	number	of the m	lost corre	ct decima	al places	is increas	sed by k %	6,		
	while the r	esult wit	th the nu	nber of	the lowes	st correct	decimal	places is	decreased	d by t		
	%. The oth	er nine i	results re	main un	changed.	1		6.4 1	, · ,	61		
	Only one c	of the op	tions belo	ow corre	only the	ects the ne letter	ew range	e of the da	ata in term	is of K		
	A. 100	()+k-t			only the	letter.						
	B. 150	0k - 50t										
	C. 150	0k + 50t										
	D. 100+	3/2k+1	1								(2)	L2
				IE	B/ NOVI	EMBER	2022					
The	test scores o	f 5 stude	ents are g	iven in	ascending	g order as	:					
{25;	; x+3; x+6;	x + 9; x -	+13}. Tł	ne media	an is 41.							
2.1	Determine	the valu	the of x .								(2)	L1
2.2	Determine	the stan	dard dev	iation of	f the score	es using y	our ans	wer to 2.1	l.		(2)	L2
2.3	How many working.	scores v	will lie w	rithin on	e standar	d deviatio	on from	the mean	? Show al	l your	(3)	L2
The	minimum ov	vernight	temperat	ures (T	$^{\circ}C$) and	the numb	er of ser	vice calls	s (S) made	e to a co	ompa	any
that	supplies gas	heaters	was reco	rded for	a period	of 8 days	5.	F				
The	equation of	the least	squares	regressi	on line fo	or the data	is giver	n as: $S =$	-1.8T + 2	22,7		
3.1	State whet	her the d	lata repre	sents a	positive	or negati v	ve correl	ation.			(1)	L1
3.2	Use the reg	gression	line to pi	edict th	e numbei	of servic	e calls n	nade, for	an overni	ght		
	temperatur	e of 10°	С.						3		(2)	L1
3.3	The correla	ation coe	efficient f	for the 8	-day peri	od is -0,9	95. On tl	ne 9th day	y, the num	ber of		
	service cal	ls was 8	and the r	ninimur	n overnig	ght tempe	rature w	as $3^{\circ}C$. I	f the 9th o	lay		
	data is incl	uded, w	hat effect	t will it l	have on t	he correla	ation coe	efficient?	Explain.		(2)	L3
				DB	E NOVI	EMBER	2023					
Truc	ek drivers tra	vel a cer	rtain dista	ance and	l have a 1	rest befor	e travelli	ing furthe	er. A drive	er kept	reco	rd o

4 Truck drivers travel a certain distance and have a rest before travelling further. A driver kept record of the distance he travelled (in km) on 8 trips and the amount of time he rested (in minutes) before he continued his journey. The information is given in the table below.

Distance travelled (in km) (x)	180	200	400	600	170	350	270	300
Amount of rest time (in minutes) (y)	20	25	55	120	15	50	40	45

Mathematics	KZN-GRADE 12	Spring	Revision	2024
4. P 0	Walaadad equation of the association of the association of the data		(3)	L1
4.2	If a truck driver travelled 550 km, predict the amount of time (in minutes) th	at he	(2)	L2
	should rest before continuing his journey.			
4.3	Write down the correlation coefficient for the data.		(1)	L1
4.4	Interpret your answer to QUESTION 4.3		(1)	L1
1				
	DRF NOV 2020(2)			

DBE NOV 2020(2)

5. An annual sports festival is held over a period of 11 days. A tuckshop sells hot drinks at this festival. On each of the first 10 days, the owner of the tuckshop recorded the temperature at 13:00 and the number of cups of hot drinks sold. This information is presented in the table and scatter plot below.

Temperature (in °C)	14	24	26	18	20	28	22	15	12	19
Number of hot drinks sold	410	258	192	324	328	156	280	384	230	280

- 5.3 The owner observed that he had used one litre of milk for every 8 cups of hot drinks sold. If the temperature at 13:00 on the 11th day was expected to be 17 °C, predict the number of 1-litre boxes of milk the owner should buy for the 11th day. (3) L2
- 5.4 Identify an outlier in the data.

(1) L1

Mathematics KZN-GRADE 12 Downloaded from Standard group and the second second

6 On the first Saturday of a months, information was recorded about the temperature at midday (in $^{\circ}C$); and the number of ice creams sold at an ice cream stand at a particular beach. The data is shown in the table below and represented on the scatter plot. This data's least squares regression line is drawn on the scatter plot.

- 6.1 Refer to the scatter plot. Would you say that the relationship between the temperature at midday and the number of ice creams sold is weak or strong? Motivate your answer (2) L1
- 6.2 Determine the equation of the least squares regression line.
- 6.3 Predict the number of ice creams that will be sold on a Saturday if the temperature is 2 $^{\circ}C$ at midday. (2) L2
- 6.4 On another first Saturday of the month, the temperature at midday was $24^{\circ}C$ and 40 ice creams were sold. If this data was added to the data set, how will the prediction of the number of ice creams sold within the given domain be affected? Motivate your answer. (2) L3

IEB/ NOVEMBER 2023

7. The percentage results obtained by 26 learners in a mathematics test is displayed in the box and whisker plot below:

If the range of the data is **80** and the interquartile range (IQR) is **30**:

- 7.1 Determine the value of a.
- 7.2 Determine the value of \boldsymbol{b} .
- 7.3 Determine whether the minimum result obtained (using your answer to 7.1) is an outlier or not. Use the formula $Q1 1.5 \times IQR$ (2) L2

(1) L1

(1) L1

(3) L1

KZN-GRADE 12

Spring Revision 2024

(3) L3

(2) L4

7. DOWN AGACIA GAR a Stranhae time Stern GS in Gamutes by 7 learners studying natics test and their mark obtained as a nercentage

of a mathematics test and then mark obtained as a percentage.								
Time spent (x) in minutes	0	90	90	80	90	120	150	
Mark obtained (<i>y</i>) as a %	15	59	60	73	85	90	95	

Predict, using the equation of the least squares regression line in the form y = a + bx for this data, what mark a learner who studies for 180 minutes will obtain. Round your answers to 3 decimal places.

Is this prediction in 7.4.1 a reliable one? Explain.

DBE/ MAY/JUNE 2023

8. The ages of the people who attended a music concert was summarised in the table below.

AGE	NUMBER OF PEOPLE
$5 < x \le 15$	20
$15 < x \le 25$	25
$25 < x \le 35$	60
$35 < x \le 45$	90
$45 < x \le 55$	55
$55 < x \le 65$	40
$65 < x \le 75$	30

- Write down the modal class of the data. 8.1
- 8.2 How many people attended the music concert?
- Draw a cumulative frequency graph (ogive) to represent the above data. 8.3
- 8.4 Use the cumulative frequency graph to determine the median age of the people who attended the music concert.

(2) L2

(2) L2

(1) L1

(1) L1

(4) L2

MAY/JUNE 2024

8.5 Fifty athletes need to access suitable training facilities. The table below shows the distances in km. that they need to travel to obtain access to suitable training facilities.

	Distance (x km)	Number of athletes	Cumulative frequency	
	$0 < x \le 5$	3	3	
	$5 < x \le 10$	••••	10	
	$15 < x \le 15$	20		
	$15 < x \le 20$	••••	42	
	$20 < x \le 25$	5		
	$55 < x \le 30$	••••	50	
8.5.1	Complete the table above		Innn	(2) L1
8.5.2	On the grid provided draw the c	umulative frequency curv	e(ogive)	(3) L2

8.5.3 Calculate the interguartile range

Mathematics KZN-GRADE 12 **Downloaded from Stango Sephysics 2021**

9. Formula 1 (F1) race car drivers have to endure high G-forces at extremely high temperatures. They tend to lose close to 4 kg of weight after every race.

The table below shows the total weight lost by 40 different race car drivers after the duration of one race.

1		INTERVAL OF WEIGHT LOST (IN GRAMS)	NUMBER OF DRIVERS	
Ŕ		$0 < w \le 500$	1	
4	ШО	$500 < w \le 1000$	2	
		$1000 < w \le 1500$	3	
		$1500 < w \le 2000$	8	
		$2000 < w \le 2500$	6	
		$2500 < w \le 3000$	15	
		$3000 < w \le 3500$	5	
		Total	40	
9.1	Writ	e down the modal class of the data.		(1) L1
9.2	Calc	ulate the estimated mean weight-loss of	the race car drivers.	(3) L2
	of we value (4 ; 0 9.3.1 9.3.2 9.3.3	eight lost in race 2 was k grams more that e of the ogive, representing race 2 was (2)). Sketch the ogive (cumulative frequen How will the range of race 2 compare Determine the average weight lost in LIMPOPO DOE/SE	an in race 1. It is given that the ma 3 504 ; 40) and the graph was grou cy graph) representing race 2 in the e with the range of race 1? race 2. CPTEMBER 2023	ansound ximum inded at ine. (4) (1) L1 (4) L2
10.	The	following set of data 3 ; 4 ; 4 ; 4 ; 6 ; 10	; 12 ; 12; <i>y</i> has mean of 7	
10.1	Dete	rmine:		
	10.1.	1 the value of y		(2) L1
	10.1	2 the median of this set of data points		(1) L1
10.2	Two	additional numbers, $7 - n$ and $7 + n$, a	re added to the data set.	
	10.2	1 Calculate the mean of these eleven nu	umbers.	(2) L1
	10.2.	2 Determine the standard deviation if the standard deviation of the mean, lie in EC/JU	the data points, that are within ONF the interval $3 < x \le 11$ NE 2022	E (2) L2
The l Exan	oox ar	nd whisker diagrams below show the Ma on. It is also given that class B has a Me	thematics results of class A and c dian of 65%.	lass B in the June

- 11.2 Determine which class had the greatest Inter Quartile Range (IQR). (1) L1
- 11.3 What percentage of class A scored less than 60%?

11.

11.4 If all the learners in class A were given an extra 5%, what would happen to the standard deviation of the marks in class A?(1) L2

(1) L1

(1) L2

Mathematics KZN-GRADE 12 1 Downloaded stripmer Staanmagenbyssics. com

IEB/ MAY 2022

12. Refer to the cumulative frequency curve below that represents the results of 80 pupils that wrote a test out of 60 marks.

- 13.1 Complete the cumulative frequency table for above data.13.2 Draw a cumulative frequency curve for the above data on the grid provided.
- 13.3 Indicate on your graph where you would read off:

13

- 13.3.1 The number of pupils that took 135 seconds to complete the course (Use the letter A) (1) L1
- 13.3.2 The value of *t* if 60% of the pupils took less than *t* seconds to complete the obstacle course. (Use the letter B).(1) L1
- 13.3.3 The 75th percentile. (Use the letter C)

(4) L2

(1) L2

Mathematics KZN-GRADE 12 Downloaded from Stanmenephysics com

The frequency polygon represents the results obtained by 27 learners in a mathematics 14. test. The class intervals are given as [0;20); [20;40); [40;60); [60;80); [80;100).

(3) L1

(1) L1

(1) L1

(1) L1

- 14.2 What percentage of learners obtained a result in the interval $60 \le x < 80$? (1) L1
- 14.3 Use the information given on the frequency polygon to draw a Cumulative Frequency Curve (Ogive) that represents the results of this group of learners. (3) (3) L2

Gauteng north strategy for learner attainment.

The marks obtained by learners of a certain school in mathematics is represented by a histogram below

- 15.1 How many learners wrote the test? 140
- 15.2 Write down the modal class. 60-69

Free state preparatory 2017

The June results of 10 learners in grade 11 class taking accounting and mathematics are 16. recorded as follows. The table below shows the marks (out of 100) achieved by learners in both subjects

accounting(x)	72	78	90	78	46	67	80	73	63	35
mathematics (y)	56	64	85	93	32	74	86	77	72	54

16.1 CALCULATE

- 16.1.1 The mean mark for mathematics
 - 16.1.2 The standard deviation of the data for mathematics (1) L1
- 16.2 How many of these 10 learners obtained a mark for mathematics that is above ONE standard deviation from the mean. (2) L2 (3) L2
- 16.3 Calculate the least squares regression line of the above data.

Mathematics KZN-GRADE 12 **Downloaded from Stanmorephysicsveniber 2019**

17. The diagram below shows the relationship between the time spent on an electronic device and the amount of time spent doing physical activity during the day.

- 17.1 Circle the correlation coefficient that best describes the data represented in the diagram above: r = 1 r = -1 r = 0.8 r = -0.8
- 17.2 If A and B were removed from the data set above, what would happen to the:
 - 17.2.1 Correlation coefficient?
 - 17.2.2 gradient of the line of best fit?
 - 17.2.3 Circle the line below which best describes the person represented by A.A person who has just bought an i-pad and plays computer games.A person who watches sport on television and likes to read books.
 - A person who plays professional sport and studies via the internet.
- 17.3 Please refer to the information in the table below and answer the questions that follow:

	Coffee shop A	Coffee shop B
days of the week	cups of coffee sold	cups of coffee
	per day	sold per day
Monday	low	Fairly high
Tuesday	low	Fairly high
Wednesday	low	Fairly high
Thursday	low	Fairly high
Friday	high	Fairly high
Saturday	high	Fairly high
Sunday	high	low
mean	350 cups/day	350 cups/day
STANDARD	m cups/day	P cups/day
DEVIATION		

17.3.1 Explain why the standard deviation at Coffee Shop B is smaller than the standard deviation at Coffee Shop A.

(1) L2

(1) L1

(1) L1

(1) L1

(1) L1

17.3.2 If Coffee Shop A decides to sell coffee at a higher price on the weekends, then how would this affect the mean and standard deviation? (2) L2

Spring Revision 2024

Mathematics

KZN-GRADE 12

Downsloadachossinestrates come could have a contract the mean and

(1) L2

standard deviation both increase? Explain your answer.

LIMPOPO/SEPTEMBER 2023

18 A mathematics teacher wants to make an unbiased prediction of her Grade 12 learners' final marks. She uses their SBA mark and the final mark. The results are as follows:

SBA MARK(%)	FINAL MARK (%)	SBA MARK(%)	FINAL MARK (%)
42	51	48	59
35	43	72	85
69	76	57	63
62	73	25	35
83	85	65	59
75	72	68	75

(4) L 2
(2) L1
ur
(2) L2
(3) L1
(2) L1

TOPIC	C Analytical Geometry [40±3]				
	GUIDELINE	ES, SUMMARY NOTES, & STRATEGIES			
1. Distance form	ula: W	hen given the distance between two points with both points given but			
$d = \sqrt{(x_1 - x_2)^2}$	$\overline{y_1^2 + (y_1 - y_2)^2}$ on	e value being a variable. Use this formula through substitution.			
2. Midpoint:	Re	emember, midpoint might be given and be requested to calculate any			
$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	$\left(\frac{y_2}{2}\right)$ en	d point.			
3. Gradient: $m =$	$ \frac{y_1 - y_2}{x_1 - x_2} = 3.1 $	1 Collinear points and parallel lines have same (equal) gradient. i.e. $m_1 = m_2$ 2 The product of the gradient of perpendicular lines is -1 i.e.			
	<u> </u>	$m_1 \times m_2 = -1$ 1 The inclination of a line is the angle			
4. Inclination: ta	$n\theta = m$	formed with the horizontal in an anti- clockwise direction. On the cartesian plane, the inclination of a line is calculated by finding the angle formed at the x-axis measured in anticlockwise direction. θ is the angle of inclination of line AB.			

