

Please turn over

Downloaded from Stanmorephysics.com INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 13 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Write neatly and legibly.

1.1	Solve for <i>x</i> if:	
	1.1.1 (3-4x)(x+2) = 0	(2)
	1.1.2 $x(3x+2) = 9$ (Round off your answer correct to 2 decimal places)	(4)
	$1.1.3 \sqrt{x+5}.\sqrt{x-2} = 3\sqrt{2}$	(5)
and the second s	$1.1.4 (x-5)(1-2x) \ge 0$	(3)
1.2	Solve for x and y simultaneously if:	
Stan	$3x = y + 4^{\text{output}} + 4^{\text{output}} + 4^{\text{output}} + 4^{\text{output}} + 7^{\text{output}} + 7^{$	(6)

1.3 If m and n are rational numbers such that $\sqrt{m} + \sqrt{n} = \sqrt{5 + \sqrt{24}}$, calculate a possible value for $m^2 + n^2$. (4)

QUESTION 2

2.1 The sequence: 2;8;16;26;... is a quadratic sequence.

2.	.1.1	Write down the next term.	(1)
2.	.1.2	Determine the expression for the n^{th} term of the sequence	(4)
2.	.1.3	What is the value of the first term of the sequence that is greater than 268?	(3)

2.2 Calculate:
$$\sum_{k=-2}^{67} (-3k+8)$$
 (4)

QUESTION 3

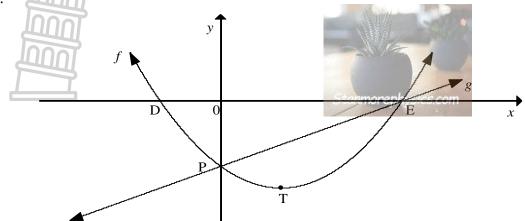
3.1 The first two terms of a geometric series are 8 and $\frac{8}{\sqrt{2}}$.

3.1.1 Why the series is convergent?

3.1.2 Determine the sum to infinity of the series without using a calculator. Leave your answer in simplified surd form. (2)

- 3.2 The sum of n terms of a sequence is given by $S_n = n(n-2)$.
 - 3.2.1 Determine the sum of the first 20 terms.
 - 3.2.2 Hence calculate the 21^{st} term of the sequence.
- 3.3 The first term of an arithmetic sequence is 3. The 3rd, 6th, and 10th terms of the arithmetic sequence form the geometric sequence. Determine the common difference of the arithmetic sequence.

[24]


[12]

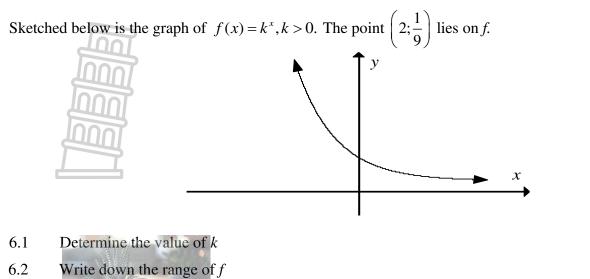
(1)

(1)

(3)

The graph of $f(x) = x^2 - 2x - 3$ and g(x) = mx + c are drawn below. D and E are the *x*-intercepts and P is the *y*-intercept of *f*. The turning point of *f* is T(1;-4). The graph of *f* and *g* intersect at P and E.

4.1	Calculate the length of DE.	(3)
4.2	Determine the equation of g .	(2)
4.3	Write down the values of x for which $f(x).g'(x) > 0$.	(2)
4.4	Determine the value of x for which vertical distance between h and g is maximum, if	
	$h(x) = -f(x)$ for $x \in [-2;3]$	(4)


4.5 Given: k(x) = g(x) - n. Determine *n* if *k* is a tangent to *f*. (5)

[16]

QUESTION 5

Given : $g(x) = \frac{2}{3-x} + 1$

5.1	Write down the equation of the asymptote of g.	(2)
5.2	Draw a graph of g, indicating any intercepts with the axes and asymptotes.	(4)
5.3	Determine the equation of the axis of symmetry of g which has a negative gradient.	(2)
5.4	The x-intercept of g is reflected about the line in 5.3. Write down the coordinates of A, the image of the x-intercept, after reflection.	(2)
		[10]

- 6.3 Explain the transformation of f to f^{-1} . (1)
- 6.4 Determine the equation of f^{-1} in the form y = ... (2)

6.5 Prove that
$$[f(x)]^2 - [f(-x)]^2 = f(2x) - f(-2x).$$
 (2)

(2)

(1)

QUESTION 7

Kelvin wants to purchase a house that costs R1,2 million. He is required to pay a 30 % deposit and he will borrow the balance from a bank. Kelvin agrees to pay back the money he will borrow over a period of 20 years.

