

PREPARATORY EXAMINATION

TIME: 3 hours

MARKS: 150

P.T.O.

MATHEMATICS (PAPER 1)

10611/24

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of 12 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round-off answers to TWO decimal places, unless stated otherwise.
- 7. An information sheet with formulae is included at the end of the question paper.
- 8. Number the answers according to the numbering system used in this question paper.
- 9. Write neatly and legibly.

	Downloaded from Stanmorephysics	3
	(PAPER 1) 10611/24	
QUE	ESTION 1	
1.1	Given: $2k = (x-5)(x-k)$, determine:	
	1.1.1 $k \text{ if } x = 2$	(2)
	1.1.2 x if $k = 2$	(4)
1.2	Solve for <i>x</i> :	
	1.2.1 $2x^2 + 3 = 8x$ (correct to TWO decimal places)	(4)
	1.2.2 $\sqrt{2(x+10)} - 10 = x - 12$	(4)
	1.2.3 $3^{x}(x-5) < 0$	(2)
1.3	Solve the following equations simultaneously:	
	$\sqrt{3^x}.9^y = 27$ and $x + 4y^2 = 6$	(6)
1.4	The solutions of a quadratic equation are given by $x = \frac{-2 \pm \sqrt{2p+5}}{7}.$ State the value(s) of p for which this equation will have:	
	1.4.1 Two equal solutions	(1)
	1.4.2 No real solutions	(1)
QUE 2.1	ESTION 2 Given the quadratic sequence: 0; 5; 14;; 779; 860	[24]
	2.1.1 Write down the value of the 4 th term, T_{4} , of this sequence.	(1)
	2.1.2 Determine an expression for the n^{th} term of this sequence	(1) (A)
	2.1.2 Determine an expression for the n term of this sequence.	(4)
	2.1.3 Calculate the number of terms in the sequence.	(3)
2.2	Determine the sum of the whole numbers between 100 and 1 000 which are divisible by 11.	(5) [13]

Downloaded from Stanmorephysics Com (PAPER 1) 10611/24 4

QUESTION 3

3.1 Given the geometric sequence: $8(x-2)^2$; $4(x-2)^3$; $2(x-2)^4$; ... $x \neq 2$ 3.1.1 Determine the value(s) of x where the sequence converges. (3) 3.1.2 Determine the sum to infinity of the series if x = 2,5. (4)

3.2 Given:
$$\sum_{k=3}^{12} 3(-2)^{k-2}$$

- 3.2.1 How many terms are there in this series? (1)
- 3.2.2 Calculate the sum of the series.

(3) [11]

Downloaded from Stanmorephysic MATHEMATICS 6 (PAPER 1) 10611/24

QUESTION 5

- The point P(2; $\sqrt{3}$) lies in the Cartesian plane. Determine the coordinates of the image 5.1 of point P if P is rotated about the origin through 90° in an anti-clockwise direction.
 - The graph of $h(x) = a^x$ is sketched below. A $\left(-1; \frac{1}{2}\right)$ is a point on the graph of h. 5.2

5.2.1	Substantiate why the coordinates of Q, the y-intercept of h , are (0; 1).	(2)
5.2.2	Calculate the value of <i>a</i> .	(2)

5.2.3 Write down the equation of the inverse function,
$$h^{-1}$$
 in the form $y = ...$ (2)

Draw a sketch graph of h^{-1} . Indicate the coordinates of TWO points that lie on 5.2.4 this graph. (3)

5.2.5 Read off from your graph the values of x for which
$$\log_2 x > -1$$
. (2)

5.2.6 If
$$g(x) = (100).3^x$$
, determine the values of x for which $h(x) = g(x)$. (3)

The price (p), in Rands per unit, of EACH item in a consignment of q items, is 5.3 given by $p = \log\left(10 + \frac{q}{2}\right)$.