Mather	natics	KZN-GRADE 12	Spring Revision 2024
	Downloaded trom	$\alpha = \theta_2 - \theta_1$	θ
			$\alpha \theta_1$
		4.3 Sometimes you will be given the ar to determine the gradient.	ngle of inclination then requested
5.	Equation of a straight line:	Take note of the following form:	
	y = mx + c or	ax + by + c = 0	
	$y - y_1 = m(x - x_1)$		
6.	Point of intersection	Equate the equations of those two lines equations in a case where a line intersec	or solve using simultaneous ets a circle.
7.	Equation of the circle:	(a;b) is the centre and r is the radius,	
	$(x-a)^2 + (y-b)^2 = r^2$	so, when centre is the origin then: $x^2 + y$	$v^2 = r^2$
1.	Interpretation of circles		
		Externally: $d_{AB} = r_A + r_B$ where A and B are centres	
	8.1 Touching at one point	Internally: $d_{AB} = r_A - r_B$ where A and B are centres	•B
	8.2 Intersecting at two points	$d < r_1 + r_2$	
	8.3 Not touching at all	$d > r_1 + r_2$	

Mathematics	KZN-GRADE 12	Spring Revision 2024
Downloaded from	Stanmorephysics.com	
	Same centre (concentric circles)	·A
	9.1 Tangent is always perpendicular to	the radius at the point of contact.
2. Equation of a tangent	Meaning: $m_{\rm rad} \times m_{\rm tan} = -1$	
	9.2 Tangents from the same point outside	de the circle are equal in length.
	10.1 Area of a triangle (known height):	$A = \frac{1}{2}$ base×height
3 Calculation of Areas	10.2 Area of a triangle (known angle): u	use area rule
	10.3 Area of regular Quads: use standar	d formulas from grade 10
	10.4 Area of irregular Quads: use the di	fference of areas of known
	figures.	

DBE FEB/MARCH 2010

1 The straight line AB has the equation 5y-3x-5=0. Another straight line CD is drawn to intersect AB at P(5;4) such that the acute angle between AB and CD is 45°

- 1.1 Determine the gradient of the line CD. (5) L31.2 Hence, or otherwise,
 - determine the equation of the line CD. (2) L1

Mathematics KZN-GRADE 12 Downloaded from Stanmorephysics.com

2 In the diagram below, A, B and C are vertices of a triangle. AC is extended to cut the *x*-axis at D

Calculate the gradient of:		
a) AD	(2)	L1
b) BC	(1)	L1
Calculate the size of $D\hat{C}B$.	(3)	L2
Write down an equation of		
the straight-line AD.	(2)	L1
Determine the coordinates of		
M, the midpoint of BC.	(2)	L1
If $G(a;b)$ is a point such that		
A, G and M lie on the same		
straight line, show that		
b = 2a + 1	(4)	L4
Hence calculate TWO		
possible values of		
<i>b</i> if $GC = \sqrt{7}$.	(6)	L4
	Calculate the gradient of: a) AD b) BC Calculate the size of $D\hat{C}B$. Write down an equation of the straight-line AD. Determine the coordinates of M, the midpoint of BC. If $G(a;b)$ is a point such that A, G and M lie on the same straight line, show that b = 2a+1 Hence calculate TWO possible values of b if $GC = \sqrt{7}$.	Calculate the gradient of: a) AD (2) b) BC (1) Calculate the size of $D\hat{C}B$. (3) Write down an equation of the straight-line AD. (2) Determine the coordinates of M, the midpoint of BC. (2) If $G(a;b)$ is a point such that A, G and M lie on the same straight line, show that b = 2a + 1 (4) Hence calculate TWO possible values of b if $GC = \sqrt{7}$. (6)

SEPTEMBER 2023 LIMPOPO

- 3 In the diagram below A, B(-2;-7), C(4;0) and D are the vertices of a kite. E is the midpoint of the
 - diagonal BD and AC \perp BD at E. The equation of AC is $y = -\frac{1}{2}x + 2$.

Determine

- 3.1 The equation of BD (4) L2
- 3.2 The coordinates of E (3) L1
- 3.3 If the ratio CE:EA=1:3, determine the coordinates of A.
- 3.4 Kite PQRS is obtained after the measurements of kite ABCD is enlarged by a scale factor of 2. Calculate the area of kite PQRS.
 (5) L4

JUNE 2021 LIMPOPO

- 4.1 If the points K(-2;6), L(0;5) and M(8; y) lies on the same straight line, determine the numerical value of y.
 4.2 Determine the equation of the line perpendicular to the line in 4.1 and passing through the point (-2;6).
 (4) L3
- 4.3 In the figure, $\triangle ABP$ has vertices A(8;2), B(-4;10) and P(7;11)

(2) L1

NORTHERN CAPE SEPT 2023

5.1 In the diagram below, P is the midpoint of the line segment joining M(-6;3) and Q(-4;11). The

a)	Write down the coordinates of		
	P, the midpoint of MQ.	(2)	L1
b)	Determine the coordinates of	$\langle \mathbf{a} \rangle$	

- T. (3) L2
- c) Calculate the size of θ . (4) L3
- 5.2 The distance between the origin and point A(-2; k-1) is 2k units. Calculate the value of k. (4) L3
- 5.3 Given: S(2;3), Y(2+4a;3-5a) and U(2+4b;3-5b) with $a \neq 0, b \neq 0$ and $a \neq b$.
 - a) Prove that the Point S, Y and U are collinear.
 - b) Hence, determine the equation of the straight line SYU in the form y = mx + c. (3) L2
- 5.4 Points T(2t-11;t+2), P(-2;3), Q(4;-1) and R(4p;p-7) are given. Determine the value of:
 - a) P if QR is parallel to x axis.
 - b) *t* if points T, P and Q are collinear.

(3) L3

(2) L2

(3) L2

KZN-GRADE 12 **Downloaded from Stanmopsphysics.com**

6 In the diagram below, points A(-2;-3), B(3;-4), C(4;r) and D(2;1) are the vertices of quadrilateral ABDC. P is the midpoint of line AD.

- 6.1 Calculate the value of r if AD || BC. (4) L2
- 6.2 What type of quadrilateral is ABCD? (1) L1
- 6.3 Determine the coordinates of P. (2) L2
- 6.4 Prove that $BP \perp AD$. (2) L2
- 6.5 Determine the equation of the circle passing through PBA in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (5) L3

6.6 Calculate the maximum radius of the circle having equation $x^{2} + y^{2} - 2x \cos \theta - 4y \cos \theta = -2$ (5) L4

EC JUNE 2024

7 In the diagram below, a circle with centre C(3;-1) and a radius of 10 units is drawn. PQR and PT are tangents to the circle at Q and T respectively. PT is parallel to the x axis. C(k;21), C and P are vertices of \triangle RCP. QR=20 units.

7.1 Write down the size of CQR.

- (1) L1
- 7.2 Calculate the length of RC and leave your answer in the surd form
 (2) L1
- 7.3 Calculate the value of k, if R lies in the first diagram. (4) L2
- 7.4 Determine the equation of the circle with centre C, passing through Q and T. Write your answer in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (2) L1

7.5 Determine the equation of PT (2) L2

7.6 The equation of the line PR is given by 3y - 4x = 35

- a) Calculate the coordinates of P
- b) Calculate the length of PQ, give a reason for your answer
- c) Is the area of $\triangle QRC =$ area of $\triangle QPC$? Motivate your answer by means of (3) calculations.
- d) Consider the line x = q, for what value(s) of q will the line be not a tangent to the circle with centre C.
- ^{7.7} Consider another circle with equation $(x-3)^2 + (y+16)^2 = 16$ and having centre M.
 - a) Write down the coordinates of the centre M.

(1) **L1**

(2)

(2)

(2)

L1

L1

L2

L3

Mathematics	KZN-GRADE 12	Spring 1	Revisior	n 2024
Dow	Maacheddwnane Isagta 5000 fan Byfan Straowith centre M		(1)	L1
c)	Prove that the circle with centre C and the circle with centre M, do not t	touch		
	each other (intersect).		(3)	L2
5	LP SEPT 2023			
8 An infini	te number of circles, each touching the next, are drawn between C and O	. The cer	ntres of	all
			•. •	.1

the centres lie on the negative x-axis. The radius of the largest circle, centred at A, is 4 units and the radius of each circle thereafter is halved. B is a point on the largest circle.

8.1 Show that OC = 16 units (2) L2
8.2 If BC is a tangent to circle A at B, write down the size of ABC, providing a reason for your answer (2) L2
8.3 Hence, determine tanC (4) L2
8.4 Determine the equation of BC.

(3) L3

MP SEPT 2023

9 In the diagram A(-3;11) and C(1;3) are points on the circumference of a circle with diameter AB and centre T. The equation of AB is given y = 3x + 20

- 9.1 Determine the equation of the perpendicular bisector of AC (4) L2
- 9.2 Show that the coordinates of the centre of the circle (-5;5) (3) L3
- 9.3 Calculate the length of the diameter AB (3) L1
- 9.4 The tangent to the circle at A cuts the *y*-axis at (0;p). Calculate the numerical value of *p* (4) L2
- 9.5 If the circle through A, B and C is moved 3 units to the right and 2 units upwards, and the radius is halved, write down the equation of the new circle

(3) L3

9.6 A new circle with equation $(x-2)^2 + (y-3)^2 = 4$ and centre P is given. Will this circle intersect the original circle or nor? Motivate your answer with the necessary calculations. (4) L2

KZN-GRADE 12 **Downloaded from Stanmorephysicsaber2016**

L3

L1

L1

L2

L3

¹⁰ M is the centre of the circle defined by $x^2 + y^2 - 2x - 4y + 1 = 0$. P(p;-p) is any point on the tangent to the circle at T.

10.1 Show, by calculations that the coordinates of M are (1;2). (3) L2

0.2 Prove that the length of

$$PT=\sqrt{2p^2+2p+1}$$
(3)

10.3 Calculate the coordinates of P where P is a close as possible to T and hence calculate the minimum length of PT (5) L4

FREE STATE SEPTEMBER 2023

1

11 In the digram, a circle centred at M(a;b) with a radius of 5 units touches the x-axis and the y-axis at points N and L, respectively. QPT is a tangent to this circle at P(-1;8). The coordinates of T are (2;y).

$$(x-h)^2 + (y-k)^2 = r^2$$
 (6) L4

11.4 The circle with centre M is translated across the Cartesian plane in such a way that both horizontal and vertical axes remain tangents to the circle simultaneously. Write down all the possible coordinates of the centres of the newly translated circles, given that

 \sqrt{xy} must be real for ALL values of x and y

KZN-GRADE 12 Downloaded from States State

¹² In the diagram below, the equation of the circle with centre O is $x^2 + y^2 = 20$. The tangent PRS to the

circle at R has the equation $y = \frac{1}{2}x + k$. PRS cuts the y -axis at T and the x -axis at S.

- 12.1 Determine, giving reasons, the equation of OR in the form y = mx + c (3) L2
- 12.2 Determine the coordinates of R. (3) L3
- ^{12.3} Determine the $\frac{\text{area of } \triangle \text{OTR}}{\text{area of } \triangle \text{OSR}}$, given that R(2;-4). (6) L4
- 12.4 For which value(s) of k will the line $y = \frac{1}{2}x + k$ intersect the circle at two points?

(5) L4

LIMPOPO PRE JUNE 2024

¹³ The equation of a circle is $x^2 + y^2 - 2x + 4y - 4 = 0$.

- 13.1 Determine the coordinates of A, the centre of the circle and the length of the radius, r (5) L3
- 13.2Calculate the value of p in
N(1; p) with p > 0 is a point
on the circle(1)L2
- 13.3 Determine the equation of the tangent to the circle at N (2) L2

13.4 A second circle, centre B, with equation $(x-4)^2 + y^2 = k^2$ cuts the circle centred A twice. Determine the values of k for which point A will be inside the circle B (6) FREE STATE JUNE 2024

14 Drawn below is the BIGGER circle centre at M and SMALLER circle centred at K. ATE is a tangent to the bigger circle at T. TN is a diameter of the bigger circle and NK is a radius of the smaller circle. The coordinates of T(-1;8), M(3;4) and L(3;-5).

- 14.1 Determine the equation of the circle in the form of (2) L1
- 14.2 Determine the equation of the tangent through point T (5) L3
- 14.3 Does point P(7;3) lie inside, outside or on the circle. Show all calculations (4) L3
- 14.4 If it is further given that KL is a tangent at L, to the circle centred at M. Determine the coordinates of K, the centre of the smaller circle.

(5) L3

L4

KZN-GRADE 12 Mathematics Downloaded from Starmarephyericemeer 2020

15 Circles C_1 and C_2 in the figure below have same centre M. P and A are points on C_2 . PM intersects C_1 at D. The tangent BD to C_1 intersects C_2 at B and E. The equation of circle C_1 is given by $x^2 + 2x + y^2 + 6y + 2 = 0$ and the equation of line PM is y = x - 2.

15.1	Calculate the coordinates of		
	centre M.	(3)	L3
15.2	Determine the radius of the		
	circle C ₁	(1)	L1
15.3	Determine the coordinates D		
	the point where line PM and		
	circle C_1 intersect.	(5)	L3
15.4	Give reason why		
	$\hat{MDB} = 90^{\circ}.$	(1)	L1

- 15.5 If is given that $DB = 4\sqrt{2}$, determine MB, the radius of circle C₂ L2 (4)
- Write down the equation of circle C₂ in the form $(x-a)^2 + (y-b)^2 = r^2$. 15.6

(1)L1

DBE MAY/JUNE 2023

16.1

In the diagram, the equation of the circle centred at N(-12;5) is $x^2 + y^2 + 24x - 10y + 153 = 0$. The 16 equation, the equation of the circle centred at M is $(x+6)^2 + (y+3)^2 = 25$. PS and PR are tangents to the circle centred at M at S and R respectively. PR is parallel to the x-axis. K(-17;-5) is a point on PS. The straight-line joining N and M cuts the smaller circle at T and the larger circle at S.

of M L2 (2)16.2 Calculate the: Length of the radius of a) the smaller circle L2 (2)Length of TS (4) L3 b) 16.3 Determine the equation of the tangent: PR L2 a) (2)PS, in the form b) y = mx + c(5) L2 (5)L3 L2 (2)

Write down the coordinates

- 16.4 Quadrilateral PSMR is drawn. Calculate the:
 - a) Perimeter of PSMR
 - b) area of $\triangle NPS$ Ratio of _ area of quadrilateral PSMR

KZN-GRADE 12 **Downloaded from Statemer ephysicses** 2016

17 The diagram below consist of two circles, which touch each other externally at C(1;-2). The smaller circle has its centre O at the origin. The other circle has centre D(t;-6). CA is a common tangent which intersects the x-axis at A. CDE is a diameter of the larger circle.

- 17.1 Give a reason why the pointsO, C and D lie on a straightline. (2) I
- line. (2) L2 7.2 Calculate the gradient of OC (2) L1
- 17.2 Calculate the gradient of OC (2) L117.3 Hence, show that the value of
- t = 317.4 Determine the equation of the tangent AC in the from y = mx + c(2) L2
 (3) L2
- y = mx + c (3) 17.5 Calculate the coordinates of E
 - (2) L2

L3

(6)

- 17.6 Determine the equation of a circle passing through the points A(5;0), C and E in the form $(x-a)^2 + (y-b)^2 = r^2$
- 17.7 If a circle with centre D and equation $(x-t)^2 + (y+6)^2 = r^2$ has to cut the circle with centre O twice, give all possible values of r. (4) L4

KZN MARCH 2016

18 In the sketch below, the circle with sentre M touches, the y - axis at P and the x -axis at R(2;0). The straight line defined by the equation y = -x - 2 cut the circle at point Q and passes through point P.