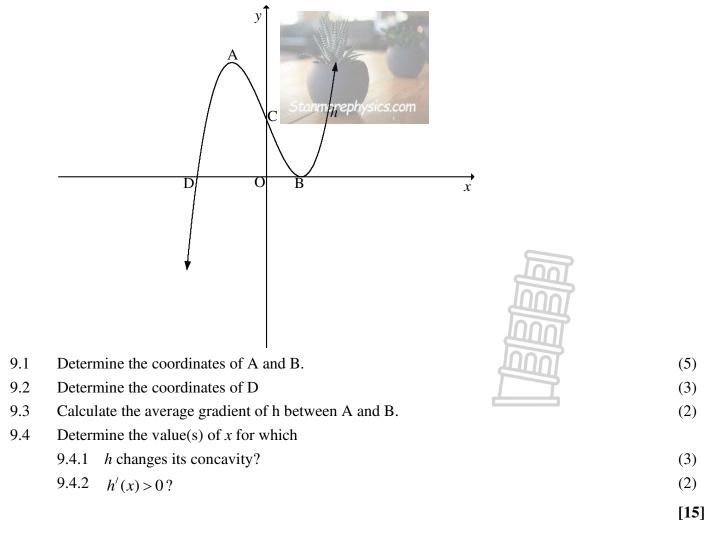
7.1	Calculate the money that Kelvin must borrow from the bank.	(2)
7.2	Calculate the monthly instalment Kelvin will pay if interest is charged at 15% per annum, compounded monthly. His repayments start 1 month after his loan is granted.	(4)
7.3	Kelvin can afford to repay R12 000 per month. How long will it take to repay the loan amount if he chooses to pay R12 000 as a repayment every month?	(4)
7.4	Calculate Kelvin's final payment, if he chooses to pay R12 000 as a repayment every month.	(5)
		[15]

8.1 From first principles, determine the derivative of $f(x) = -3x^2 + 1$

8.2 Determine
$$\frac{dy}{dx}$$
 if:
8.2.1 $y = \frac{4}{x} - 5\sqrt{x}$ (3)
8.2.2 $y + x = 2x^2 + 1$ (2)

(5)

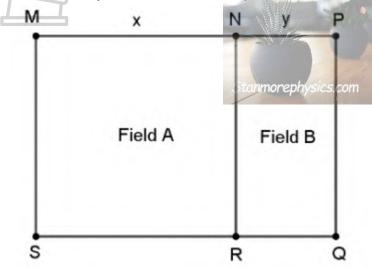
[15]


8.3 Given: $f(x) = x^2 - 4x - 6$, determine the equation of the tangent to f which is perpendicular (5)

to the line
$$g(x) = \frac{1}{2}x + 5$$

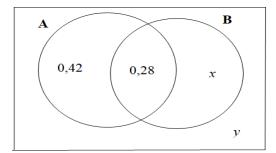
QUESTION 9

The graph of $h(x) = x^3 - 3x + 2$ is drawn below.


- A and B are the turning points of *h*.
- C and D are the intercepts of *h* with the axes.

QUESTION 10

The diagram below, shows a drawing of two adjacent fields that need to be fenced by a certain farmer.


- Field A is a square of width *x*.
- Field B is rectangular in shape of width y.
- Area of Field A + Area of Field B = 1000 units^2 .
- NR is the only fence that is shared by both Field A and Field B.

- 10.1 Express y in terms of x. (2)
- 10.2 Show that the length of the fence needed is given by $P = 3x + \frac{2000}{x}$. (2)
- 10.3 Calculate the value of x such that the length of the fence required is a minimum. (3)
 - [7]

QUESTION 11

The probabilities of two events, A and B, are shown in the diagram. A and B are independent events.