- Calculate the value of p and the total price of the consignment when the 5.3.1 consignment has 1 980 items. (3)
- Determine the number of items in the consignment when the price of each item 5.3.2 is R2. (2)[21]

(2)

6.1	Write down the domain of g.	(1)
6.2	Write down the equations of the asymptotes of g.	(2)
6.3	Calculate the coordinates of point D, a point of intersection of g and f .	(5) [8]

MATHEMATICS (PAPER 1)

10611/24

8

QUESTION 7

7.1	At what invested	annual percentage interest rate, compounded quarterly, should a lump sum be in order for it to double in 6 years?	(3)
7.2	Micaela 1 Februa compou agreeme 01 Augu	buys furniture to the value of R10 000. She borrows the money on ary 2023 from a financial institution that charges interest at a rate of 9,5% <i>p.a.</i> nded monthly. Micaela agrees to pay monthly instalments of R450. The loan ent allows Micaela to start paying equal monthly instalments from ast 2023.	
	7.2.1	Calculate the total amount owing to the financial institution on 1 July 2023.	(3)
	7.2.2	How many months will it take Micaela to pay back the loan?	(4)
	7.2.3	What is the balance of the loan immediately after Micaela has made the 25 th payment?	(3) [13]

QUESTION 8

8.1 If
$$f(x) = -2x^2 + 3x$$
, determine $f'(x)$ from first principles. (4)

8.2 Given:
$$f(x) = \frac{3x^2}{2} - 24\sqrt{x}$$
. Calculate $f'(9)$. (5)

8.3 A function $g(x) = ax^2 + \frac{b}{x}$ has a minimum value at x = 4. The function value at x = 4 is 96.

Calculate the values of a and b.

Downloaded from Stanmorephysics Magnetic

10611/24

QUESTION 9

- 9.1 The graphs of $g'(x) = ax^2 + bx + c$ and h(x) = 2x 4 are sketched below. The graph of $g'(x) = ax^2 + bx + c$ is the derivative graph of a cubic function g.
 - The graphs of h and g' have a common y-intercept at point E.
 - C(-2; 0) and D(6; 0) are the x-intercepts of the graph of g'.
 - Point A is the x-intercept of h and point B is the turning point of g'.
 - Line AB is parallel to the *y*-axis.

9.1.1	Write down the coordinates of point E.	(1)
9.1.2	Determine the equation of the graph of g' in the form $y = ax^2 + bx + c$.	(4)
9.1.3	Write down the x-coordinates of the turning point of g .	(2)
9.1.4	Write down the x-coordinate of the point of inflection of the graph of g .	(1)
9.1.5	Explain why g has a local maximum at $x = -2$.	(2)

9.2 Given: $h(x) = 4x^3 + 5x$

Substantiate whether it is possible to draw a tangent to the graph of h that has a negative gradient.

(2) [12] Downloaded from Stanmorephysics Com (PAPER 1) 10611/24 10

QUESTION 10

The diagram below shows the plan for a verandah which is to be built onto the corner of a cottage. A railing ABCDE is to be constructed around the four edges of the verandah.

It is given that AB = DE = x and BC = CD = y, and the length of the railing must be 30 metres. Calculate the value of x and y for which the veranda will have a maximum area.

QUESTION 11

Let A and B be two events in a sample space.

Suppose that P(A) = 0,4; P(A or B) = 0,7 and P(B) = k. 11.1 For what value of k are A and B mutually exclusive? (2) 11.2 For what value of k are A and B independent? (3) Stanmore physics.com [5]

P.T.O.

[8]

MATHEMATICS (PAPER 1)

10611/24

11

QUESTION 12

12.1 The data obtained from a city's police department indicates that of all motor vehicles reported stolen, 80% were stolen by syndicates to be sold off, and 20% were stolen by individuals for personal use.

Of the vehicles presumed stolen by syndicates:

- 24% were recovered within 48 hours
- 16% were recovered after 48 hours
- 60% were never recovered

Of those vehicles presumed stolen by individuals:

- 38% were recovered within 48 hours
- 58% were recovered after 48 hours
- 4% were never recovered

12.1.1	Draw a tree diagram for the given information above.	(3)

- 12.1.2 Calculate the probability that if a vehicle was stolen in this city, it would be stolen by a syndicate and recovered within 48 hours. (2)
- 12.1.3 Calculate the probability that a vehicle stolen in this city will not be recovered.
- 12.2 You have to choose a password for your new "Facebook" profile. The password must be in the format: $\psi\psi\psi@@$ where ψ is any digit (0's are not allowed) and @ is any vowel (a; e; i; o; u). You may repeat any digit, but you may not repeat a vowel.