8.1	Write down the coordinates of P	(1)	L1
8.2	Write down the coordinates of M, the		
	centre of the circle.	(1)	L1
8.3	Show that the equation of the circle		
	with centre M is :		
	$x^2 + y^2 - 4x + 4y + 4 = 0$	(3)	L2
8.4	The straight line with equation		
	y = -x + c is a tangent to the circle		
	with centre M. Calculate the		
	numerical values of c	(5)	L4
	Inne		

KZN-GRADE 12 **Downloaded from Stanmsrephy/sigs: 2021**

(6)

L4

19 In the diagram, the circle centred at C(2; p) is drawn. A(5;1) and B(-3;-3) are points on the circle. E is the midpoint of AB.

19.1	Calculate the coordinates of E, the		
	midpoint of AB	(2)	L1
19.2	Calculate the length of AB	(1)	L1
19.3	Determine the equation of EC	(4)	L3
19.4	Show that $p = 3$	(1)	L1
19.5	Show by calculations that the equation of the circle is		
	$x^2 + y^2 - 4x + 6y - 12 = 0$	(4)	L3
19.6	Calculate the values of t for which		
	the straight line $y = tx + 8$ will not		
	intersect the circle.		

KZN JUNE 2024

In the diagram, DEFG is a parallelogram with vertices D(x;7), E(-5;0), F(1;-8) and G. $GH \perp EF$, with H on EF, such that EH = HF. The angle of inclination of DG is β . DE has a positive gradient. DG cuts the y-axis at $J\left(0; \frac{5}{3}\right)$ and the x-axis at K. The length of $DE = 5\sqrt{2}$.

20.1	Calculate the gradient of EF.	(2)	L1
20.2	Calculate the coordinates of H.	(2)	L1
20.3	Determine the equation of GH in the form $y = mx + c$.	(3)	L2
20.4	Calculate the size of β .	(3)	L2
20.5	Calculate the size of OJK.	(2)	L2
20.6	Calculate the value of x .	(5)	L2
20.7	Calculate the area of DEOJ.	(6)	L3

KZN-GRADE 12

KZN-GRADE 12

QUES PIONNIcaded froms Stannor MASy Sice RAOP 12

If $\cos^2 12^\circ - \sin^2 12^\circ = m$, express, without the use of a calculator, the following in terms of *m*.

1.1	cos 24°	(2)	L1
1.2	$\frac{\sqrt{3}}{2}\cos 6^\circ + \frac{1}{2}\sin 6^\circ$	(4)	L2
1.3	sin 426°	(3)	L2
1.4	$\cos 48^{\circ}$	(3)	L2
1.5	sin132°	(3)	L2
1.6	cos 33°	(3)	L3
1.7	$2\sin^2 12^\circ$	(4)	L3
1.8	cos 54°	(3)	L2
1.9	sin 42°	(3)	L2

QUESTION 2

SEPTEMBER 2018 NORTH WEST

If $\sin 32^\circ = t$, determine in term of *t*, the value of the following:

2.1	sin 212°	(3) L2
2.2	cos122°	(3) L2
2.3	cos 64°	(3) L2
2.4	sin16°	(4) L3
2.5	tan 392°	(3) L2

QUESTION 3

3.1 If $\cos\beta = k$, express the following in terms of k, without using a calculator:

$$\sin\left(\frac{\beta}{2} + 45^{\circ}\right)\cos\left(\frac{\beta}{2} + 45^{\circ}\right) \tag{5} L3$$

QUESTION 4

GAUTENG SEPTEMBER 2023

4.1 In the diagram below, P is the point (12; 5) and T(a; b). OT \perp OP; PS $\perp x$ -axis and PÔS = θ .

Without using a calculate, determine,

- the value of: 4.1.1 $\tan \theta$ (1) L1 4.1.2 $\sin \theta$ (2) L2
- 4.1.2 $\sin(-90^\circ + \theta)$ (2) L2 (2) L2
- $\operatorname{All}_{\mathcal{A}} = \operatorname{All}_{\mathcal{A}} = \operatorname{All}_{\mathcal{A}$
- 4.1.4 $\sin 2\theta$ (3) L2
- 4.1.5 *a*, if TO = 19,5 units. (4) L3

KZN-GRADE 12 Downloaded from Stanoposphyeies (2012)

In the diagram below, P(3;4) and R(m; -12) are two points as indicated. 4.2

Answer the following questions without using a calculator.

.1	Write down the value of $tan \alpha$	(1)	L1
.2	Determine the value of		

$$\sin(90^\circ + \alpha)$$
 (3) L2
Determine the value of *m* if it is

given that
$$12 + 13\sin\beta = 0.$$
 (4) L2

.1

Determine the value of
$$(2)$$

$$\sin(\alpha + \beta) \tag{3} L3$$

QUESTION 5

1

5. If 4 tan θ = 3 and 180°< θ <360°, determine with the aid of a diagram:

5.1.1 $\cos(180^\circ + \theta)$ (4) L3

5.1.2
$$\tan 2\theta$$
 (3) L2

$$5.1.3 \quad \sin(45^\circ + \theta) \tag{4} L2$$

5. Given that
$$13 \sin \alpha - 5 = 0$$
 and $\tan \beta = -\frac{3}{4}$ where $\alpha \in [90^\circ; 270^\circ]$ and $\beta \in [90^\circ; 270^\circ]$

Determine, without using a calculator, the value of the following:

5.2.1	$\cos \alpha$	(4)	L3
5.2.2	$\cos(450^\circ - \beta)$	(2)	L2

5.2.3
$$\cos(\alpha + \beta)$$
 (3) L2

If $6\cos 2\theta + 5 = 0$, where $2\theta \in [180^\circ; 360^\circ]$. Calculate without using a calculator the 5. 3 values in simplest form of:

5	5.3.1 $\sin 2\theta$		(3)	L2
5	5.3.2 $\cos\theta$		(4)	L3
QUES	STION 6	للالم		
Simpl	ify without using a calculator:	Innat		
61	sin 260°. cos 170°			
0.1	sin 10°. sin 190°. cos 350°		(6)	L2

6.2
$$\frac{\cos 750^{\circ} \cdot \tan 315^{\circ} \cdot \cos(-\theta)}{\cos(360^{\circ} - \theta) \cdot \sin 300^{\circ} \cdot \sin(180^{\circ} - \theta)}$$
(7) L2

6.3
$$\frac{\sin 104^{\circ} (2\cos^2 15^{\circ} - 1)}{\tan^{28^{\circ}} \sin^2 412^{\circ}}$$
(6) L3

6.4
$$\frac{\cos(180^\circ + \theta) \cdot \tan(720^\circ - \theta) \cdot \sin^2(90^\circ - \theta)}{\sin(-\theta + 180^\circ)} + \sin^2\theta$$
(6) L2

Mather	matics KZN-GRADE 12	Spring Revisior	n 2024
6.5	$D_{\cos(90-2x),\tan(180+x)+\sin(x+300)}$ ephysics. com	(5)	L2
QUE	STION 7		
7.1	Evaluate the following without the use of a calculator: $sin75^{\circ} - sin15^{\circ}$	(3)	L2
7.2	Prove without the use of a calculator: $\cos 80^\circ + \cos 40^\circ = \cos 20^\circ$	(3)	L3
7.3	Simplify the following without use of a calculator: $\sin 35^\circ + \sin 25^\circ - \sin 85^\circ$	(3)	L3
7.4	Simplify without the use of a calculator: sin169°sin41°+sin79°sin131°	(5)	L2
7.5	Simplify fully: $\cos(385^\circ + \beta) \cdot \sin(35^\circ - \beta) + \sin(25 + \beta) \cdot \sin(55^\circ + \beta)$	(5)	L3
7.6	Determine, without using a calculator, value of $(\cos 15^\circ + \sqrt{3}\sin 15^\circ)$	(5)	L4
7.7	Given: $k = \sqrt{3} \cos x + \sin x$, Write k in the form of $t \sin(x + \theta)$	(4)	L3
QUE	STION 8		
Deten	rmine the general solution of the following: (2 - 202) = 1 - (1 - 102)		т а
8.1	$\cos(2x - 20^\circ) = \sin(x + 10^\circ)$	(6)	L2
8.2	$\cos x = 3\sin(x - 45^\circ)$	(6)	LZ
8.3	$\sin x + \cos x = \sqrt{\frac{3}{2}}$	(6)	L3
8.4	$\sin 2x + 5 \ \cos 2x = 0$	(5)	L3
8.5	$\cos 2x = 1 - 3 \ \cos x$	(6)	L3
8.6	$\sin^2 x + \sin 2x - \sin x - 2 \cos x = 0$	(6)	L3
8.7	$6 \sin^2 x + 2 \sin 2x = 1$	(6)	L3
8.8	$\tan x = 2\sin 2x$ where $\cos x < 0$	(6)	L3
8.9	$3^{2\tan x} - 3^{\tan x+1} = 54$	(6)	L3
QUE	STION 9		
9.1	Prove the following identities:		
	9.1.1 $\frac{\sin 3x}{\sin x} + \frac{\cos 3x}{\cos x} = 4\cos 2x$	(5)	L3
	9.1.2 $2\cos 5A\cos 3A - \cos 8A + 2\sin^2 A = 1$	(5)	L4
	9.1.3 $\cos(45^\circ + x)\cos(45^\circ - x) = \frac{1}{2}\cos 2x$	(5)	L3
	9.1.4 $\frac{\cos 2x}{1+\sin 2x} = \frac{\cos x - \sin x}{\sin x + \cos x}$	(5)	L3
	9.1.5 $\frac{\cos^2 x - \cos x - \sin^2 x}{2\sin x \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x}$	(5)	L3
9.2	For which values of x will $\frac{2 \tan x - \sin 2x}{2 \sin^2 x}$ be undefined in the interval $0^\circ \le x \le 1$	≤180°? (3)	L2
9.3	Calculate the value(s) of x if $\tan 2x + 2\sin x$ is undefined for $x \in [0^\circ; 360^\circ]$	(5)	L3

KZN-GRADE 12

(4)

L2

Downloaded from Stanmonaphysics Apag

GUIDELINES, SUMMARY NOTES, & STRATEGIES

- The focus of trigonometric graphs is on the relationships, simplification and determining points of intersection by solving equations, although characteristics of the graphs should not be excluded.
- Candidates must be able to use and interpret functional notation. Learners must understand how f(x) has been transformed to generate f(-x), -f(x), f(x + a), f(x) + a and a.f(x) where $a \in \mathbb{R}$.

QUESTION 10

Given :
$$f(x) = \sin(x - 30^\circ)$$
 and $g(x) = \cos 3x$ for $x \in [-90^\circ; 90^\circ]$

- 10.1Write down the period of g.(2)L110.2Draw sketch graphs of f and g for $x \in [-90^\circ; 90^\circ]$. Clearly show all intercepts with
the axes and the co-ordinates of all the turning points and end points of both curves.(4)L2
- 10.3 Use the graphs to determine the value(s) of x for $x \in [-90^\circ; 90^\circ]$, where:

10.3.1
$$f(x) > g(x)$$
 (2) L2

10.3.2
$$f(x).g(x) > 0$$
 (2) L3

10.3.3
$$g(x) < 0$$
 (2) L2

- 10.4 Determine the range of h(x) = 3f(x) 1. (2) L2
- 10.5 The graph of f is shifted 60° to the right to obtain a new graph h.(3) L2UVENE TO A Structure of h.

QUESTION 11

NOVEMBER 2017 GRADE 11

- 11.1 Consider the functions $f(x) = \sin(x-30^\circ)$ and $g(x) = \cos 2x$. On the same set of axes, draw the graphs of f and g for $x \in [-90^\circ; 180^\circ]$. Clearly show all intercepts with the axes, turning points and end points.
- 11.2 Consider: $f(x) = -2 \tan \frac{3}{2}x$.

Draw the graph of f for the interval $x \in [-120^\circ:180^\circ]$.

Clearly show all asymptotes, intercepts with the axes and endpoints of the graph	. (3)	L2
--	-------	----

- 11.3 On the same system of axes, draw sketch graphs of: $f(x) = \sin(x+30^\circ)$
 - $g(x) = \cos 2x \text{ if } -180^\circ \le x \le 180^\circ$ (3) L2 11.3.1 What is the period of g? (2) L1
 - 11.3.2 Determine by means of calculation, the values of x if f(x) = g(x) in the interval above. (5) L3

Mathematics KZN-GRADE 12 QUESDOWNboaded from SoapmerphysicsDeen

In the diagram below the graphs of $f(x) = a \cos bx$ and $g(x) = \sin(x+p)$ are drawn for

12.1	Write down the values of <i>a</i> , <i>b</i> and <i>p</i> .	(3)	L2
12.2	For which values of x in the given interval does the graph of f increase as the graph		
	of g increases?	(2)	L1
12.3	Write down the period of $f(2x)$.	(2)	L1
12.4	Determine the maximum value of h if $h(x) = 3f(x) - 1$	(2)	L2
12.5	Describe how the graph g must be transformed to form the graph k ,		
	where $k(x) = -\cos x$	(2)	L3
12.6	Determine the value(s) of x for which $f'(x).g(x) < 0$	(6)	L3

QUESTION 13

In the diagram, the graph of $f(x) = \tan bx$ is drawn for the interval $-90^\circ \le x \le 135^\circ$.

13.2 Determine the values of x in the interval $-90^\circ \le x \le 135^\circ$ for which $f(x) \le -1$. (4) L3

Mathematics KZN-GRADE 12 Spring Revision 2024 13.3 Downloaded is Mx) Stan (2059) Write Swall equations of the asymptotes of h in the interval $-90^{\circ} \le x \le 135^{\circ}$. (2)

13.4 Determine the general solution of $\cos(x-30^\circ) = \sin x$

13.5 In the diagram, the graphs of $f(x) = \cos(x-30^\circ)$ and $g(x) = 2\sin x$ are drawn for the interval $x \in [-180^\circ; 180^\circ]$, A and B are the x-intercepts of f. The two graphs intersect at C and D, the minimum and maximum turing points respectively of f.

g 1800 180

13.5.1 Write down the coordinates of: (1) L1 a) А b) С (2) L1 13.5.2 Determine the values of x in the interval $x \in [-180^\circ; 180^\circ]$, for which: Both graphs are increasing (2)L2 a) (2) L2 b) $f(x+10^\circ) > g(x+10^\circ)$ c) g'(x) = 0(2) L2 d) g'(x) < 0(2) L2 Determine the range of $y = 2^{2\sin x + 3}$ 13.5.3 (4) L2

TOPIC TRIGONOMETRY: PROBLEMS IN TWO AND THREE DIMENSIONS **GUIDELINES, SUMMARY NOTES, & STRATEGIES** THE SINE RULE In any \triangle ABC it is true that: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \text{ or } \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ Important: Use the Sine Rule when given two angles and a side in a triangle, also when two sides and a non-included angle are given.

L2

L3

(6)
Mathematics

KZN-GRADE 12

Downloaded from Stanmorephysics.com It is advisable that when calculating sides have the sides as numerators: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ and when

calculating angles, have the angles as numerators: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

THE COSINE RULE

In any \triangle ABC it is true that: $a^2 = b^2 + c^2 - 2bc \cdot \cos A$, $b^2 = a^2 + c^2 - 2ac \cdot \cos B$ and $c^2 = a^2 + b^2 - 2ab \cdot \cos C$

Important: Use the Cosine Rule when given **two sides and an included angle**, also when you are given **all the three sides.**

THE AREA RULE

In any \triangle ABC it is true that:

Area of $\triangle ABC = \frac{1}{2}bc.\sin A = \frac{1}{2}ac.\sin B = \frac{1}{2}ab.\sin C$

Important: To use the Area Rule, you need two sides and an included angle of the triangle.