11.1	Show that the value of x is 0,12.	(3)
11.2	Determine the value of <i>y</i> .	(2)

[5]

Mphaso and Akshti are given one attempt at shooting a target in a game of archery.

If the probability that Mphaso will hit the target is $\frac{4}{5}$, and the probability that Akshti will hit the

target is $\frac{3}{4}$, calculate the probability that the target will be missed by only one of them.

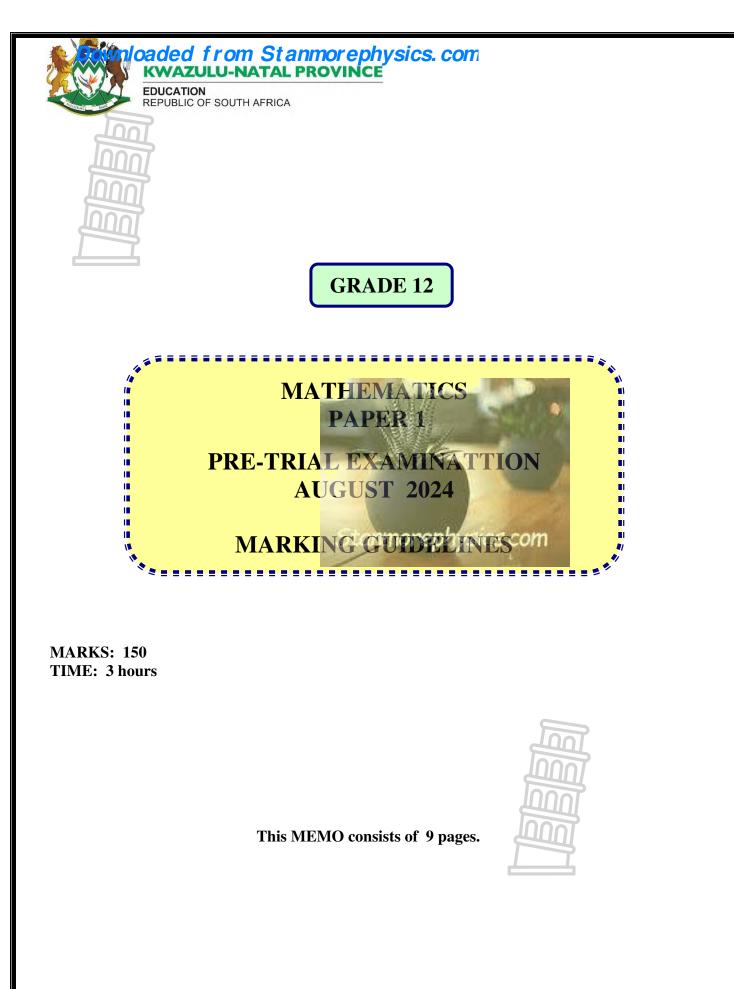
QUESTION 13

Consider the word **WINTER**

- 13.1 How many 6 letter words can be made by using by using the letters of this word if the (1) letters may not be repeated?
- 13.2 How many 6 letter words can be made if the word must start with a T and ends with a (2) vowel, if the letters may not be repeated?
- 13.3 Calculate the probability that the word does not start with a T and ending with a vowel. (2)

[5]

[5]