How many passwords can be formed?

(3) [11]

(3)

TOTAL: 150

Downloaded from Stanmorephysics Com MATHEMATICS 12

(PAPER 1)

10611/24

INFORMATION SHEET $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n$ $A = P(1+i)^n$ $T_n = a + (n-1)d$ $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_n = \frac{a(r^n - 1)}{r - 1}; \ r \neq 1$ $S_{\infty} = \frac{a}{1-r}; -1 < r < 1$ $T_n = ar^{n-1}$ $F = \frac{x[(1+i)^{n} - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $d = \sqrt{(x_2 - x_1)^2 + (v_2 - v_1)^2}$ $M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ y = mx + c $m = \tan \theta$ $(x-a)^{2} + (y-b)^{2} = r^{2}$ In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^{2} = b^{2} + c^{2} - 2bc \cos A$ area $\triangle ABC = \frac{1}{2}ab.\sin C$ $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ $\int \cos^2 \alpha - \sin^2 \alpha$ $\cos 2\alpha = \left\{ 1 - 2\sin^2 \alpha \right\}$ $\sin 2\alpha = 2\sin \alpha \cos \alpha$ $2\cos^2\alpha - 1$ $\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$ $\overline{x} = \frac{\sum x}{\sum x}$ $P(A) = \frac{n(A)}{n(S)}$ P(A or B) = P(A) + P(B) - P(A and B) $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$ $\hat{v} = a + bx$

22 pages

INSTRUCTIONS AND INFORMATION

A – Accuracy CA – Continued Accuracy S – Statement R – Reason

S and R – Statement and Reason

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate crossed OUT an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies in ALL aspects of the marking guidelines.
- It is UNACCEPTABLE to assume values/answers in order to solve a question.

QUESTION 1

1.1	1.1.1	2k = (x-5)(x-k)		
	ЛОП	$\therefore 2k = (2-5)(2-k)$		
	000	2k = (-3)(2-k)		
1		2k = -6 + 3k	✓ simplification	
ķ		k = 6	✓ answer	(2)
				(2)
	1.1.2	2k = (x-5)(x-k)		
		$\therefore 2(2) = (x-5)(x-2)$		
		$4 = x^2 - 7x + 10$	✓ simplification	
		$\therefore 0 = x^2 - 7x + 6$	✓ standard form	
		0 = (x-1)(x-6)	✓ factors	
		$\therefore r = 1$ or $r = 6$	✓ answers	(4)
				(.)
1.2	1.2.1	$2x^2 + 3 = 8x$		
		$\therefore 2x^2 - 8x + 3 = 0$	✓ standard form	
		$b + \sqrt{b^2 - 4ac}$		
		$x = \frac{-b \pm \sqrt{b^2 - 4uc}}{2\pi}$		
		$\frac{2u}{(2)}$		
		$\therefore x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(2)(3)}}{2(2)}$	\checkmark substitution into correct	
		2(2)	formula	
		$r = \frac{8 \pm \sqrt{64 - 24}}{4 + 24}$		
		4		
		$\therefore x = 3,58$ or $x = 0,42$	✓✓ answers	
		NOTE: Penalise 1 mark for rounding in this		
		question ONLY. Candidates must		
		show substitution to get full marks.		(4)
	1.2.2	$\sqrt{2(x+10)} -10 = x - 12$		
		$\sqrt{2(x+10)} = x-2$		
		$2(x+10) = x^2 - 4x + 4$	\checkmark isolate surd and square both	
		$2x + 20 = x^2 - 4x + 4$	sides	
		$0 = x^2 - 6x - 16$		
		0 = (r+2)(r-8)	✓ standard form	
		$r \neq -2 \text{or} r = 8$	\checkmark ration values with exclusion	
		$x \neq -2$ or $x = 0$	· critical values with exclusion	(4)
	1.2.3	$3^{x}(x-5) < 0$		
	_	$3^x > 0$ for $r \in \square$	\checkmark 3 ^x > 0	
		r-5 < 0		
		· r < 5		
			✓ answer	(2)
1				1