STRATEGIES

Note: When solving 3D problems separate all the triangle so that they will be 2D and easy to solve. It is also advisable that write all your findings back to the diagrams to help you with the next sub-question.

QUESTION 14

MAY-JUNE 2019

In the diagram below, CGFB and CGHD are fixed walls that are rectangular in shape and vertical to the horizontal plane FGH. Steel poles erected along FB and HD extend to A and E respectively.

 $\triangle ACE$ form the roof of an entertainment centre. BC = x, CD = x + 2, BÂC = θ , and EĈD = 60°

14.1.1	AC in terms of x and θ .	(2)	L1
1412	CE in terms of x	(2)	L1

- 14.2 Show that the area of the roof $\triangle ACE$
 - is given by $2x(x+2)\cos\theta$. (4) L3
- 14.3 If $\theta = 55^{\circ}$ and BC = 12 metres, calculate the length of AE. (3) L2

Mathematics

KZN-GRADE 12 OUES Downloaded from Stapper colynsing gom

AB represents a vertical netball pole. Two players are positioned on either side of the netball pole ant points D and E such that D, B and E are on the same straight line. A third player is positioned at C. The points B, C, D and E are in the same horizontal plane. The angles of elevation from C to A and from E to A are x and y respectively. The distance from B to E is k.

Е k B D С

15.1 Write down the size of ABC. (1) L1

15.2 Show that
$$AC = \frac{k \tan y}{\sin x}$$
 (4) L3

15.3 If it is further given that $D\hat{A}C = 2x$ and AD = AC, show that the distance DC between the players at D and C is $2k \tan y$.

(5) L4

QUESTION 16

KZN JUNE 2018

In the diagram below, RP is a diameter of the circle. RPM is straight line and PM = PN = x, $PRN = \theta$.

16.1	Show that: $MIN^2 = 2x^2 (1 + \sin\theta)$	(5)	L4
16.2	If $MN = \sqrt{12}$ units and $x = 2$ units,		
	show, without using a calculator,		
	that $\theta = 30^{\circ}$ and PR = 4 units.	(4)	L3

OUESTION 17

FEB-MARCH 2012

A rectangular card is tied with ribbon at the midpoints, G and H, of the longer sides. The card is opened to read the message inside and then placed on a table in such a way that the angle AFE between the front cover and the back cover of the card is 90°. The points G and H are joined by straight lines to the point C inside the card, as shown in the sketch. Let the shorter side of the card, BC = x and the longer side, CF=2y.

Mathematics KZN-GRADE 12 **Downloaded from Stannoorsphysios, gom**

QUESTION 18

In the diagram alongside, PISR is a parallelogram. Q is the midpoint of PR. QS = 6 units, PT = 3 units, TS = 8 units, TQ = x units and $T_1 = \theta$.

18.1 Show that $\cos\theta = \frac{x^2 + 28}{16x}$

(3) L2

18.2 Hence, determine the length of QT.

QUESTION 19

SEPTEMBER NORTH WEST 2022

(6) L**3**

In the diagram below, AD is a vertical pole having height h metres. B, D and C are three points in the same horizontal plane. AB and AC are cables and the angle of depression from

A to C is 30°. AB = 3h and . BÂC = 2x.

19.1	Write down the size of ACD	(1)	L1
19.2	Determine the distance		
	AC in terms of <i>h</i>	(2)	L1
19.3	Calculate the size of ABD	(2)	L1
19.4	Calculate the size of x		
	if BC = $\sqrt{7}h$	(5)	L3

KZN-GRADE 12 QUESDOWNLOADED from Starmorsphyeics points

In the diagram below, P, Q and Tare three points in the same horizontal plane and MT is a vertical mast. MP and MQ are two straight stay wires. The angle of elevation of M from Q is θ . PQ = k metres.

PM = 2PQ. The area
$$\Delta MPQ = 2k^2 \sin \theta \cos \theta$$

- Show that $M\hat{P}Q = 2\theta$ 20.1 (3) L3
- Hence, show that MQ = $k\sqrt{1+8\sin^2\theta}$ 20.2 (4) L3

20.3 If
$$k = 139,5$$
 m and $\theta = 42^{\circ}$,

determine the length of MT. (3) L2

In the figure alongside, AB is diameter of the circle with centre M and radius = r. BC = r, $CD = DE = AE \text{ and } AME = \theta.$ Prove that $\cos\theta = \frac{1}{4}$

KZN-GRADE 12

Downloaded from Stan Wordshield Stranger

GUIDELINES, SUMMARY NOTES, & STRATEGIES

DIFFERENT WAYS EUCLIDEAN GEOMETRY CAN BE TESTED

1. COMPLETING A STATEMENT OF A THEOREM IN WORDS.

Know by heart all the theorems and be able to complete the statement.

2. DETERMINING THE VALUE OF AN ANGLE

- Know all the theorems about lines, triangles and circles (Centre group, non-centre group, tangent group and cyclic quad group).
- Every statement must come with a reason and reasons must be stated according to the list of acceptable • reasons from the exam guidelines

3. PROOFS IN RIDERS

Know how theorems and their converses are being formed in diagrams.

- When given 3 points on the circumference look out for a possibility of a triangle. If one side is produced then you may expect exterior angle of a triangle. If there is a tangent on the circle then there is a possibility of having a Tan Chord Theorem
- When given 4 or 5 points on the circumference then there is a possibility that 4 points may be joined and then there is a cyclic quad. In a case that one side is produced then you may expect exterior angles of a cyclic quad.
- Start with a given angle linking with what is required to prove
- Visualization: Mind picture of diagrams of theorems

DIRECT AND INDIRECT PROOFS IN RIDERS.

- In Geometry we mostly use angles to prove in questions.
- **1. Direct** proof question: Prove A = B
- 2. Indirect proof question: Prove that a line // to another line.

Remember in Euclidean geometry- we mostly use angles to prove. This question is not asking about the angles directly. Here we need to prove sides but using angles indirectly. Why indirectly? Because we mostly use angles to prove.

: First, we need to change this question to be direct, and then prove. If we say it must be direct we mean that it must ask to prove angles 1st, then conclude by stating the sides that are parallel

4. SIMILARITY AND PROPORTIONALITY THEOREMS PROPORTIONALITY THEOREM

- Identify parallel lines, and use ratios for proportion.
- Useful strategies in solving problems involving ratio in areas of triangles:

CASE 1: If triangles share a **common angle** use area rule. Area = $\frac{1}{2}$ a.bsinC

CASE 2: If triangles share a common vertex or height use Area = $\frac{1}{2}bh$

CASE 3: If none of the cases above apply then identify a common triangle and relate the two triangles in question to it, then use any of the two methods mentioned above. OR

Required Area = Area of big Δ – other known Area

SIMILARITY THEOREM

CASE 1: Prove that triangles are similar e.g. $\triangle ABC \parallel \mid \triangle DEF$

• Angles and / or sides in proportion can be used to prove that two triangles are similar.

Mathematics

KZN-GRADE 12

- Rowshardedriangery Stanmaring physics of Similar triangles
- **CASE 2**: Prove that $\frac{AB}{PQ} = \frac{AC}{PR}$. First prove: $\triangle ABC ||| \triangle PQR$ and then deduce the proportion of the sides.
- **CASE 3**: Prove that: KN. PX = NR. YP. Find two triangles in which KN, PX, NR and Y, (or sides equal to these), and thus prove that: Δ KNR||| Δ YPX, then deduce what you were asked to prove. Identify triangles. This method is used when proved similarity don't give asked ratios.
- **CASE 4**: Prove: Proportion with square, with division, with + in between, there is a possibility that two similarities were used or Pythagoras theorem was used.

e.g. $\frac{CF^2}{EF^2} = \frac{BD}{DE}$

5. EXAMINABLE PROOFS

Five grade 11 proofs to be known for exam purposes:

- 5.1 Line from the centre \perp chord
- 5.2. **NEW**: line from centre to midpoint of chord
- 5.3. Angle at the centre is $2 \times$ angle at the circumference.
- 5.4. Opposite angles of a cyclic quad are supplementary.
- 5.5. Tan chord theorem.

Two grade 12 proofs:

- 5.6. Line drawn parallel to one side of a triangle, divides the other two sides proportionally: **Proportionality theorem**
- 5.7 If two triangles are equiangular, then their corresponding sides are in proportion:

Similarity theorem

NB!!!!!

- Do not make any assumption e.g. do not assume that a line is a tangent or a diameter, unless you are told that it is.
- Look for key words in the statement such as centre, || lines, tangents, cyclic quads, bisects, etc.
- Continuously update the diagram as you read the statement and as you find the angles.
- When proving theorems, no construction no marks.
- You will not always be told that you have a cyclic quadrilateral. Therefore, check lines joining four points on the circumference.
- For every statement there **must** be a reason.

EUCLIDEAN GEOMETRY

1.

DBE NSC MAY/JUNE 2024

In the diagram, AB is a diameter of the circle, with centre F. AB and CD intersect at G. FD and FC are drawn. BA bisects CÂD

and $\hat{D}_1 = 37^\circ$

- 1.1 Determine, giving reasons, any three angles equal to \hat{D}_1 . (4)
- 1.2 Show that DG = GC (4)
- 1.3 If it is further given that the radius of the circle is 20 units, calculate the length of BG.
 (4) L4

L2

L2

In the diagram, O is the centre of the circle. K, T and L are points on the circle. KT, TL, KL, OK and OT are drawn. OT intersects KL at M. ST is a tangent to the circle at T.

 $\hat{STK} = 36^{\circ}$ and $\hat{OKL} = 18^{\circ}$.

- Determine, giving reasons, the 2.1 size of:
- Ŷ, 2.1.1 L2 (2)
- Ĺ 2.1.2 (2)L1
- 2.1.3 KÔT (2)L2
- Prove, giving reasons, 2.2 that KM = ML. L3 (3)

IEB NOVEMBER 2022

In the diagram, A, D, B and C lie on the circle with centre O. DB = BC.

- If $\hat{A} = x$, state, with reasons, 3.1 two other angles equal to *x*. (3) L1
- Given $\hat{O}_1 = 94^\circ$, determine \hat{D}_2 . 3.2 (2)L2
- Determine $\hat{B}_1 + \hat{B}_2$ 3.3 (3) L2

Hence or otherwise determine 3.4 L2 (2)x.

3.

FS SEPTEMBER 2018

XY is a tangent to the circle with centre O. XPQ, YOR, YST are straight lines.

 $PX = PY, XY \parallel TQ \text{ and } \hat{T}_1 = a$.

Write down, with reasons, 4.1 FOUR other angles each equal

to *a*. (6) L1 Prove that $\hat{T}_2 = 2\hat{T}_1$.

- 4.2 (2)L2
- Prove that $\hat{T}_2 = 90^\circ a$ 4.3 (2)L2
- Prove that SORT is a cyclic 4.4 quadrilateral. (2) L3
- Determine the value of *a*. 4.5 (2)L2
- Show that TR = RQ4.6 (2) L2

Mathematics KZN-GRADE 12 5. Downloaded from Manager Contractor Street St

In the diagram alongside, TD is a tangent to the circle at D. RS and DP are produced to meet at W and KST is a straight line. If $\hat{S}_4 = \hat{S}_2$ and DR || PS. Prove that: 5.1 SWTD is a cyclic quadrilateral (4) L2 5.2 TK is a tangent to the circle at S (4) L3

5.3 TW || PS (3) L2

6.

IEB MAY/JUNE 2023

In the diagram alongside, A, B, C, D and E lie on the circle with centre O. AC is perpendicular to OB and they intersect at E = 4.0E is a second the se

- F. AOE is a straight line. $\hat{A}_1 = 38^\circ$.
- 6.1 Determine \hat{C}_1 . (2) L1
- 6.2 Determine \hat{D} . (2) L1
- 6.3 Determine ABC. (3) L2
- 6.4 If AC = 8cm and BC = 5cm, determine the length of BF. (3) L2

7.

NW SEPTEMBER 2018

Two equal circles cut each other in A and C. BA and BC are tangents to one circle at A and C respectively and they are chords of the other circle. E is a point on the circumference of one circle and AE produced cuts the other circle in D. Chords AE and CD are equal.

Prove that:

7.1 $\hat{C}_2 = \hat{C}_4$ (4) L3

7.2
$$C_3 = A_1$$
 (3) L2

7.3E is the centre of the circle that
passes through A, C and D.(4)L37.4 Δ ECD is equilateral(2)L2

80

Mathematics KZN-GRADE 12 8. Downloaded from Sternsorsphysics 2021

In the diagram, BE and CD are diameters of a circle having M as centre. Chord AE is drawn to cut CD at F. AE \perp CD. Let $\hat{C} = x$.

- 8.1 Give a reason why AF = FE. (1) L1
- 8.2 Determine, giving reasons, the size of \hat{M}_1 in terms of *x*. (3) L2
- 8.3 Prove, giving reasons, that AD is a tangent to the circle passing through A, C and F. (4) L3
- 8.4 Given that CF = 6 units and AB = 24 units, calculate, giving reasons, the length of AE. (5) L4

P N 12 N S S

DBE NSC JUNE 2019

In the diagram, O is the centre of the circle and LOM is a diameter of the circle. ON bisects chord LP at N. T and S are points on the circle on the other side of LM with respect to P. Chords PM, MS, MT and ST are drawn. PM = MS and $M\hat{T}S = 31^{\circ}$

- 9.1 Determine, with reasons, the size of each of the following angles:
 - 9.1.1 MÔS (2) L1
 - 9.1.2 \hat{L} (2) L2
- 9.2 Prove that $ON = \frac{1}{2}MS.$ (4) L3

9.

In the diagram alongside, P, Q, R and S are points on the circle. QS and PR intersect at point T. The line from V is a tangent at P. $Q\hat{R}P = 56^{\circ}$ and $R\hat{P}V = 70^{\circ}$.

- 10.1 Calculate the size of $R\hat{S}T$. (3) L2
- 10.2 If $\hat{Q}_1 = 37^\circ$, then explain why QS is not the diameter of the circle. (3) L3

81

Mathematics KZN-GRADE 12 11. Downloaded from Stangers physics, com

In the diagram alongside, P, R and S lie on the circle with the centre O.

- 11.1 If $P\hat{S}R = 102^\circ$, determine the size of \hat{O}_1 , giving reasons (3) L2 11.2 Calculate the radius, *r*, of
- 11.2 Calculate the radius, r, of the circle if PR = 10 *units*. (3) L3

GP JUNE 2024

In the diagram below, the diameter BE of circle O is produced to D. DA is a tangent to the circle and CD \perp BD. AC and BC cut the circle at E and F respectively. OF and EF are drawn. 12.1 Prove, with reasons, that

- ABCD is a cyclic quadrilateral. (3) L3
 Prove, with reasons, that BD bisects ABC. (3) L3
 Prove, with reasons, that EC
- is a tangent to circle OEF. (4) L4

12.

13.

DBE GRADE 11 NOVEMBER 2019

In the diagram, O is the centre of the circle through the points A, B, C, D and T. HC and HT are tangents to the circle at C and T respectively. AD is produced to meet HT at R.

OC bisects AD at J. Let $\hat{C}_3 = x$.