MARKS: 150

THE END

Downloaded from Stanmorephysics.com INFORMATION SHEET

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ A &= P(1+at) & A = P(1-at) & A = P(1-t)^n & A = P(1+t)^n \\ T_n &= a + (n-1)d & S_n = \frac{n}{2}[2a + (n-1)d] \\ T_n &= a + (n-1)d & S_n = \frac{n}{2}[2a + (n-1)d] \\ T_n &= a + (n-1)d & S_n = \frac{n}{2}[2a + (n-1)d] \\ T_n &= a + (n-1)d & S_n = \frac{a(r^n - 1)}{r-1}; r \neq 1 & S_n = \frac{a}{1-r}; -1 < r < 1 \\ F &= \frac{x[(1+t)^n - 1]}{t} & P = \frac{x[(1-(1+t)^{-n}]}{t} \\ d &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} & M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \\ y &= mx + c & y - y_1 = m(x - x_1) & m = \frac{y_2 - y_1}{x_2 - x_1} & m = \tan \theta \\ (x - a)^3 + (y - b)^2 = r^2 \\ In \Delta ABC: & \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \\ a^2 &= b^2 + c^2 - 2bc \cos A \\ area \Delta ABC = \frac{1}{2}ab \sin C \\ sin(\alpha + \beta) &= sin \alpha \cos \beta + cos \alpha sin \beta \\ cos(\alpha + \beta) &= cos \alpha \cos \beta - sin \alpha sin \beta \\ cos(\alpha + \beta) &= cos \alpha \cos \beta - sin \alpha sin \beta \\ cos(\alpha - \beta) &= cos \alpha \cos \beta + sin \alpha sin \beta \\ cos(2\alpha = \begin{cases} cos^2 \alpha - sin^2 \alpha \\ 1 - 2sin^2 \alpha \\ 2cos^2 \alpha - 1 \end{cases} & sin 2\alpha = 2sin \alpha cos \alpha \\ p &= cos \alpha cos \beta + p(A) + p(B) - p(A \text{ and } B) \\ \hat{y} &= a + bx \end{array} & b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} \end{aligned}$$

Please turn over

1.1			
1.1.1	$x = \frac{3}{2}$ or $x = -2$	✓ A answer	
	-401x - 2	✓A answer	
			(2)
1.1.2	$3x^2 + 2x - 9 = 0$	✓ A standard form	
	$b \pm \sqrt{b^2 - 4ac}$	✓A substitution	
	x =	\checkmark A \checkmark A answers	
	2 <i>a</i>		
	$-2\pm\sqrt{2^2-4(3)(-9)}$	Penalise 1 mark for incorrect	
	$=\frac{-2\pm\sqrt{2^2-4(3)(-9)}}{2(3)}$	rounding off	(1)
	$\therefore x = -2,10 \text{ or } x = 1,43$		(4)
1.1.3	$\left(\int \left(2 \int \right)^2 \right)^2$	\checkmark A squaring both sides	
	$\left(\sqrt{x+5}.\sqrt{x-2}\right)^2 = \left(3\sqrt{2}\right)^2$	\checkmark CA standard form	
	$x^{2} + 3x - 10 = 18$	✓CA factors	
		\checkmark CA values of <i>x</i>	
	$x^2 + 3x - 28 = 0$	✓ CA rejecting $x = -7$	
	(x+7)(x-4) = 0		(5)
	$\therefore x \neq -7 / x = 4$		
1.1.4	$CVs: x = \frac{1}{2} / x = 5$	✓ A Critical values	
	Cvs. x = -7x = 5	✓ A✓ A answers	
	$\therefore \frac{1}{2} \le x \le 5 OR x \in \left[\frac{1}{2}; 5\right]$		
			(3)
1.2	y = 3x - 4	(A third equation	
1.2		\checkmark A third equation \checkmark CA substitution	
	$(3x-4)^2 - x(3x-4) = 9x+7$	\checkmark CA standard form	
	$9x^2 - 24x + 16 - 3x^2 + 4x - 9x - 7 = 0$	\checkmark CA standard form \checkmark CA factors	
	$6x^2 - 29x + 9 = 0$	\checkmark CA both values of x	
		\checkmark CA both values of <i>y</i>	
	(3x-1)(2x-9) = 0		
	$x = \frac{1}{3}/x = \frac{9}{2}$		
	3 2		
	$\therefore y = -3/y = \frac{19}{2}$		(6)
	$y = -57 y = \frac{1}{2}$		
1.3	$(\Gamma \Gamma)^2 (\Gamma \Gamma)^2$	\checkmark A squaring both sides	
	$\left(\sqrt{m} + \sqrt{n}\right)^2 = \left(\sqrt{5 + \sqrt{24}}\right)^2$	$\checkmark A 2 + 2\sqrt{2} \cdot \sqrt{3} + 3$	
	$m + 2\sqrt{m} \sqrt{n} + n = 5 + \sqrt{24}$	\checkmark A values of m and n	
		\checkmark CA answer	
	$m + 2\sqrt{m}.\sqrt{n} + n = 2 + 2\sqrt{2}.\sqrt{3} + 3$		
	$\therefore m = 2$ and $n = 3$		
	$m^{2} + n^{2} = 2^{2} + 3^{2}$ Stanmore physics.com $= 4 + 9$		
	= 4+9 = 13		(4)
			[24]
			L≝⁼¶]
		1	