1.3	$\sqrt{3^x}$	$.9^{y} = 27$	$x + 4y^2 = 6(2)$		
	$3^{\frac{x}{2}}.3$	$^{2y} = 3^3$		✓ prime bases of 3	
	$\frac{1}{2}x$	+2y = 3			
Í	x+-	4y = 6		✓ simplification (linear)	
1	<i>x</i> +	$0 - 4y \dots (1)$		\checkmark expression for <i>x</i>	
	sub	(1) into (2)			
	6-4	$4v + 4v^2 = 6$			
	$4y^2$	-4y = 0			
	4 <i>y</i> (y - 1) = 0		✓ factors	
	y = x =	$\begin{array}{ccc} 0 & \text{or} & y = 1 \\ 6 & x = 2 \end{array}$		✓ both <i>y</i> -values ✓ both <i>x</i> -values	(6)
1 4	1 4 1				
1.4 Sta	1.4.1 nmorepl	2p+5=0 sics.com 5			
/		$\therefore p = -\frac{3}{2}$		✓ answer	(1)
	1.4.2	2p + 5 < 0			
		$\therefore p < -\frac{5}{2}$		✓ answer	(1)
					[24]

QUESTION 2

	ç				
2.1	2.1.1	$T_4 = 27$	\checkmark	answer	(1)
	2.1.2	0 5 14 27 44			
		5 9 13 17 1 st differences			
	-	4 4 4 2^{nd} differences	\checkmark	2 nd differences	
		2a = 4			
		$\therefore a = 2$	✓	value of <i>a</i>	
		2a+b-5			
		3(2) + b = 5 3(2) + b = 5			
		(2) + b = -1	\checkmark	value of b	
		a+b+c=0			
		2 - 1 + c = 0			
		$\therefore c = -1$	✓	value of c	
		$\therefore T_n = 2n^2 - n - 1$			(4)
	2.1.3	$860 = 2n^2 - n - 1$	\checkmark	equating correctly/or	
		$\therefore 0 = 2n^2 - n - 861$		correct standard form	
		$-(-1) \pm \sqrt{(-1)^2 - 4(2)(-861)}$			
		$n = \frac{(-1) \pm \sqrt{(-1)^2 + \sqrt{(-1)} + \sqrt{(-1)} + \sqrt{(-1)^2 + \sqrt{(-1)} + \sqrt{(-1)} + \sqrt{(-1)} + \sqrt{(-1)} + \sqrt{(-1)} + ($	\checkmark	Stepmorephysics.com substitution	
		2(2)			
		$\therefore n = 21 \text{or} n \neq -20, 5$			
		There are 21 terms in the sequence.	✓	answer with rejection/	
		NOTE: Candidate must reject a negative answer or		selection	
		decimal answer to obtain full marks.			(3)
2.2	Series	: 110 + 121 + + 990	\checkmark	series with $T_1 = 110$ and	
	$\therefore a =$	110 and d = 11		$T_n = 990$	
		+(n-1)(1=990)	\checkmark	substitution into T_n	
	(n-1)	11=880		formula	
	<i>n</i> -1=	= 80			
	∴ <i>n</i> =	81	✓	value of <i>n</i>	
			✓	substitution into S_n	
	~	81,5110,0001		formula	
	$\therefore S_{81}$	$=\frac{1}{2}[110+990]$	✓	answer	
	$\therefore S_{s_1}$	= 44 550			
	01				
	OR				
					(5)

$S_{81} = \frac{81}{2} [2(110) + (81 - 1)(11)]$ $S_{81} = 44550$	✓ ✓	substitution into S_n formula answer	
	•		[13]