- 13.1 Write down, with a reason, another angle equal to \hat{C}_3 . (2) L1
- 13.2Show that CHRJ is a
trapezium.(5)L3
- 13.3 Prove that OC bisects ACD. (3) L3
- 13.4Write down, with a reason,
ABD in terms of x.(2) L3
- 13.5 Determine \hat{R}_2 in terms of x. (6) L4

KZN-GRADE 12 Mathematics Spring Revision 2024 Downloaded from Stanmorephysics the Quagram, P, S, G, B and D are 14.

points on the circumference of the circle such that PS || DG || AC. ABC is a tangent to the circle at B. $G\hat{B}C = x$. Prove that:

14.1 BE =
$$\frac{BP.BF}{BS}$$
 (2) L2

14.2
$$\triangle BGP \parallel \mid \triangle BEG$$
 (3) L2

15.

16.

EC SEPTEMBER 2022

In the diagram, AB is a diameter of the circle centred at O. \triangle ABS is drawn with S a point on the circle. M is a point on BS and OM is produced to T such that AS|| OM. TS is drawn such that BOST is

a cyclic quadrilateral.

Prove, giving reasons, that:

- TS is a tangent to the circle 15.1 at S (4)
- 15.2 TS is a diameter of a circle passing through points T, M and S.

15.3
$$\triangle ABS \parallel | \Delta STM$$
 (3) L2

15.4 $AS.MT = 2SM^2$ (3) L3

WC SEPTEMBER 2023

In the diagram alongside B, D and E are points on the circle with centre O. BD || AO and ABC is a tangent to the circle at B. AO intersects with BE at F. EODC is a straight line.

16.1 Prove, giving reasons that 16 1 1 A CDD III A CED

$$2 \quad 2EF.CB = CE.BD \qquad (3) \quad L3$$

16.2 Determine the value of
$$\frac{CO}{OE}$$
 if it

is further given that CB:BA = 4:3(4)

16.3 Prove with reasons that:

$$\frac{\text{Area }\Delta \text{FEO}}{\text{Area }\Delta \text{BED}} = \frac{1}{4}$$
(4) L3

L3

L3

KZN-GRADE 12 Mathematics Downloaded from Stapponephysica 230m 17.

S R 3 2 K

In the diagram alongside, TR is a diameter of the circle. PRKT is a cyclic quadrilateral. Chords TP and KR are produced to intersect at S. Chord PK is drawn such that PK = TK. 17.1 Prove, giving reasons, that: SR is a diameter of a 17.1.1 circle passing through points S, P and R. (4) L2 17.1.2 $\hat{S} = \hat{P}_2$ (5) L2 17.1.3 Δ SPK ||| Δ PRK (3) L2 If it is further given that 17.2

Spring Revision 2024

SR = RK, prove that $ST = \sqrt{6}RK$ (5)L4

GP SEPTEMBER 2023

In the diagram alongside, diameter EMA of a circle with centre M bisects FÂB. MD is perpendicular to the chord AB. ED produced meets the circle at C. Chords CB and FE are drawn.

18.1	Prove that $\triangle AEF \parallel \mid \triangle AMD$.		(4)	
		AF		

18.2 Determine the numerical value of
$$\frac{AB}{AD}$$
. (3) L3

18.3 Prove that
$$AD^2 = CD \times DE$$
. (6) L3

19.

18.

19.1 angles equal to x.

EC SEPTEMBER 2019

L2

(2)

In the diagram alongside, O is the centre of a semi-circle ACB. S is a point on the circumference and T lies on AC such that STO \perp AB. Diameter AB is produced to P, such that PC is a tangent to the semi-circle at C. Let $\hat{C}1 = x$.

Prove that
$$\Delta \text{TOC} \parallel \Delta \text{BPC}$$
. (5) L3

If BP = OB, show that 19.4 $3OC^2 = PC^2$. (3)L3

Mathematics KZN-GRADE 12 27. Downloaded from Stapport My Sic So 2400

In the diagram, COD is the diameter of the circle with centre O. EA is a tangent to the circle at F. AO \perp CE. Diameter COD produced intersects the tangent to the circle at E. OB produced intersects the tangent to the circle at A. CF intersects OB in T. CB, BD OF and FD are drawn. Prove, with reasons, that:

27.1 TODF is a cyclic quadrilateral. (4) L2

27.2
$$\hat{D}_3 = \hat{T}_1$$
 (3) L1

27.3
$$\Delta TFO \parallel \Delta DFE$$
 (5) L2

27.4 If
$$\hat{B}_2 = \hat{E}$$
, prove that
DB || EA. (2) L2

$$27.5 \quad \text{FO} = \frac{\text{TO.FE}}{\text{AB}} \tag{5} \quad \textbf{L3}$$

28.

29.

R M T W W

GP JUNE 2024

In the diagram below, D is the centre of a circle. AB and AE are tangents to the circle at B and E respectively. The diameter BG is produced and meets tangent AE at C. DG = CG. F is a point on AC such that DF || AB.

28.1 Find, with reasons, the ratio of $\frac{AC}{C}$

$$\frac{FC}{FC}$$
 (3) L3
28.2 Prove, giving reasons, that

$$\Delta ABC \parallel \Delta DEC \qquad (3) L2$$

28.3 Prove that $DE^2 = \frac{AE.EC}{3}$. (5) L3

28.4 Find the ratio of: <u>Area Δ FDC</u> (3) L3 <u>Area Δ ABC</u>

In the diagram alongside,

S is the midpoint of RQ in Δ PRQ.

T is the midpoint of PS

and MTW||PQ.

Calculate the numerical value of the following:

$$29.1 \quad \frac{\text{RM}}{\text{RP}} \tag{6} \text{ L3}$$

$$29.2 \quad \frac{\text{area } \Delta \text{ RPS}}{\text{area } \Delta \text{ RMW}} \tag{4} \text{ L3}$$

Two circles with centres P and S R 2 QК

touch each other externally at C. SP produced intersects the circle P at B. A common tangent at R and Q meets SB produced at T. Prove that:

30.2 TP =
$$\frac{\text{TQ}(\text{BP+SR})}{\text{OR}}$$
. (4) L3

$$30.3 \quad \Delta \text{TQP} \parallel \Delta \text{TRS} \tag{3} L2$$

(6) L4

 $\overline{(TP^2 + BP^2 - 2TP.BP\cos S)}$.CS

BP

 $30.4 \sqrt{TS^2 - CS^2} =$

31.

In the diagram, the diagonals of quadrilateral CDEF intersect at T. EF = 9 units, DC = 18 units, ET = 7units, TC = 10 units, FT = 5 units and TD = 14 units. Prove, with reasons, that:

31.1 $E\hat{F}D = E\hat{C}D$ (4) L3

$$31.2 \quad D\hat{F}C = D\hat{E}C \tag{3} L2$$

Mathem	natics Doumloadadatar	KZN-GRADE	E 12	Spring Revision 2024
			ncs.	$x \leq 3$ or $x \geq 3$
	ALGEBRA, EQUATIONS AND	3.	.2	x < -3 or $x > 5$
	INEQUALITIES	3.	.3	5 < <i>x</i> < 2
1.1	x = 0 or x = 1	3.	.4	x < -1 or x > 7
	$x = 0$ or $x = \frac{1}{4}$	3.	.5	<i>x</i> <1 or <i>x</i> > 5
1.2		3	6	<i>x</i> > 2
	$x = \frac{1}{3}$ or $x = -4$	3	7	a) $-4 < r < 5$
1.3	x = -4 or $x = 1$	5.	. /	b) 4
1.4	$r = \frac{3}{2}$ or $r = 1$	3	8	-3 < x < 7
($\frac{x}{2}$	4	1	5
1.5	$r = \frac{5}{2}$ or $r = -1$. 1	$x = -\frac{1}{3}$
	$x = \frac{3}{3}$ or $x = -1$	4	2	5
1.6	$x = \frac{-2}{-2}$ or $x = 4$		-	$x = -\frac{1}{7}$
	3		_	0
1.7	$x = \frac{p}{p}$ $p \neq 2$	4.	.3	x=0
	$2-p^{+}$	4.	.4	$x = \frac{3}{2}$
1.8	$r = 0 \text{ or } r = \frac{4}{2}$		_	2
	$x = 0.01 \ x = \frac{1}{3}$	4.	.5	x = -1
1.9	$x = 625$, $x \neq 16$	4.	.6	$x = 2 \text{ or } x \neq 1$
1.10	x = 2 or $x = 1$	4.	.7	No solution
1.11	888 888 888 890	4.	.8	proof
1.12	$x = \frac{1}{x}, x \neq \frac{1}{x}$	4.	.9	2
	25 16	4.	10	m = 39
1.13	x = 256		11	<i>k</i> = 14
1.14	$x = 4 \text{ or } x \neq -3$		10	1
1.15	a) $x = 3$	4.	.12	$\frac{1}{54}$
1 16	b) $x \in R$		13	n-11
1.10	a) $k = -7$ or $k = 2$ b) $r = -1625$ $r \neq 44$	4.	14	2
1 17	$x = -1023, x \neq 44$	4.	14	3
1.1/	$y = \frac{3}{2}$	4.	.15	5
1 10	2		16	-1 C
1.18	3	4.	10	
1.19	a) $\frac{x}{x} = -3$ or -2	4.	.1/	
		1	10	5 2 ⁿ⁻⁴
	b) $x = 16$ or $x = 12$	4.	.18	3.2
	y = -8 or $x = -4$			2 . 4. 0
1.20	$x = 5 \text{ or } y = \frac{3}{2}$	5.	.1	m + 4 > 0
1.01	2	5.	.2	$m > \frac{9}{2}$
1.21	k = -13			<u>64</u>
1.22	$(x+y)^2 + y^2$ is always positive	5.	.3	IP(-2,-3)
2.1	x = 2,57 or x = -0,91	5.	.4	p < -1 or $p > 1$
2.2	x = 3,450 or x = -1,450	5.	.5	a) $k = -2$ or $k = 2$
2.3	x = 0 or $x = 0,43$, $x = -0,77$			b) $k = -3$
2.4	x = 1,66 or x = -0,91			
2.5	x = 0,1 or x = -3,6	5.	.6	0 <i><k<</i> 16

Mathematics KZN-GRADE 12 Spri					
6.1	$D_{f(x)} = x^{\alpha} + 4x^{\alpha} + 12^{\alpha}$ rom Stanmorep	hysics	Sou 1 310 715		
6.2	x = 3 or x = 4	2.3.3	$S_{\infty} = -2$		
	y = -1 or $y = -1$		S_2^{-2}		
6.3	x = 3 or x = -3	3.1.1	$T_{36} = 253$		
	y = 2 or y = -1	3.1.2	$S_{36} = 4698$		
6.4	x = 6 or x = -3	313	m = 32		
	$y = \frac{3}{2}$ or $y = -3$	3.2.1	54 <i>cm</i>		
6.5	x = 5	3.2.2	$T_9 = \frac{256}{81} = 3.16 \ cm$		
	y = -3	3.2.3	243 <i>cm</i> > 230 <i>cm</i>		
6.6	$x = 1 \text{ or } x = \frac{1}{6}$	3.3.1	$T_n = 2n^2 - 22n + 36$		
	$y = \frac{1}{2}$ or $y = \frac{-1}{2}$	3.3.2	$T_n = -4n + 36$		
67		3.3.3	T_{17} and T_{18}		
0.7	$p = \frac{1}{5}$ or $p = -1$	3.4	$S_7 = -29538$		
	$p = \frac{6}{5} y = $ or $p = 3$	3.5.1	$T_1 = 141$		
6.8	x = 3 or x = 5	3.5.2	The second difference is -4		
0.0	v = -2 or $v = -10$	3.5.3	n = 9 or n = 11		
		3.5.4	T_{10}		
	SEQUENCES AND SERIES	4.1.1	21;24		
1 1 1		4.1.2	$T_{20} - T_{21} = 449$		
1.1.1	$T_{91} = 457$	4.2.1	Proof		
1.1.2	$S_{91} = 21112$	4.3	<i>n</i> =12		
1.1.3	<i>n</i> = 103	4.4.1	$T_8 = 0,0067$		
1.2.1	Proof Proof	4.4.2	$\sum_{n=1}^{\infty} 5\left(\frac{3}{2}\right)^{n-1}$		
1.2.3	Proof		$\sum_{n=1}^{3} \left(4 \right)$		
1.3.1	$T_n = 3(2)^{n-1}$	4.4.3	95 kg		
1.3.2	<i>k</i> =15	5.1.1	T_{484} and T_{485}		
1.4	<i>a</i> = 2	5.1.2	c = -30		
1.5	$\sum_{k=1}^{8} \frac{3k-2}{2^{k}}$	6.1.1	Yes, because $-1 < \frac{1}{2} < 1$		
1.6	$\begin{array}{c c} & & \\ \hline & & \\ \hline & -5 & & -3 \end{array}$	6.1.2	$S_{\infty} = 8$		
	$\frac{-2}{2} < x < -\frac{2}{2}$	6.2	<i>k</i> = 3		
2.1.1	$T_n = -2n^2 + 2n + \overline{143}$	6.3.1	Proof		
2.1.2	Add -1 to T_n	6.3.2	164 must be added		
2.2.1	$\frac{\pi}{T = 5n + 4}$	6.4	<i>n</i> =12		
222	24	6.5	$a = -\frac{4}{2}$		

2.3.1

2.2.2

 $T_{n} = 5n + 4$ $\sum_{n=1}^{24} 5n + 4$ $T_{n} = (5)(2)^{n-1}$

 $a = -\frac{4}{3}$ $T_3 = 27$ $T_n = 3n^2 + n - 3$ 7.1.1 7.1.2

Mathem	atics KZN-G	RADE	12	Spring Revision 2024
7.1.3	Between T_{69} and T_{70}	hys	<u>ęş</u> . (-67 first difference = -67
7.2.1	x+1	1	9	$T_3 = 19$
	$r = \frac{1}{x}$			$T_4 = 21$
7.2.2	$T = (x+1)^2$	2	0	a = 2 and $d = 3$
		2	1	
7.2.3	No, $r > 1$		(a)	127
7.3	a=1 or a=9			$a = \frac{1}{153}$
	b = 12 or b = -4		(b)	_ 1016
8.1.1	<i>x</i> = 14			$T_1 = \frac{1}{153}$
8.1.2	$T_n = 4n + 15$			<i>z</i> 2032
9.1.1	$T_{20} = 79$			$I_2 = \frac{1}{153}$
9.1.2	<i>n</i> =100	2	2.1	$S_{23} = 1426$
9.2.1	<i>d</i> = 2	2	2.2	$T_{23} = 117$
9.2.2	$S_{200} = 200a + 39\ 800$	2	3	3 1
9.3.1	r _ 1		-	$r = \frac{1}{2}$ or $r = \frac{1}{2}$
	$r = -\frac{1}{2}$	2	4.1	
9.3.2	<i>n</i> =15		(a)	<i>x</i> = 18
9.3.3	$S_{\infty} = 24$		(b)	$x = \pm 8\sqrt{2}$
9.3.4	$S_{odd}2$	2	5	Proof
	S_{even}	2	6.1	21;24
9.4.1	<i>p</i> = 11	2	6.2	$T_{52} - T_{51} = 100663143$
9.4.2	Term 12 will be the first term smaller that	2	7	Proof
10.1	-33 T = 88 - 3n			
10.1	$T_n = 0.000$ T			FUNCTIONS
10.2	1 30		1 1	1/ 5
11	$T_1 = -40$.1.1	x = -1/x = 5
12	$T_{12} + T_{12} = 51$.1.2	b=3
12 1			.1.3	$x \ge 2$
13.1	$0 < x < \frac{1}{2}$ $x \neq \frac{1}{2}$.1.4	$h(x) = -x^2$

11	$I_1 = -40$
12	$T_{25} + T_{26} = 51$
13.1	$0 < x < \frac{1}{2} x \neq \frac{1}{4}$
13.2	76
14.1	<i>r</i> = 2
14.2	L = 186 units
14.3	$S_{\infty} = 3\ 145\ 725\pi$
15	
(a)	$T_n = 4n + 1$
(b)	$T_n = 5(25)^{n-1}$
16	Nomsa is correct
17.1	-1+2+5
17.2	$S_{100} = 14\ 750$
18.1	$T_n = -2n + 3$

$x \ge 0$ or $x \le 0$ 1.1.5 1.1.6 Proof 1.2 a = -mЩ 2.1 A(1;0) x > 02.2 2.3 $y = \left(\frac{1}{2}\right)$ 2.4 Graph 2.5 y = 12.6 Reflect about y-axis and shift 1 unit down. p = -1 and q = -33.1.1 3.1.2 a = 23.1.3 Shift 2 units to the right and 6 units up.