2.1		
2.1.1	38	\checkmark A answer (1)
2.1.2	2a = 2	\checkmark A value of <i>a</i>
		\checkmark CA value of <i>b</i>
	3(1) + b = 6	✓ CA value of c ✓ CA formula
	b=3	• CA Iomuna
	1 + 3 + c = 2	
	c = -2	(4)
	$\therefore T_n = n^2 + 3n - 2$	
2.1.3	$n^2 + 3n - 2 > 268$	$\checkmark A n^2 + 3n - 2 > 268$
	$n^2 + 3n - 270 > 0$	\checkmark A factors
	(n+18)(n-15) > 0	✓A 16
	CVs: n = -18 / n = 15	
	$\therefore n > 15$	
	$\therefore n = 16$	
	$T_{16} > 268$	(3)
2.2	14;11;18;	✓A first 3 terms
	n = 67 - (-2) + 1 = 70	\checkmark A value of n
	n -	✓CA substitution
	n = 67 - (-2) + 1 = 70 $S_n = \frac{n}{2} [2a + (n-1)d]$	✓CA answer
	$S_{70} = \frac{70}{2} \left[2(14) + (70 - 1)(-3) \right]$	
	 = -6265	(4)
		[12]

3.1		
3.1.1		$\checkmark \mathbf{A} - 1 < r < 1$
		(1)
	$\therefore -1 < r < 1$	(1)
3.1.2		\checkmark A substitution
3.1.2	$S_{\infty} = \frac{a}{1}$	
	1-r	✓ CA answer
	1	
	$1 + \frac{1}{\sqrt{2}}$	
	$=\frac{8}{}$	
	$\sqrt{2}-1$	
	$\sqrt{2}$	
	$=\frac{8\sqrt{2}}{\sqrt{2}}\times\frac{\sqrt{2}+1}{\sqrt{2}}$	
	$= \frac{3}{\sqrt{2}-1}$ $= \frac{8\sqrt{2}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$	
	$=16+8\sqrt{2}$	(2)
3.2		
	G 20(20 2)	
3.2.1	$S_{20} = 20(20 - 2)$	\checkmark A answer (1)
	= 360	(1)
3.2.2	$S_{21} = 21(21-2)$	✓A 399
		\checkmark CA subtraction
	= 399	✓CA answer
	$T_{21} = 399 - 360$	
	= 39	(3)
3.3	<i>a</i> = 3	\checkmark A writing given terms in terms
		of d.
	$T_3 = 3 + 2d; T_6 = 3 + 5d; T_{10} = 3 + 9d$	
	$\frac{T_2}{T_1} = \frac{T_3}{T_2}$	\checkmark CA ratios
	$T_1 T_2$	
	3+5d $3+9d$	
		✓CA simplifying
	3+2d $3+5d$	r , 8
	$9 + 30d + 25d^2 = 9 + 33d + 18d^2$	✓CA factors
	$7d^2 - 3d = 0$	
	d(7d-3) = 0	✓CA answer
	$d = 0/d = \frac{3}{7}$	
	$\left \begin{array}{c} u = 0, u = \frac{1}{7} \end{array} \right $	
	. 3	
	$\therefore d = \frac{3}{7}$	
		[12]