10611/24

QUES	QUESTION 3				
3.1	3.1.1	$r = \frac{4(x-2)^3}{8(x-2)^2}$			
		$\therefore r = \frac{x-2}{2}$	✓	expression for r	
		$1 < \frac{x-2}{2} < 1$	~	-1 < r < 1	
		$\therefore -2 < x - 2 < 2$ $\therefore 0 < x < 4$	✓	answer	
					(3)
	3.1.2	$a = 8(x-2)^2$			
		$a = 8(2,5-2)^2$			
		$\therefore a = 2$	✓	value of a	
		$r = \frac{x-2}{2}$ $r = \frac{2,5-2}{2}$			
	Stan	nor <u>aphylics.com</u>	✓	value of <i>r</i>	
		$S_{\infty} = \frac{2}{1 - \frac{1}{4}}$	~	substitution into correct formula	
		$S_{\infty} = \frac{8}{3}$	✓	answer	
		OR			
		$S_{\infty} = \frac{8(2, 5-2)}{1 - \left(\frac{2, 5-2}{2}\right)}$ $S_{\infty} = \frac{8}{3}$	✓✓✓	value of <i>a</i> (numerator) value of <i>r</i> (denominator) substitution into correct formula answer	(4)
2.2	2 2 1	n = (12, 2) + 1			
5.2	3.2.1	n = (12 - 3) + 1 n = 10	\checkmark	answer	(1)
					(1)

3.2.2 $a = 3(-2)^{3-2}$ $\therefore a = -6$ r = -2	✓ value of a and r
$S_n = \frac{a(1-r^n)}{1-r}$ $S_n = \frac{-6(1-(-2)^{10})}{1+2}$ $S_n = 2046$	 ✓ correct substitution in correct formula ✓ answer (3)
	[11]

10611/24

QUES	STION 4		
A 1			
4.1	$f(x) = ax^{2} \qquad x \le 0$ -8 = a(-6) ² -8 = 36a	✓ substitute point P	
	$\therefore a = -\frac{2}{9}$ NOTE : Value of <i>a</i> must be in simplified form.	✓ answer	(2)
4.2	$x = -\frac{2}{9}y^2$; $y \le 0$	\checkmark interchange <i>x</i> and <i>y</i>	
	$\therefore y^{2} = -\frac{9}{2}x, y \le 0$ $\therefore y = -\sqrt{-\frac{9}{2}x}$	✓ answer	
	NOTE: No penalty for not writing constraints of y .		(2)
4.3	$y \leq 0$	✓ answer	(1)
4.4		✓ shape ✓ point on f^{-1}	
4.5	$-y = -\sqrt{-\frac{9}{2}x}$ $\therefore y = \sqrt{-\frac{9}{2}x}$	✓ setting equation for reflection across $y = x$ and x-axis	(2)
	V 2	✓ answer	(2)
	NOTE. Answer only, award FOLL marks.		<u>(2)</u> [9]

QUI	ESTION	5			
	5				
5.1	$P(-\sqrt{3})$; 2)	√ √	answer	
	NOTE:				
	If a can	lidate draws a sketch indicating understanding of a rotation			
	of 90 ⁰ a	nticlockwise and shows the point in the second quadrant,			
	award 1	mark.			
	If a can	didate has a negative <i>x</i> -coordinate, indicating understanding			
	of the p	bint being in the second quadrant, award 1 mark.			(2)
5.2	5.2.1	$a^0 = 1$ for $a \in \Box$; $a \neq 0$		1: 0	
		$\therefore h(0) = a^0$	~	making $x = 0$	
		$\therefore h(0) = 1$	\checkmark	value of $h(0)$ (A)	
		$\therefore Q(0; 1)$			
		NOTE: Any other valid answer			(2)
	5.2.2	$h(x) = a^x$			
		$h(-1) = a^{-1} = 1$			
		$n(-1) - u - \frac{1}{2}$	v	substitute point A	
		_ 1 1			
		$a = \frac{1}{2}$			
		$\therefore a = 2$	\checkmark	answer	(2)
	5.2.3	$h: y = 2^x$			
		$\mathbf{r} = 2^{y}$	✓	interchange <i>x</i> and <i>y</i>	
		$\therefore h^{-1}: \qquad -1$	✓	answer	
		$y = \log_2 x$			
		NUIE: Answer only, award FULL marks.			
		Accept an answer in terms of a: $y = \log_a x$			(2)