Mathemat	ics KZN-GR	ADE 12	Spring Revision 2024
3.1.4	owingoaded from Stanmoreph	iy s igs. ($\sum_{y=2^{x}}^{y=2^{x}}$
3.2.1	x > 0	9.4	$Area = 1 unit^2$
3.2.2	$b = \frac{1}{2}$	10.1	y > -4
	5	10.2	D(-1;0) and $E(3;0)$
3.2.3	$v = \left(\frac{1}{2}\right)^x$	10.3	y = x - 3
	5)	10.4	x < 0 or x > 3
3.2.4	x>-5	10.5	25 (25)
4.1	Graph	10.5	Distance = $\frac{-}{4}$ = 6, 25 units
4.2	<i>y</i> <1	11.1.1	D(2;-15)
4.5	y = -1	11.1.2	$CN = 5\sqrt{5}$
4.4	$y = \log_3 x$	11.2.1	-1 < x < 7
5.1	Proof	11.2.2	x = 3
5.2	Q(1;12)	12	
5.3	$\frac{1}{m-2}$		$f(x) = \frac{1}{x-5} + 1$
542	m-2 $y = 2x + 1$	13.1	A(0;1)
5.5	r > 0	13.2	<i>k</i> = 4
6.1	x = 1 and $y = 2$	13.3	Proof
6.2	Graph	13.4	$f(x) = 4^x$
6.3		13.5	$h(x) = 4^{-x}$
	$x < \frac{1}{2}$ or $x > 1$	13.6	$v \ge 0$
6.4	y = -x + 3	13.7	v = 4x - 3
6.5	$x \in \mathbb{R}, x \neq 1$	13.8	1
7.1	<i>p</i> = -3	15.0	$x \ge -\frac{1}{2}$
7.2	k = -1	15.1	<i>a</i> = 3
7.3	$B(0;\frac{1}{2})$	15.2	$y = \log_3 x$
		15.3	$\begin{pmatrix} 1 \\ \end{pmatrix}$
7.4	$x \le 0 \text{ or } 1 \le x < 3$		$\left(\frac{1}{9};-2\right)$
1.5	$f(x) = \frac{2}{x-3} + 1$	15.4	
8.1	$\frac{x-3}{2}$		$0 < x \leq \frac{1}{9}$
8.2	14	15.5	$f(x) = \log_{x} \frac{x}{x}$
	$x = -\frac{1}{3}$		2
8.3	Graph	16.1	<i>a</i> = 2
8.4	x = -9	16.2	$x \ge 0$
8.5	$-\frac{14}{2} < x < -4$	16.3	$y \ge 0$
86	<u> </u>	16.4	$y = \frac{x^2}{x}, x \ge 0$
8.7	x < -4		
0.7	axis of symmetry with negative gradient.	16.5	(2;2) and (8;4)
9.1	P'(2;4)	17.1	$\int f^{-1}(x) = \log_3 x$
9.2	Proof	17.2	Graph
		L	1

Mathematics KZN-GRADE 12 Spring Revision 20				
17.3	ownloaded from Stanmo	repny <u>sics</u> .	CRI 536,69	
17.4	0 < <i>x</i> < 1	4.1	r = 0,74%	
17.5	v > 0	4.2.1	n = 220	
17.6	2^{x-2}	4.2.2	She can make any number (an infinite	
17.0	g(x) = -3	4.2	numbers) of withdrawals.	
18	$y \le -2$ or $y \ge 2$	4.5	R13 282,91	
19.1	k=1	5.1	R 15,18%	
	003	5.2	R148 351,63	
19.2	<i>y</i> > 0	5.3	5,09%	
19.3	Reflect about the line $y = x$	5.4	x = R1068, 85	
19.4	$y = \log_1 x$	6.1.1	proof	
	3 Creat	6.2.1	<i>n</i> =155,51	
19.5	Graph	6.2.2	<i>R</i> 1,574.70	
19.6	Proof	6.3.1	Capital Repayment $= R7500$ -	
20.1	l(x) = -x + 5		$R 4 935,50 \approx R2 564,50$	
20.2	A(1;4)	6.3.2	Capital Repayment = R 90,000 -	
20.3	6		$R 59,268.40 \approx R 30,731.60$	
20.5	$f(x) = \frac{1}{x-1} + 4$	7.1.1	x = R7 982,73	
20.4	x = 0	7.1.2	R 216 021,16	
21.1	Yes Inverse of one -to – one relation is a	7.1.3	n=27 therefore 27 months	
21.1	function	8.1.1	R 850000	
21.2	R(-12;-6)	8.1.2	<i>R</i> 6 729,95	
21.3		8.1.3	<i>R</i> 867 188	
21.5	$a = -\frac{1}{3}$	8.1.4	<i>R</i> 615 509,74	
21.4	$v = -\sqrt{-3r}$ $r < 0$	8.1.5	<i>R</i> 634 183,84	
21.5	$y = \sqrt{3x}, x \ge 0$	8.1.6	110 months	
21.5		9.1	<i>R</i> 3 037,50	
22.1	m = 3	9.2.1	<i>n</i> =155	
22.2	$y = -x^2 + 4x + 12$	9.2.2	Outstanding balance R 3 230,50	
22.3	$y \in (-\infty; 12]$	9.2.3	Last payment R3 278,96	
	FINANCIAL MATHEMATICS	9.2.4	Total repaid $= R773278,96$	
1.1	r=8,7%	10.1	Option 1 <i>R</i> 2 120 088 Option 2	
1.1.2	r = 9,06%		R 2 135 376 Mr Dasoo will choose	
1.2.1	<i>n</i> =5		option 1 as it has lowest total repayment	
1.2.2	<i>R</i> 267,26	11.1	R 11 182,68	
1.3	Tino will make 147 withdrawals of	11.2	x = 5000	
0.1	R 20000	12.1	R103 119,19	
2.1	n=6	12.1.1	n = 13,5 years	
2.2.1	R 217 666,80	12.1.2	R 451 919,19	
2.2.2	K /11 500, 99	12.1.3	R 4 733,39	
2.2.3	K 0 803,01	13.1	R2 669,28	
3.1	r=10,85%	14.1	R 14 212.35	
3.2	<i>K</i> 45 997,22	14.1.1	R 14 212.35	
3.3.1	Sam will have 370 instalments			