4.1	$x^2 - 2x - 3 = 0$	\checkmark A equating to 0
		\checkmark A <i>x</i> -values
	(x-3)(x+1) = 0	
	x = 3/x = -1	✓CA length of DE
	$\therefore DE = 3 - (-1) = 4 \text{ units}$	(3)
4.2	y = mx + c	✓CA value of m
	0 = m(3) - 3	
	3=3m	
	$\therefore m = 1$	\checkmark CA equation (2)
	$\therefore y = x - 3$	(2)
	\dots $y - x - 5$	
	OR	
	$y_2 - y_1$	
	$m = \frac{y_2 - y_1}{x_2 - x_1}$	
		✓ CA value of m
	$=\frac{0-(-3)}{3-0}$	
	$=\frac{3}{3}$	
	=1	✓CA equation
		(2)
4.2	$\therefore y = x - 3$	
4.3	x < -1 or x > 3	\checkmark CA $x < -1$
	OR	\checkmark CA $x > 3$
	$x \in (-\infty; -1) \text{ or } (3; \infty)$	(2)
4.4	$h(x) = -x^2 + 2x + 3$	\checkmark A equation of <i>h</i>
	$d = -x^2 + 2x + 3 - (x - 3)$	1
		✓ CA distance in terms of x
	$= -x^2 + x + 6$	\checkmark CA equating derivative to 0
	$d' = -2x_{\rm tb} l_{\rm ep} 0$ sics.com	XCA value of r
	$\therefore x = -$	$\checkmark CA value of x \tag{4}$
	2	
4.5	k(x) = x - 3 - n	\checkmark A derivative of <i>f</i> equal to 1
	2x - 2 = 1	
	3	\checkmark CA value of x
	$\therefore x = \frac{3}{2}$	\checkmark CA value of y
	(3) 15	
	$f\left(\frac{3}{2}\right) = -\frac{15}{4}$	<u> </u>
		✓ CA substitution of <i>x</i> and <i>y</i>
	$\therefore -\frac{15}{4} = \frac{3}{2} - 3 - n$	
		\checkmark CA value of n
	$n = \frac{9}{4}$	(5)
	-	(3)
		[16]

Copyright reserved

Please turn over

QUEST	ION

5.1	x = 3	✓ A vertical asymptote	
	y = 1	\checkmark A horizontal asymptote	
			(2)
5.2	y A	✓A x-intercept	
		✓A y-intercept	
		✓CA asymptotes	
	$\frac{5}{3}$	✓ A shape	
	y=1		
	x=3 5 x		
	Starmorephysics.com		
			(4)
5.3	y = -x + 3 + 1	\checkmark A \checkmark A equation	(4)
5.5		i i i equation	(2)
	y = -x + 4		(-)
	OR		
	y = -x + c	\checkmark A value of c	
	1 = -(3) + c	\checkmark A equation	
	4 = c		(2)
	$\therefore y = -x + 4$		
5.4		\checkmark CA value of <i>x</i>	
5.4	A(4;-1)	$\checkmark CA value of x \\ \checkmark CA value of y$	
		· CA value of y	(2)
			(2)
			[10]

QUESTION 6

U			
6.1	$\frac{1}{2} - k^2$	\checkmark A substitution of a point	
	$\frac{1}{9} = k^2$	\checkmark A value of k	
	$\therefore k = \frac{1}{3}$		
6.2	$y > 0$ OR $y \in (0; \infty)$	✓ A answer	
6.3	Reflect <i>f</i> about the line $y = x$	✓ A answer	
6.4	$(1)^{y}$	\checkmark CA interchanging x and y	
	$x = \left(\frac{1}{3}\right)^{y}$	✓CA answer	
		(2)	
	$\therefore y = \log_{\frac{1}{3}} x$	Answer only: full marks	

6.5	$\left[f(x)\right]^2 - \left[f(-x)\right]^2 = \left[\left(\frac{1}{3}\right)^x\right]^2 - \left[\left(\frac{1}{3}\right)^{-x}\right]^2$	\checkmark A substitution
	$= \left(\frac{1}{3}\right)^{2x} - \left(\frac{1}{3}\right)^{-2x}$	\checkmark A simplification
	= f(2x) - f(-2x)	(2)
		[08]

QUESTION 7

[ION 7	
$Loan = 70\% \times R1200000$	✓ A 70% of R1 200 000
= R840000	✓ A answer
OR	(2)
Deposit = $30\% \times R1200000 = R360000$	✓A deposit
Loan = R1200000 - R360000 = R840000	✓ A answer
	(2)
$P = \frac{x \left[1 - (1+i)^{-n} \right]}{i}$	✓CA R840 000
$840000 = \frac{x \left[1 - \left(1 + \frac{0.15}{12}\right)^{-240}\right]}{0.15}$	✓CA substitution
$840,000\left(\frac{0,15}{2}\right)$	✓ CA making x the subject of the formula
$x = \frac{(12)}{\left[1 - \left(1 + \frac{0,15}{12}\right)^{-240}\right]}$	✓CA answer
x = R11061,03	(4)
	Loan = 70% × R1200000 = R840000 OR Deposit = 30% × R1200000 = R360000 Loan = R1200000 - R360000 = R840000 $P = \frac{x \left[1 - (1 + i)^{-n}\right]}{x \left[1 - \left(1 + \frac{0,15}{12}\right)^{-240}\right]}$ 840000 = $\frac{0,15}{5 \tan(2p) \sin(5, \cos(2p))}$ $x = \frac{840000 \left(\frac{0,15}{12}\right)}{\left[1 - \left(1 + \frac{0,15}{12}\right)^{-240}\right]}$