		h(x) = g(x)	✓	express correctly in	
	1	$\therefore 2^x = 100.3^x$		terms of logs	
		$2^{x} = 100$			
		3^x	~	r as subject	
		$\left(\frac{2}{3}\right) = 100$		n us subject	
1		$(3)^{x}$	\checkmark	answer	
4		$\log\left(\frac{2}{3}\right) = \log 100$			
		$r \log \frac{2}{2} - \log 100$			
		1 100			
		$x = \frac{\log 100}{2}$			
		$\log \frac{\pi}{3}$			
		$\therefore x = -11,36$			
	5 2 1				
	5.5.1	$p = \log\left(10 + \frac{q}{2}\right)$			
		(10, 1980)			
		$p = \log\left(10 + \frac{10}{2}\right)$	\checkmark	$p = \log 1000$	
		$p = \log(1000)$			
		$\therefore p = 3$	v	value of p	
		Total Price R3×1980	~	total price	
		= <i>R</i> 5940			(3)
5	532				
5	5.5.2	$p = \log\left(10 + \frac{q}{2}\right)$			
		(10, q)			
		$\therefore 2 = \log_{10}\left(10 + \frac{1}{2}\right)$	5		
		$\therefore 10^2 = 10 + \frac{q}{2}$		log to exponential	
		$2 \cdot 200 - 20 + a$			
	Star	$\frac{1200-20+q}{100}$		answer	(2)
<u>├</u>					[<u>21</u>]
I					

QU	ESTION 6		
6.1	$x \in \square$; $x \neq -1$	✓ answer	
	NOTE: Both conditions must be stated.		(1)
6.2	$\begin{array}{c} x = -1 \\ y = 2 \end{array}$	✓ answer✓ answer	
	NOTE : Do not account answers written in terms of <i>n</i> and <i>a</i>		(2)
	NOTE . Do not accept answers written in terms of <i>p</i> and <i>q</i> .		(2)
6.3	$-x+4 = \frac{2}{x+1} + 2$:. $(-x+4)(x+1) = 2 + 2(x+1)$	✓ equating	
	$\therefore -x^2 + 3x + 4 = 2 + 2x + 2$ $\therefore 0 = x^2 - x$ $\therefore 0 = x(x-1)$	✓ simplification✓ standard form	
	$\therefore x = 0 \text{or} x = 1$ $\therefore x_D = 1$ $\therefore y_D = -1 + 4 = 3$ $\therefore D(1; 3)$	 ✓ x-values with selection (A) ✓ y-value 	
	NOTE: Does not have to be in coordinate form.		(5)
			[8]

QUESTION 7 7.1 $A = P(1+i)^n$ $\therefore 2x = x(1+\frac{i}{4})^{24}$ $\therefore (1+\frac{i}{4})^{24} = 2$ $\therefore 1+\frac{i}{4} = 2\sqrt[4]{2}$	(3)
7.1 $A = P(1+i)^{n}$ $\therefore 2x = x(1+\frac{i}{4})^{24}$ $\therefore (1+\frac{i}{4})^{24} = 2$ $\therefore 1+\frac{i}{4} = \frac{24}{2}$	(3)
i	(3)
$\therefore \frac{1}{4} = 0,0293$ value of <i>i</i>	(3)
$\therefore i = 0,1172$ \checkmark answer	(3)
\therefore Annual % interest rate = 11,72%	(-)
7.2.1 $A = P(1+i)^n$ \checkmark correct <i>i</i> and <i>n</i>	
$\therefore A = 10000(1+0,0079)^{5}$ $\therefore A = 10000(1,0079)^{5}$ substitution into correct formula	
$\therefore A = R10 \ 402,15 \qquad \qquad \checkmark \text{ answer}$	(3)
	(3)
7.2.2. $P = \frac{x[1 - (1 + i)^{-n}]}{i}$ $\therefore \frac{450[1 - (1,0079)^{-n}]}{0,0079} = 10402,15$ $\therefore [1 - (1,0079)^{-n}] = 0,183$ $\therefore 1 - 0,183 = (1,0079)^{-n}$ $\therefore 0,8169 = (1,0079)^{-n}$ $\therefore -n = \log_{1,0079} 0,8169$ $\therefore -n = -25,63$ $\therefore n = 26$ NOTE: Answer must be a natural number.	33 (4)
7.2.3 Balance of the loan after the 25 th navment:	
$= value of loan - value of annuity at that time$ $= 10 402,15(1,0079)^{25} - \frac{450[(1,0079)^{25} - 1]}{0,0079}$ $= 12 668 80 - 12 286 52$	
$= 12\ 000,09 - 12\ 300,33$ $= R282,36$ OR OR $(V - \frac{1}{0,0079})$ $(V - \frac{1}{0,0079})$ $(V - \frac{1}{0,0079})$ $(V - \frac{1}{0,0079})$	(3)