14.1.2 12 (a) (b) (1, 2) (2, 5) (c) (1, 2) (2, 5) 15.1.1 (a) (b) (54823401 He will survive 702 months after his retirement on his current lifestyle 3.5.2 $y = 5x - 7$ 15.1.1 (a) (b) (54823401 He will survive 702 months after his retirement on his current lifestyle 3.6.1 $p = 3, a = -\frac{11}{27}$ 16.1 4) (3 (a) (2, -9) 3.6.2 h (3) (2) (-9) 16.2 R (6) (7, 45 3.7.3.1 g (2) (-9) 16.3.1 R12 (29) 9.96 3.8.1 (3, -4) 16.3.2 R 885 (814, 82 3.8.1 (3, -4) CALCULUS 1.1 f'(x) = -2x 4.1.1 (-2, 0) 1.3 f'(x) = -2x 4.1.4 x > 0 1.4 f'(x) = -2x 4.1.4 x > 0 1.5 f'(x) = -2x 4.3.1 f(2) = 2(2)^2 - 23(2)^2 + 80(2) - 84 = 0 1.5 f'(x) = -2x + 7 4.3.1 f(2) = 2(2)^2 - 23(2)^2 + 80(2) - 84 = 0 1.5 f'(x) = -2x + 7 4.3.3 x = $\frac{8}{3}$ or x = 5 1.7 f'(x) = 12 4.3.4 f'(2) = 12 1.1.0 f'(x) = -2x - 2 4.3.4 $\frac{4.3.5}{10}, \frac{1}{3}, \frac{2}{27}, \frac{2}{2}, \frac{2}{2},$	Mathema	tics KZN-G	RADE 12		Spring Revision 2024
15.1.1 R 3 912,89 15.1.2 699,548824001 He will survive 702 months after his retirement on his current lifestyle 15.1.3 R11 322,72 16.1 4 years/ 16.2 <i>R</i> 617,45 16.3.1 <i>R</i> 12 499,96 16.3.2 <i>R</i> 885 814,82 CALCULUS 1.1 $f'(x) = -2x$ 1.3 $f'(x) = -2x$ 1.4 $f'(x) = -2x$ 1.5 $f'(x) = -2x$ 1.6 $f'(x) = -2x$ 1.3 $f'(x) = -2x$ 1.4 $f'(x) = -2x + 7$ 1.5 $f'(x) = 0$ 1.6 $f'(x) = 0$ 1.8 $f'(x) = 0$ 1.8 $f'(x) = 0$ 1.9 $f'(x) = 0$ 2.1 $-2x^{-3} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.1 $-2x^{-3} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.4 $x + 5x^2$ 2.5 $10t^{-4} + \frac{7}{4}t^{-\frac{1}{4}}$ 2.6 $-2x - 2$ 2.7 $-x^{\frac{1}{2} + 1 - 2x^{-\frac{3}{2}}$ 2.8 $6x + 4x^{-3}$ 2.9 $x^{2} + 5x + 2$ 2.10 <td>14.1.2</td> <td>Jawnjoaded from Stanmorep</td> <td>my<u>şı</u>cs.</td> <td><u>con</u></td> <td>f'(2) = 5</td>	14.1.2	Jawnjoaded from Stanmorep	my <u>şı</u> cs.	<u>con</u>	f'(2) = 5
15.1.2 699, 54824061 He will survive 702 months 15.1.3 Ref1322,72 16.1 4 years 16.2 R 607,45 16.3.1 R 12490,96 16.3.2 R 885 814.82 CALCULUS 1.1 f'(x) = -2x 1.3 f'(x) = -2x 1.3 f'(x) = -2x 1.3 f'(x) = -2x 1.4 f'(x) = -2x 1.5 f'(x) = -2x 1.4 f'(x) = -2x 1.5 f'(x) = -2x 1.6 f'(x) = 1 1.9 f'(x) = 1 1.9 f'(x) = 1 1.9 f'(x) = 2x - b 2.1 $-2x^2 - \frac{1}{2}x^{-\frac{1}{2}}$ 2.2 $x^4 - 2x^{-\frac{3}{2}}$ 2.4 $x + 5x^2$ 2.5 10t ⁴ + $\frac{7}{t^4}$ 2.6 $-2x - 2$ 2.7 $-x^{\frac{1}{2}} + 1 - 2x^{-\frac{3}{2}}$ 2.8 $6x + 4x^3$ 2.9 $x^3 + 5x + 19$ 2.10 $-4x^2\frac{\sqrt{3}}{2}x^{-\frac{3}{2}}$ 2.1 $1 + 3x^2$ 2.10 $-4x$	15.1.1	<i>R</i> 3 912,89		3.5.2	y = 5x - 7
alterns returned on nis current intestive 16.1 4 years 16.1 4 years 16.2 R 617.45 16.3.1 R12 499.96 16.3.2 R 858.814.82 CALCULUS 1.1 $f'(x) = -4x$ 1.2 $f'(x) = -4x$ 1.3 $f'(x) = -4x$ 1.4 $f'(x) = -4x$ 1.4 $f'(x) = -2x$ 1.5 $f'(x) = -4x$ 1.4 $f'(x) = -4x$ 1.5 $f'(x) = -4x$ 1.4 $f'(x) = -2x$ 1.5 $f'(x) = -2x = 1$ 1.6 $f'(x) = -2x = 7$ 1.7 $f'(x) = -2x = 7$ 1.8 $f'(2) = 12$ 1.10 $f'(x) = 2x = b$ 2.1 $-2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.4 $x + 5x^{-2}$ 2.5 $10f^4 + \frac{7}{4}t^{\frac{3}{4}}$ 2.6 $-2x - 2$ 2.7 $-x^{\frac{1}{2} + 1 - 2x^{\frac{3}{2}}$ 2.8 $6x + 4x^{-3}$ 2.9 $x^2 + 5x + 9$ 2.10 $-4x^2 - \frac{\sqrt{5}{2}x^{-\frac{3}{2}}$ 2	15.1.2	699, 548824061 He will survive 702 months	3.6	3.6.1	$p = 3, a = \frac{-11}{-1}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15 1 2	R11 322 72		262	$\frac{1}{27}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.1.5	A waars	2.7	3.0.2	n(3) = -8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.1	P617.45	3./	3.7.1	g(2) = -9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16.2	R17,400.06	2.0.1	(3:-4)	(-0,)0)
11.3.2 1.4 $f'(x) = -2x$ 1.3 $f'(x) = -2x$ 1.4 $f'(x) = -2x$ 1.5 $f'(x) = -2x$ 1.6 $f'(x) = -2x + 7$ 1.7 $f'(x) = -2x + 7$ 1.8 $f'(x) = 1$ 1.9 $f'(x) = 2x - b$ 2.1 $-2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.1 $-2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.1 $-2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.4 $x + 5x^{-3}$ 2.5 $10t^{-4} + \frac{7}{4}t^{-\frac{1}{4}}$ 2.6 $-2x - 2$ 2.7 $-x^{-\frac{1}{2} + 1 - 2x^{-\frac{3}{2}}$ 2.8 $6x + 4x^{-3}$ 2.9 $x^{2} + 5x + 9$ 2.10 $-4x^{-2} - \frac{\sqrt{5}}{2}x^{-\frac{3}{2}}$ 2.11 $1 + 3x^{-3}$ 2.12 $gt + 5r^{-2}$ 3.1 $3t^{2} \ge 0$ 3.2 $y = 4x - 8$ 3.3 $A(\frac{1}{(\frac{1}{32}; 5)})$ 3.4 $a = -4, b = -3$	16.3.1	D 2 2 5 2 1 4 2 2	2.0.1	(3, 4) v - 9r - 23	
CALCULUS 1.1 $f'(x) = 4x$ 1.2 $f'(x) = -2x$ 1.3 $f'(x) = -4x$ 1.4 $f'(x) = -2x$ 1.5 $f'(x) = -2x$ 1.6 $f'(x) = -2x + 7$ 1.7 $f'(x) = 0$ 1.8 $f'(x) = 1$ 1.9 $f'(x) = 1$ 1.9 $f'(x) = 2x - b$ 2.1 $-2x^{-2} - \frac{1}{2}x^{\frac{1}{2}}$ 2.1 $-2x^{-2} - \frac{1}{2}x^{\frac{1}{2}}$ 2.4 $x + 5x^{-2}$ 2.5 $10t^{-4} + \frac{7}{4}t^{\frac{3}{4}}$ 2.6 $-2x - 2$ 2.7 $-x^{\frac{1}{2} + 1 - 2x^{-\frac{3}{2}}$ 2.8 $6x + 4x^{-3}$ 2.9 $x^{2} + 5x + 9$ 2.10 $-4x^{-2} - \frac{\sqrt{5}}{2}x^{-\frac{3}{2}}$ 2.11 $1+3x^{-2}$ 2.12 $gt + 5t^{-2}$ 3.3 $A(\frac{1}{3}; 5)$ 3.4 $a = -4, b = -3$	16.3.2	R 885 814,82	3.6.2	y = 9x - 25 (-2:0)	
CALCULUS 1.1 $f'(x) = 4x$ 1.2 $f'(x) = -2x$ 1.3 $f'(x) = -2x$ 1.4 $f'(x) = -2x$ 1.5 $f'(x) = -2x$ 1.6 $f'(x) = -2x + 7$ 1.7 $f'(x) = -2x + 7$ 1.8 $f'(x) = 1$ 1.9 $f'(x) = 2x - b$ 2.1 $-2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.2 $x^{-2}x^{-3} + 1$ 2.3 $4+2x^{\frac{3}{2}} - 2x^{-3}$ 2.4 $x + 5x^{-2}$ 2.7 $-x^{-\frac{1}{2} + 1 - 2x^{-\frac{3}{2}}$ 2.8 $6x + 4x^{-3}$ 2.9 $x^2 + 5x + 9$ 2.10 $-4x^{-2} - \sqrt{\frac{3}{2}x^{-\frac{3}{2}}}$ 2.11 $1 + 3x^{-2}$ 2.12 $gt + 5t^{-2}$ 3.1 $3t^{2} \ge 0$ 3.2 $y = 4x - 8$ 3.3 $A(\frac{1}{3}; 5)$ 3.4 $a = -4, b = -3$			4.1.1	x = 4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CALCULUS	413	$x = \pm 3$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1	f'(x) = 4x	414	x > 0	
1.3 $f'(x) = -4x$ 1.4 $f'(x) = -2x$ 1.5 $f'(x) = \frac{1}{x^2}$ 1.6 $f'(x) = -2x + 7$ 1.7 $f'(x) = 0$ 1.8 $f'(x) = 1$ 1.9 $f'(x) = 2x - b$ 2.1 $-2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.2 $x^{-2} - 2x^{-3}$ 2.1 $-2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$ 2.3 $4 + 2x^{-\frac{3}{2}} - 2x^{-3}$ 2.4 $x + 5x^{-2}$ 2.5 $10t^4 + \frac{7}{4}t^{\frac{3}{4}}$ 2.6 $-2x - 2$ 2.7 $-x^{-\frac{1}{2}} + 1 - 2x^{-\frac{3}{2}}$ 2.8 $6x + 4x^{-3}$ 2.9 $x^2 + 5x + 9$ 2.10 $-4x^{-2} - \frac{\sqrt{3}}{2}x^{-\frac{3}{2}}$ 2.11 $1 + 3x^{-2}$ 2.12 $gt + 5t^{-2}$ 3.3 $A\left(\frac{1}{32}; 5\right)$ 3.4 $a = -4, b = -3$	1.2	f'(x) = -2x	4.2	1	
$\begin{array}{c} 1.4 & f'(x) = -2x \\ 1.5 & f'(x) = \frac{5}{x^2} \\ 1.6 & f'(x) = -2x + 7 \\ 1.7 & f'(x) = 0 \\ 1.8 & f'(x) = 1 \\ 1.9 & f'(x) = 3x^2 \\ f'(2) = 12 \\ 1.10 & f'(x) = 2x - b \\ 2.1 & -2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}} \\ 2.2 & x^6 - 2x - 3 \\ 2.4 & x + 5x^2 \\ 2.5 & 10t^4 + \frac{7}{4}t^{\frac{3}{4}} \\ 2.6 & -2x - 2 \\ 2.7 & -x^{-\frac{1}{2}} + 1 - 2x^{-\frac{3}{2}} \\ 2.8 & 6x + 4x^{-3} \\ 2.9 & x^2 + 5x + 9 \\ 2.10 & -4x^2 - \sqrt{\frac{3}{2}}x^{-\frac{3}{2}} \\ 2.11 & 1 + 3x^{-2} \\ 2.12 & gt + 5t^{-2} \\ 3.1 & 3t^2 \ge 0 \\ 3.2 & y = 4x - 8 \\ 3.3 & A \left(\frac{1}{32};5\right) \\ 3.4 & a = -4, b = -3 \end{array}$	1.3	f'(x) = -4x		$x > \frac{1}{3}$	
$ \begin{array}{c} 1.5 \\ f'(x) = \frac{5}{x^2} \\ 1.6 \\ f'(x) = -2x + 7 \\ 1.7 \\ f'(x) = 0 \\ 1.8 \\ f'(x) = 1 \\ 1.9 \\ f'(x) = 3x^2 \\ f'(2) = 12 \\ 1.10 \\ f'(x) = 2x - b \\ \hline 2.1 \\ -2x^{-2} - \frac{1}{2}x^{\frac{1}{2}} \\ \hline 2.2 \\ x^6 - 2x^{-3} + 1 \\ \hline 2.3 \\ 4 + 2x^{\frac{3}{2}} - 2x^{-3} \\ \hline 2.4 \\ x + 5x^2 \\ \hline 2.5 \\ 10t^4 + \frac{7}{4t^4} \\ \hline 2.6 \\ -2x - 2 \\ \hline 2.7 \\ -x^{\frac{1}{2}} + 1 - 2x^{\frac{3}{2}} \\ \hline 2.8 \\ 6x + 4x^{-3} \\ \hline 2.9 \\ x^2 + 5x + 9 \\ \hline 2.10 \\ -4x^2 - \sqrt{5} x^{\frac{3}{2}} \\ \hline 2.11 \\ 1 + 3x^2 \\ \hline 2.12 \\ y = 4x - 8 \\ \hline 3.3 \\ A \\ \left(\frac{1}{2z}; 5\right) \\ 3.4 \\ a = -4, b = -3 \end{array} $	1.4	f'(x) = -2x	4.3.1	$f(2) = 2(2)^3 - 2$	$3(2)^2 + 80(2) - 84 = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5	$f'(x) = \frac{5}{3}$	4.3.2	(x-2)(2x-7)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2	c-6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.($\frac{y^2}{x^2}$	4.3.3	$x = \frac{8}{-}$ or $x = 5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	$\frac{f'(x) = -2x + 7}{f'(x) = 0}$		3	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1./	$\frac{f'(x) - 0}{f'(x) - 1}$	4.3.4	2 3.5	-9 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	$\int (x) - 1$ $\int (x) - 2x^2$		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.7	$\int (x) = 5x$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.10	$\int (2) = 12$		-84	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.10	$\int (x) = 2x - b$	4.3.5	(0;-65)	
$ \frac{2.2}{2.3} \times \frac{x^{6} - 2x^{-3} + 1}{4 + 2x^{-\frac{3}{2}} - 2x^{-3}} = \frac{4.4.2}{4.3} \times \frac{(-1;0), (1;0)}{4.4.3} = \frac{(-1;0), (1;0)}{4.4.4} = \frac{(-1;0), (1;0)}{4.5.4} = (-1;0),$	2.1	$-2x^{-2}-\frac{1}{2}x^{-\frac{1}{2}}$	4.4.1	(0;1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	$\frac{2}{100000000000000000000000000000000000$	4.4.2	(-1;0),(1;0)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	$\frac{x - 2x + 1}{4 + 2x^{-\frac{3}{2}} - 2x^{-3}}$	4.4.3	$\left(\frac{1}{3};\frac{32}{27}\right),(1;0)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.4	$x + 5x^{-2}$	444		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5	$10t^4 + \frac{7}{4}t^{\frac{3}{4}}$	1. 1. 1	E E	_ /
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.6	-2x-2		(12) (0	ent /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.7	$-x^{-\frac{1}{2}} + 1 - 2x^{-\frac{3}{2}}$		(-1:0)	(1:0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8	$6x + 4x^{-3}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.9	$x^2 + 5x + 9$			n
2.11 $1+3x^{-2}$ 2.12 $gt+5t^{-2}$ 3.1 $3t^2 \ge 0$ 3.2 $y = 4x - 8$ 3.3 $A\left(\frac{1}{32};5\right)$ 3.4 $a = -4, b = -3$	2.10	$-4x^{-2} - \frac{\sqrt{3}}{2}x^{-\frac{3}{2}}$	4.4.5	$\left(-\frac{1}{3};1\right)$ or $-\frac{1}{3}<$	< x < 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.11	$1+3x^{-2}$	4.5.1	x = -3 or $x = 3$ or	or $y = -27$
$\begin{array}{c c} 3.1 & 3t^2 \ge 0 \\ \hline 3.2 & y = 4x - 8 \\ \hline 3.3 & A\left(\frac{1}{32}; 5\right) \\ \hline 3.4 & a = -4, b = -3 \end{array} \qquad $	2.12	$gt + 5t^{-2}$	4.5.2	(-1;-32), (3;0)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.1	$3t^2 \ge 0$	4.5.3	1 1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.2	y = 4x - 8			(3:0) x
3.4 $a = -4, b = -3$	3.3	$A\left(\frac{1}{32};5\right)$			$\langle \rangle$
	3.4	a = -4, b = -3		(-1:-32)	7

Mathematics KZN-GRADE 12 Spring Revision 2						
4.5.4	Downloaded from Stanmoreph	yşıçs.	qqn			
4.5.5	y = 9x - 27	5.2.1	12 mm			
4.5.6	-32 < k < 0	5.2.2	t = 4 seconds			
4.5.7	$f(x+3) = -(x+3)^3 + 3(x+3)^2 + 9(x+3) - 27$	5.3.1	$1 - \frac{1}{2}x + \frac{1}{16}x^2 - \frac{1}{4\pi}x^2$			
4.6.1	$\int (x) = 0x = 12$	532	x = 1,76 m			
4.6.2	000200	541	t = 8			
	1000 (0.5)	5.4.2	24,63 km			
		5.4.3	16 km/h			
4.6.3	<i>x</i> > 2	5.5.1	36 <i>-x</i>			
4.6.4.	(3;7)	5.5.2	l = x - 4, b = 36 - x - 4 = 32 - x			
1		5.5.3	A(x) = (x-4)(32-x)			
4.6.4.	$=-3 \neq 1$	5.5.4	x = 18 cm			
2	Ye F	5.6.1	$h = 3 = \frac{270}{100}$			
4.7.1	\ \		$n^{-3} = \frac{\pi r^2}{\pi r^2}$			
	fra de	5.6.2	297,01 cm^2			
			PROBABILITY			
		1.1	a = 120; b = 60; c = 140; d = 210			
		1.2	The events are independent			
4.7.2	$8 = a(3-1)^2(3-4)$	2.1	15120			
4.7.3	x > 2	2.2	3360			
4.8	5	2.3	420			
	3	3.1.1	$\frac{3}{2}$			
			4			
		3.1.2	$\frac{1}{2}$			
	-2		8			
4.9.1	C(6;0)	3.1.3	150			
4.9.2	E(4;36)	3.1.4	B = 1050; C = 50; D = 350			
4.9.3	x 5	3.1.5	<u>1</u>			
	$x < \frac{1}{3}$		32			
4.9.4	$OG = \frac{10}{10}$	3.2.1	362880			
	3	3.2.2	1/280			
4.9.5	$m = \frac{1}{1}$	4.1.1	1 of 2			
4 1 0 1	17	4.1.2	3000			
4.10.1	A(0,12) B(-2,0) = C(1,0)	4.2				
4.10.2	B(-2,0), $C(1,0)$	5.1	$\frac{31}{260}$ or 0,1962 or 19,62%			
4.10.3	$\frac{2}{2} \leq r \leq 1 \text{ and } \leq (-2;1)$	5.2	200			
4.10.4	$-2 < x < 1$ of $x \in (-2, 1)$	5.2	$\frac{2}{13}$ or 0,1538 or 15,38%			
4.10.5		6.1	$a = 4 \cdot b = 13 \cdot c = 5 \cdot d = 4 \cdot e = 6$			
4.11		6.1	23 people			
		63	3			
	(42) (9 /3.0) :	0.5	$\frac{1}{10}$			
	(1.5)	71	40320			
4.12	$f(r) = -2r^3 + 12r^2 - 60r + 43$	7 2	1440			
T .12	$\frac{1}{2} \int (x) - 2x + 12x - 00x + 43$					
5.1.1	-50					

7.3 8.1 8.2 8.3 9.1.1 9.1.2	$\frac{52}{3}$ 729 280 81 <i>a</i> = 450; <i>b</i> = 319; <i>c</i> = 298; <i>d</i> = 748 298 1530 The events are independent	14.2.1	$ \begin{array}{c} $
8.1 8.2 8.3 9.1.1 9.1.2	$\overline{3}$ 729 280 81 a = 450; b = 319; c = 298; d = 748 $\overline{298}$ 1530 The events are independent		B 0,72 S 0,05 Not B 0,28 Not S 0,95 Not B 0,65
8.1 8.2 8.3 9.1.1 9.1.2	729 280 81 a = 450; b = 319; c = 298; d = 748 298 1530 The events are independent		S 0,05 Not B 0,28 No S 0,95 Not B 0,35
8.2 8.3 9.1.1 9.1.2	280 81 a = 450; b = 319; c = 298; d = 748 298 1530 The events are independent		Not B 0,35 Not B 0,65
8.3 9.1.1 9.1.2	81 a = 450; b = 319; c = 298; d = 748 298 1530 The events are independent		No S 0,95 B 0,35 Not B 0,65
9.1.1 9.1.2	a = 450; b = 319; c = 298; d = 748 298 1530 The events are independent		Not B 0.65
9.1.2	298 1530 The events are independent	14 2 2	Not D 0,05
]	1530 The events are independent		0,6315
	The events are independent	14.3.1	10!
9.1.3	The events are macpenaent.	14.3.2	4
	P(Male and Broken Limb)		$\overline{45}$
	$= P(Male) \times P(BrokenLimb)$	15.1.1	531 441
9.2.1	$\frac{2}{2} \approx 0.29$	15.1.2	531 441
	7	15.2	50 400
9.2.2	$\frac{40}{2} \sim 0.52$	16.1.1	
	77 ~ 0,52		
9.3.1	x = 0,09		$\left \left(\begin{array}{c} 9 \\ 6 \end{array} \right) \right \left(\begin{array}{c} 14 \end{array} \right) \right $
9.3.2	<i>y</i> = 0,34		$ \langle \langle \rangle \rangle \rangle_1$
10.1.1	x = 0,15; y = 0,45		
10.1.2	0,45	16.1.2	n(A or B) = 29
10.2.1	12	16.1.3	0,2
	35	16.2.1	67 600
10.2.2	24	16.2.2	≥ 3,64717
	75	17.1	2520
11.1	No, $(P \text{ and } B) \neq 0$	17.2.1	0,195
11.2	P(A or B) = P(A) + P(B) - (P and B)	(17.2.2	48,3%
11.3	1200	17.2.3	284880
11.4	864	18.1	730
12.1.1	24 ways	18.2.1	48
12.1.2	1	18.2.2	48
	$\frac{180}{180}$ or 0,01	18.2.5	240
12.2	=(n-1)!	18.3	53 rd position
	$\therefore 2 \ge (n-1)!$	18.4	60
13.1.1	No, because $P(A \text{ and } B) \neq 0$	18.5.1	1260
13.1.2	(a) 0,3	18.5.2	
101112	(b) 0,7		7 1000
13.2.1	1		looal
	$\overline{4}$		TRICONOMETRY
13.2.2	479001600		IRIGONOMETRI
13.2.3	1	1.1	$\cos 24^\circ = m$
	99	1.2	$\cos 24^\circ = m$
14.1.1	<u>1</u>	1.3	$\sin 66^\circ = m$
	4	1.4	$\cos 48^\circ = 2m^2 - 1$
14.1.2	$\frac{5}{6}$	1.5	$\sin 132^\circ = 2m\sqrt{1-m^2}$
	0	1.6	$\cos 66^\circ = \sqrt{\frac{\sqrt{1-m^2}+1}{2}}$