	Downloaded from Stanmorephysics.com	1	
7.3	$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$		
	$12000\left[1-\left(1+\frac{0,15}{12}\right)^{-n}\right]$	✓CA substitution	
	$840000 = \frac{12000\left[1 + \left(1 + \frac{12}{12}\right)\right]}{\frac{0,15}{12}}$		
($\frac{840000\left(\frac{0,15}{12}\right)}{12000} = 1 - \left(1 + \frac{0,15}{12}\right)^{-n}$		
	$\frac{7}{8} = 1 - \left(1 + \frac{0.15}{12}\right)^{-n}$	✓CA simplification	
	$\left(1 + \frac{0.15}{12}\right)^{-n} = \frac{1}{8}$	✓CA introducing log	
	$-n = \log_{\left(1 + \frac{0.15}{12}\right)} \frac{1}{8}$		
	-n = -167,3928915 $\therefore n = 168$ months	✓CA value of n	(4)
			(1)
7.4	$P = \frac{x \left[1 - (1+i)^{-n} \right]}{i}$		
	$12000 \left 1 - \left(1 + \frac{0.15}{100} \right) \right $	CA value of r	
	$BO = \frac{12000 \left[1 - \left(1 + \frac{0,15}{12} \right)^{-0.3928915} \right]}{0.15}$	\checkmark CA value of n \checkmark CA substitution	
	12 = R4674,06	✓CA R4 674,06	
		\checkmark CA compounding OB for 1	
	Final Payment = $4674,06\left(1+\frac{0.15}{12}\right)$	month	
		✓CA R4 732,48	
	= R4732,48		(5)
	OR		
	BO = A - F		
	$BO = 840000 \left(1 + \frac{0.15}{12}\right)^{167} - \frac{12000 \left[\left(1 + \frac{0.15}{12}\right)^{167} - 1\right]}{0.15}$	✓ CA value of n✓ CA substitution	
	12	✓CA R4 674,06	
	= R4674,06	\checkmark CA compounding OB for 1	
	Final Payment = $4674, 06\left(1 + \frac{0.15}{12}\right)$	✓ CA R4 732,48	
	= R4732,48	,	(5)
			[15]
L			[-~]

QUE	QUESTION 8		
8.1	$f(x) = -3x^{2} + 1$ $f(x+h) = -3(x+h)^{2} + 1 = -3x^{2} - 6xh - 3h^{2} + 1$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{-3x^{2} - 6xh - 3h^{2} + 1 + 3x^{2} - 1}{h}$	✓ A value of $f(x+h)$ ✓ A substitution into formula	
	$f'(x) = \lim_{h \to 0} \frac{-6xh - 3h^2}{h}$	✓CA simplifying	
	$f'(x) = \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$	✓CA factors	
	$f'(x) = \lim_{h \to 0} (-6x - 3h)$ f'(x) = -6x	✓CA answer (5)	
8.2.1	$y = 4x^{-1} - 5x^{\frac{1}{2}}$ $\frac{dy}{dx} = -4x^{-2} - \frac{5}{2}x^{-\frac{1}{2}}$	✓A $y = 4x^{-1} - 5x^{\frac{1}{2}}$ ✓CA✓CA each term (3)	
8.2.2	$y = 2x^2 - x + 1$	$\checkmark A \text{ transposing } x $	
	$\frac{dy}{dx} = 4x - 1$	\checkmark CA answer (2)	
8.3	f'(x) = 2x - 4		
	$g(x) = \frac{1}{2}x + 5, m = \frac{1}{2}$ ∴ $m \perp \text{line} = -2$ 2x - 4 = -2 2x = 2 x = 1 $f(1) = (1)^2 - 4(1) - 6 = -9$ Tangent is at (1; -9 y = -2x + c -9 = -2(1) + c c = -7 y = -2x - 7	$\checkmark A :: m \perp line = -2$ $\checkmark CA 2x - 4 = -2$ $\checkmark CA value \text{ of } x$ $\checkmark CA value \text{ of } y$ $\checkmark CA answer$ (5)	
		[15]	