L

10611/24

QUESTION 8		
8.1 $f(x) = -2x^2 + 3x$		
$f(x+h) = -2(x+h)^2 + 3(x+h)$		
$f(x+h) = -2(x^2 + 2xh + h^2) + 3x + 3h$		
$f(x+h) = -2x^2 - 4xh - 2h^2 + 3x + 3h$		
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
$f'(x) = \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 3x + 3h - (-2x^2 + 3x)}{h}$	✓ substitution	
$f'(x) = \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 3x + 3h + 2x^2 - 3x}{h}$		
$f'(x) = \lim_{h \to 0} \frac{-4xh - 2h^2 + 3h}{h}$	\checkmark simplification	
$f'(x) = \lim_{h \to 0} \frac{h(-4x - 2h + 3)}{h}$	✓ correct factorisation	
$f'(x) = \lim_{h \to 0} (-4x - 2h + 3)$		
f'(x) = -4x + 3	✓ answer	
NOTE: Penalise ONE mark for incorrect notation in this question only.	5	(4)
8.2 2.2		
$f(x) = \frac{3x}{2} - 24\sqrt{x}$		
$\therefore f(x) = \frac{3x^2}{2} - 24x^{\frac{1}{2}}$	✓ simplification	
$\therefore f'(x) = 3x - \frac{12}{x^{\frac{1}{2}}}$	✓ ✓ derivatives	
$\therefore f'(9) = 3(9) - \frac{12}{9^{\frac{1}{2}}}$	✓ substitution	
$\therefore f'(9) = 23$	✓ answer	(5)

8.3 Minimum value at $x = 4$ $\therefore g'($	$x) = 0 \text{at} x = 4 \qquad \qquad \checkmark$	✓	$\therefore g'(4) = 0$	
$g(x) = ax^2 + bx^{-1}$				
$\therefore g'(x) = 2ax - bx^{-2}$,	1	
$(2a(4) - b(4)^{-2} = 0)$	`	✓	derivative	
b				
$3.8a - \frac{1}{16} = 0$				
$\therefore 128a - b = 0 \cdots \cdots (1)$	· ·	\checkmark	equation 1	
Function value at $x = 4$ is 96				
$\therefore g(4) = 96$				
$\therefore a(4)^2 + b(4)^{-1} = 96$				
$\therefore 16a + \frac{b}{4} = 96$				
$\therefore 64a + b = 384 \cdots (2)$		✓	equation 2	
(1) + (2)				
$\therefore 192a = 384$./	volue of a	
$\therefore a = 2$	`	•		
(1) $\cdots $ $\therefore b = 256$		\checkmark	value of b	(6)
				[15]