Mathema	atics KZN-	GRADE	12	Spring Revision 2024
1.7	Downloaded, from Stanmore	physi	<mark>GS.</mark> C	$\sqrt{11}$
1.8	$\sqrt{3}$ $\sqrt{3}$ $\frac{1}{\sqrt{1-m^2}}$			$\sin 2\theta = -\frac{1}{6}$
	$\cos 34 = \frac{1}{2}m - \frac{1}{2}\sqrt{1-m}$	5.3	.2	\sim 1
1.9	$\sin 42^\circ = 2m^2 - 1$			$\cos\theta = -\sqrt{\frac{12}{12}}$
2.1	$\sin 212^\circ = -t$	6.1		
2.2	$\cos 122^\circ = -t$	6.2	2	1
2.3	$\cos 64^\circ = 2\sqrt{1-t^2} - 1$			$-\frac{1}{\sin\theta}$
2.4	$\int \frac{1}{1+t^2}$	6.3		$\sqrt{3}$
	$\cos 32^\circ = \sqrt{\frac{1-\sqrt{1-i}}{2}}$	6.4		1
2.5	t	6.5		$3\sin^2 x$
2.5	$\tan 392^\circ = \frac{t}{\sqrt{1-t^2}}$	7.1		$\sqrt{2}$
	$\frac{\sqrt{1-i}}{0}$			2
	$\frac{1}{(1)(\sqrt{-1})(1)(1)}$	7.2	2	cos 20°
(β)	$(\sqrt{1-m^2}) - (\frac{1}{2})(k)$	7.3		sin 25°
$\frac{\sin(2)}{2}$	$\left(\frac{1}{2}+43\right) = 2$	7.4		$\sqrt{3}$
4.1.1	$\tan \theta = \frac{5}{2}$			2
	12	7.5		$\sqrt{3}$
4.1.2	$\sin\theta = \frac{5}{2}$			2
	13	7.6)	$\sqrt{2}$
4.1.3	$\sin\left(-90^\circ + \theta\right) = -\frac{12}{13}$	7.7	'	$k = 2\sin(60^\circ + x)$
414	120			
	$\sin 2\theta = \frac{1}{169}$	8.1	x = 3	$3,33^\circ + k120 \ k \in \mathbb{Z} \text{ or } x = 300^\circ + k360k \in \mathbb{Z}$
4.1.5	$a = -\frac{15}{2}$	8.2	<i>x</i> = 6	$2,74^{\circ} + k180 \ k \in \mathbb{Z}$
	<i>u</i> - 2	8.3	x = 1	$5^{\circ} + k180 \ k \in \mathbb{Z} \text{ or } x = 75^{\circ} + k180 \ k \in \mathbb{Z}$
4.2.1	$\tan \alpha = \frac{4}{2}$	8.4	<i>x</i> = 5	$0,66^{\circ}+180 \ k \in \mathbb{Z}$ or $x = 140,66^{\circ}+k180 \ k \in \mathbb{Z}$
	3	8.5	x = 6	$0^{\circ} + k360 \ k \in \mathbb{Z}$ or $300^{\circ} + k360 \ k \in \mathbb{Z}$
4.2.2	$\cos = \frac{3}{5}$	8.6	x = 1	$16,57^{\circ} + k180 \ k \in \mathbb{Z}$
4.2.2	3 $m = 5$	8.7	x = 1	$1, 3^\circ + k180 \ k \in \mathbb{Z} \text{ or } x = 135^\circ + k180 \ k \in \mathbb{Z}$
4.2.3	56	8.8	x = 1	$80^{\circ} + k360 \ k \in \mathbb{Z} \text{ or } x = 120^{\circ} + k360 \ k \in \mathbb{Z}$
4.2.4	$\sin(\alpha + \beta) = -\frac{36}{65}$		x = 2	$40^\circ + k360 \ k \in \mathbb{Z}$
5.1	(1000, 0) 4	-		
•••	$\cos(180^\circ + \theta) = \frac{1}{5}$	8.9		$x = 63, 43^\circ + k180 \ k \in \mathbb{Z}$
5.2	$\tan 2\theta - \frac{24}{2}$	10.1		period = 120°
	$\tan 2\theta = \frac{1}{7}$	10.3	.1	$x \in (30^\circ; 90^\circ)$
5.3	$\sin(45^\circ + \theta) = \frac{-7\sqrt{2}}{4}$	10.3	.2	$x \in (-90^\circ; -30^\circ)$
5 2 1		10.3	.3	$x \in (-90^\circ; -30^\circ) \cup (30^\circ; 90^\circ)$
3.2.1	$\cos \alpha = -\frac{\pi}{3}$	10.4		$y \in [-4; 2]$
5.2.2	$\cos(90^\circ - \beta) = \frac{5}{2}$	10.5		$h(x) = -\cos x$
		11.1		graph sketching
5.2.3	$\cos(\alpha+\beta)=\frac{1}{15}$	11.2		graph sketching
	15	11.3	.1	period 360°
		11.3	.2	$x = -80^{\circ}; x = 40^{\circ}; x = 160^{\circ}$

Mathematic	s KZN-GI	RADE 12		Spring Revision 2024
12.1	ownioadedbtrzom Stanmorep	hysi <u>cs</u> , co	$b = \frac{7}{2}$ o	b=3
12.2	$x \in (-90^\circ; 0^\circ)$		5	
12.3	period = 45°	3	3.1	BD: $y = 2x - 3$
12.4	maximum = 2	-	3.2	E(2;1)
12.5	the graph of has been shifted 45° to	1	3.3	A(-4;4)
1	the right		3.4	329 square units
12.6	$x \in (-90^\circ; -45^\circ) \cup (0^\circ; 90^\circ) \cup (135^\circ; 180^\circ)$	4	4.1	<i>y</i> = 1
13.1	b = 2		4.2	y = 2x + 10
13.2	$x \in (45^\circ; 67.5^\circ)$		4.3	$PQ = 5\sqrt{2}$
13.3	$x = 10^{\circ}; x = 145^{\circ}$		(a)	$r \neq 8$
13.4	$x = 60^\circ + k.180^\circ \ k \in \mathbb{Z}$	-	ч.э (b)	$\lambda \neq 0$
13.5.1(<i>a</i>)	A(120°; 0°)		4.3	<i>R</i> (-3;1)
13.5.1(b)	$C(-150^{\circ} \cdot -1)$	-	(c)	
		5	5.1	P(-5;7)
13.5.2(a)	$x \in (-90^\circ; 30^\circ)$		(a)	$T(\epsilon, 0)$
13.5.2(b)	$x \in (-160^\circ; 20^\circ)$		$\frac{5.1}{(b)}$	<i>I</i> (0,9)
13.5.2(c)	$x = \pm 90^{\circ}$	1	5.1	$\theta = 78.69$
13.5.2(d)	$x \in (-180; -90^\circ) \cup (90^\circ; 180^\circ)$		(c)	0 70,09
13.5.3	range $v \in [2;32]$		5.2	<i>k</i> = 1
1/1	r		5.3	Proof
14.1	$AC = \frac{x}{\sin \theta}$		(a)	5 11
14.2	CE = 2(x+2)		3.3 (b)	$y = -\frac{3}{4}x + \frac{11}{2}$
1/2	proof		5.4	p = 6
14.5	AF = 35.77m	-	(a)	1
15.1	$A\hat{B}C = 00^{\circ}$		5.4	<i>t</i> = 3
15.1	ADC - 90	-	(b)	
15.2	proof	6	6.1	r = -3
10.1	$\hat{ACD} = 20^{\circ} Alt 4^{\circ} \parallel$	-	6.2	Trapezium
19.1	$ACD = 30^{\circ} All \angle S \parallel$	-	6.3	P(0;-1)
19.2	AC = 2h	-	6.4	Proof
19.3	$ABD = 19,47^{\circ}$	-	6.5	$\left(x-\frac{1}{2}\right)^{2} + \left(y+\frac{7}{2}\right)^{2} = \frac{13}{2}$
19.4	$x = 30^{\circ}$			
			0.0	$r = \sqrt{3}$
1	ANALY HUAL GEOMETRY	7	/.1	90 tan \perp rad
1.1	m = 4		7.2	10√5
1.2	y = 4x - 16		7.3	<i>k</i> = 7
2.1	a) <u>1</u>		7.4	$(x-3)^2 + (y+1)^2 = 100$

y = -11

P(-17;11)

M(3;-16)

PQ = 20units

 $q \neq -7$ or $q \neq 17$

 $Yes, \triangle QRC \equiv \triangle QPC(SAS)$

7.5

a)

b)

c)

d)

a)

7.6

7.7

1.1	m = 4		
1.2	y = 4x - 16		
2.1	a)	$m = \frac{1}{2}$	
	b)	$m = \frac{-5}{2}$	
2.2	$\hat{DCB} = 85, 2^{0}$		
2.3	x - 2y + 11 = 0		
2.4	Proof		

hematics		KZ	N-GRADE	12		Spring Revision 2
Do	Myload	ed_trom Stanmol	epnys	CS. CO	7 15.4	Angle between a
	c)	Proof				radius and a tangent
8	8.1	Proof			15.5	$MB = \sqrt{40}$
	8.2	90°, Radius \perp tangent			15.6	$(x+1)^2 + (y+3)^2 = 40$
Tr	8.3	$\int \hat{c} \sqrt{2}$		16	16.1	<i>M</i> (-6;-3)
É		$\tan C = \frac{1}{4}$			16.2 a)	<i>r</i> = 4
Щ	8.4	$\sqrt{2}$ $\sqrt{2}$			b)	TS = 1 unit
	ากา	$y = \frac{1}{4}x + 4\sqrt{2}$			16.3 a)	y = -8
9	9.1	$v = \frac{1}{x} + \frac{15}{x}$			b)	$y = \frac{3}{4}x + \frac{31}{4}$
		^y 2 ^x 2			1(1)	<u> </u>
	9.2	Centre (-5; 5)			16.4 a)	Perimeter = 40units
	9.3	Diameter = 12,65			b)	$\frac{1}{2}$
	9.4	$(x+5)^2 + (y-5)^2 = 40$		17	17.1	$\frac{2}{rad}$ tan
	9.5	<i>P</i> =10		1/	17.1	m = -2
	9.6	$(x+2)^{2}+(y-7)^{2}=10$			17.2	$\frac{m-2}{2}$
10	10.1	Proof			17.4	1 5
10	10.2	Proof			- / • •	$y = \frac{1}{2}x - \frac{3}{2}$
	10.3	$\sqrt{2}$			17.5	<i>E</i> (5;-10)
		$\frac{\sqrt{2}}{2}$			17.6	$(x-5)^2 + (y+5)^2 = 25$
11	11.1	$\tan \perp rad$			17.7	$2\sqrt{5} < r < 4\sqrt{5}$
	11.2 (a)	<i>M</i> (-5;5)		18	18.1	P(0;-2)
	11.2 (b)	$(x+5)^{2} + (y-5)^{2} = 25$		10	18.2	M(2;-2)
		-4 20			18.3	$x^2 + y^2 - 4x + 4y + 4 = 0$
	11.2 (c)	$y = \frac{1}{3}x + \frac{1}{3}$			18.4	$c = \pm 2,82$
	11.3	$(x-2)^{2} + (y-4)^{2} = 75 - $	$50\sqrt{2} \approx 4$	299.	19.1	<i>E</i> (1;-1)
	11.4	M'(5;5) and $M''(-5;-5)$			19.2	$AB = 4\sqrt{5}$
12	12.1	y = -2x			19.3	y = -2x + 1
	12.2	<i>R</i> (2;-4)			19.4	Proof
	12.3	1			19.5	Proof
		4			19.6	$t \neq -\frac{3}{24}$ or $t \neq \frac{24}{24}$
	12.4	-5 < k < 5				4 7
13	13.1	A(1;-2) and $r = 3$		20.	20.1	$m = -\frac{4}{2}$
	13.2	N(1;1)			20.2	3
	13.3	<i>y</i> = 1			20.2	(-2;-4)
	13.4	5,39 < <i>r</i> < 8,39			20.3	$y = \frac{3}{4}x - \frac{3}{2}$
14	14.1	$(x-3)^2 + (y-4)^2 = 81$			20.4	$\frac{4}{\beta} = 126.87$
	14.2	y = x + 7			20.5	$\frac{p - 120,07}{2607}$
	14.3	inside			20.5	OJK = 36,8/
	14.4	<i>K</i> (12;-5)			20.6	x = -4 only
15	15.1	<i>M</i> (-1;-3)			20.7	Area DEOJ = 20,83 units
	15.2	$r = \sqrt{8}$			20.3	$y = \frac{3}{4}x - \frac{5}{2}$
	15.3	D(-3;-5)			00.4	4 2

Mathe	ematics	KZN-	GRADE 1	2 Spring Revision 2024
	Downgade	<i>og_{ĵk} r<u>om</u>stanmore</i>	D&YSIC	S. COM 350 OGIVE/OGIEF
	20.6	x = -4 only		300
	20.7	$\frac{1}{4rea}$ DEOI = 20.83 units ²		- 39500- - 3950- - 3950-
		Area DLOJ – 20,05 unus		St 2 200
				000 Manufacture Commission
	DATA	HANDLING		50
1 1	77 10			
1.1	77,18		_	Age of people/Outeraom van mense
1.2	24,80		84	Median = 41
1.5			851	A=7 = 12 = 12 = 47 = 3
1.4	130 D		852	Ogive/Ogie/
1.3	D		0.0.2	55
2.1	x = 55			7: 3 45
2.2	7,8		_	40 mmbay
2.3	3 scores			avisi luma 30
3.1	negative		_	C 2 25 20
3.2	Either 4 or 5 call	S		15
3.3	The correlation v	vill increase slightly less		10
	(less			
4.1	y=-23,85 + 0,23x	ζ		Distance/Afstand (in km)
4.2	y=102,65		8.5.3	IQR=6,8
4.3	r = 0,98		9.1	$2500 < x \le 3000$
4.4	Very strong posi	tive correlation	9.2	2262,5 grams
5.1	The higher the te	emperature, the lesser hot	9.3	
	drink are sold		9.3.1	9 45 9 40
5.2	A=489,46 B=-	-10,36	_	35 J
5.3	39 litres			
5.4	(12,230)			/h22
6.1	Strong, The majo	prity of the points lie lose to		15
	the regression lin	ne		allow and a second
6.2	$\hat{y} = -38,48 + 2,82$	2 <i>x</i>		Cum
6.3	34 ice creams			4 504 1004 1504 2004 2504 3004 3504 Weight (in grams)/Gewig (in gram)
6.4	Regression line v	vill be pulled slightly	9.3.2	It will not deviate./it will remain the same.
	upwards		9.3.3	2266,5 grams
7.1	15		10.1.1	Y=8
7.2	70		10.1.2	Median=6
7.3	40-1,5x30=-5 no	t an outlier	10.2.1	Mean=7
7.4			10.2.2	Standard deviation=4
7.4.1	118,603		11.1	В
7.4.2	No, 180 min is o	utside of the data set,	11.2	В
	therefore extrapo	lation. Implies that anyone	11.3	75%
	who studies for c	over 180 min will obtain	11.4	Nothing. It remains the same. No change in
	100%.			standard deviation.
8.1	$35\langle x \leq 45$		11.5	22,5
8.2	320 people		12.1	64 People