QUES	STION 9	
9.1	$h'(x) = 3x^{2} - 3$ $0 = 3x^{2} - 3$ $0 = x^{2} - 1$	✓ derivative✓ CA equating to zero
	$0 = (x-1)(x+1)$ $x = \pm 1$	\checkmark CA values of <i>x</i>
	$h(1) = (1)^2 - 3(1) + 2 = 0$	\checkmark CA value of y
	$h(-1) = (-1)^2 - 3(-1) + 2 = 4$ A(-1;4), B(1;0)	\checkmark CA answer (5)
9.2	$0 = (x+1)(x^{2} + x - 2)$ 0 = (x-1)(x-1)(x+2) x = 1 or -2 D(-2;0)	 ✓ A equating to zero ✓ A factors ✓ CA answer (3)
9.3	$m = \frac{4-1}{2}$	✓CA subst in formula
	$m = \frac{-1 - 0}{-1 - 0}$ $m = -3$	\checkmark CA answer (2)
9.4.1	$h'(x) = 3x^2 - 3$ h''(x) = 6x 0 = 6x x = 0	 ✓CA second derivative ✓CA equating to zero ✓CA answer
9.4.2	<i>x</i> > 0	\checkmark \checkmark CA answer (2)
		[15]
	STION 10	
10.1	$x(x+y) = 1000$ $x+y = \frac{1000}{x}$	✓A subst into formula
	$y = \frac{1000}{x} - x$	✓CA answer (2)
10.2	Perimeter $= 5x + 2y$	✓A Expression for perimeter
	$=5x+2\left(\frac{1000}{x}-x\right)$	✓ A subst into formula
	$= 5x + \frac{2000}{x} - 2x$ $= 3x + \frac{2000}{x}$	
10.3	$P = 3x + 2000x^{-1}$ $\frac{dP}{dx} = 3 - 2000x^{-2}$	✓ A derivative
	$0 = 3 - \frac{2000}{x^2}$	\checkmark A equating to zero
	$3x^{2} = 2000$ $x = \sqrt{\frac{2000}{3}} = 25,82$	✓CA answer
		(3) [07]

QUESTION 11		
11.1	$P(A) \times P(B) = P(A \text{ and } B)$	✓A formula
	(0, 42+0, 28)(x+0, 28) = 0, 28	✓A subst into formula
	0,7(x+0,28) = 0,28	
	x + 0,28 = 0,4	✓A simplifying
	x = 0,12	(3)
11.2	y = 1 - (0, 42 + 0, 28 + 0, 12)	\checkmark A 1 – P(A or B)
	y = 0.18	✓CA answer
		(2)
		[05]

QUESTION 12

	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 3\\ \hline 4\\ \hline 5\\ \hline \end{array} \end{array} \\ \begin{array}{c} H\\ \hline \\ 4\\ \hline \\ 5\\ \hline \end{array} \\ \begin{array}{c} 1\\ \hline \\ 4\\ \hline \end{array} \\ \begin{array}{c} 1\\ \hline \\ \\ 4\\ \hline \end{array} \\ \begin{array}{c} 1\\ \hline \\ \\ \\ \\ \hline \end{array} \\ \begin{array}{c} 1\\ \hline \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} 1\\ \hline \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} 1\\ \hline \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} 1\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} 1\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	 ✓ A tree diagram and probabilities ✓ A outcomes 	
	P(HM or MH) = $\frac{4}{5} \times \frac{1}{4} + \frac{1}{5} \times \frac{3}{4}$ = $\frac{7}{20}$	$\checkmark A \frac{4}{5} \times \frac{1}{4}$ $\checkmark A \frac{1}{5} \times \frac{3}{4}$ $\checkmark CA \text{ answer}$ [05]	
OUE	STION 13		
QUE			
13.1	6!=720	\checkmark A answer (1)	
13.2	$1 \times 4! \times 2 = 48$	(1) (1)	
12.2	40 14	(2)	
13.3	$1 - \frac{48}{720} = \frac{14}{15}$	$\checkmark CA 1 - \frac{48}{720}$	
		✓CA answer	
		(2)	
		[05]	

TOTAL: 150 MARKS