QUESTION 9 9.1 9.1.1 E(0; -4) \checkmark answer (1)9.1.2 y = a(x+2)(x-6)roots are: -2 and 6 substitute roots and \checkmark -4 = a(2)(-6)substitute point (0; -4)point $\therefore 12a = 4$ $\therefore a = \frac{1}{3}$ value of a equation of g': $y = \frac{1}{3}(x+2)(x-6)$ $y = \frac{1}{3}(x^2 - 4x - 12)$ substitute a and simplification $\therefore y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$ answer (4) At the turning point of g: g'(x) = 09.1.3 $\checkmark \checkmark$ answers $\therefore x = -2$ and x = 6(2)9.1.4 x = 2 \checkmark (1) answer For x < -2, g'(x) > 0 \therefore the gradient of g is 9.1.5 positive and for the values of x immediately right $\checkmark \checkmark$ explanation of -2. For g'(x) < 0, the gradient of g is negative. **NOTE:** Any other valid explanation that indicates understanding (2)The gradient of the tangent to h at any value of x is: 9.2 $h'(x) = 12x^2 + 5$ derivative \checkmark $x^2 \ge 0$ for all $x \in \square$ explanation $\therefore 12x^2 \ge 0$ for all $x \in \Box$ $\therefore 12x^2 + 5 > 0$ for all $x \in \Box$ (the gradient is ≥ 5) \therefore The gradient of the tangent is always positive. It is impossible to draw a tangent to h which has a negative gradient. OR A negative gradient requires: $12x^2 + 5 < 0$ $\therefore 12x^2 < -5$ $\therefore x^2 < -\frac{5}{12}$ value of x^2 This is impossible, a square is always ≥ 0 explanation (2) [12]

QUES	STION 10			
10.1	FE = FA = y - x AB + BC + CD + DE = 2x + 2y $\therefore 2x + 2y = 30$	✓	expression for FE and FA in terms of x and y	
	$\therefore 2y = 30 - 2x$ $\therefore y = 15 - x$ $A(x) = y^{2} - (y - x)^{2}$ $= y^{2} - y^{2} + 2xy - x^{2}$ $= 2xy - x^{2}$	✓ ✓	expression for <i>y</i> substitute into area formula	
	$= 2x(15-x) - x^{2}$ = 30x - 2x ² - x ² = 30x - 3x ²	✓ ✓	substitute for y expression for area	
	For maximum: $A'(x) = 0$ $\therefore 30 - 6x = 0$ $\therefore x = 5 m$ $\therefore y = 15 - 5$ $\therefore y = 10 m$	✓ ✓ ✓	derivative = 0 value of x value of y	
		I		[8]

QUES	STION 11			
11.1	For mutually exclusive events: P(A or B) = P(A) + P(B) 0,7 = 0,4 + k $\therefore k = 0,3$ NOTE: Answer only, full marks.	✓ ✓	substitution answer	
	If a candidate writes down: $1-0,7=0,3$; award $\frac{0}{2}$			(2)
11.2	For independent events: $P(A \text{ and } B) = P(A) \times P(B)$ $= 0.4k$ $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ $0.7 = 0.4 + k - 0.4k$ $0.3 = 0.6k$ $\therefore k = 0.5$ NOTE: Answer only, $\frac{1}{3}$ Wrong formulas, $\frac{0}{3}$	✓ ✓ ✓	P(A and B) = 0,4k correct substitution for P(A or B) answer	(3)
				[5]

	1
OR $P(S; RW48hrs) = \frac{4}{5} \times \frac{6}{25}$	
✓ probability	7
$=\frac{24}{125}$ \checkmark answer	
NOTE:	
Answer Only, award FULL marks if 12.1.2 is accurately drawn.	(2)
Penalty of 1 mark for writing to 1 decimal place.	
Accept: 0,19 and 0,192	
12.1.3 P(stolen and not recovered) = $\left(\frac{80}{100} \times \frac{60}{100}\right) + \left(\frac{20}{100} \times \frac{4}{100}\right)$	
= 0,488	
$=48,8\%$ \checkmark P(Stolen)	
✓ P(Not	
OR recovered)	
P(stolen and not recovered) = $\left(\frac{4}{5} \times \frac{3}{5}\right) + \left(\frac{1}{5} \times \frac{1}{25}\right)$ answer	
$=\frac{12}{25}+\frac{1}{125}$	
$= \frac{61}{125}$	
NOTE: Accept 0,49	(3)
	om (A)
	ын (A)
= 14300 answer	(3)
	[11]

TOTAL: 150