Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

PREPARATORY EXAMINATION

SEPTEMBER 2024

- Stanmorephysics.com -

MARKS: 150

TIME: 3 hours

This question paper consists of 10 pages and an information sheet.

Copyright Reserved

Please Turn Over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Write neatly and legibly.

1.1 Solve for x:

$$1.1.1 x^2 - 5x = 0 (3)$$

1.1.2
$$5x^2 + 2x - 6 = 0$$
 (answer correct to TWO decimal places) (3)

1.1.3
$$5t2^{x+b}r^{2}3t2^{x-b}+2^{x}=12$$
 (3)

$$1.1.4 4x^2 + 12x + 9 > 0 (3)$$

1.2 Solve simultaneously for x and y:

$$2x-y+1=0$$
 and $x^2+xy-y=3x-2$ (5)

1.3 Solve for x in terms of y:

$$(x+1)(x-3) = (y+1)(y-3)$$
, where $x \neq y$ (5)

[22]

QUESTION 2

2.1 The first three terms of a quadratic sequence are given:

3; 8; 15;

2.1.1 Determine the general term
$$T_n$$
 of the sequence. (4)

2.1.2 Is 1700 a term in this sequence? Motivate your answer, using calculations. (4)

2.2 Evaluate:

$$1^{2} - 2^{2} + 3^{2} - 4^{2} + 5^{2} - 6^{2} + 7^{2} - 8^{2} + - - - - - + 399^{2} - 400^{2}$$
 (5)

[13]

3.1 The first three terms of a geometric sequence are given: 81; m; $\frac{m}{3}$;

Determine the value of m. (2)

3.1.2 Calculate: $\sum_{r=1}^{9} 81 \left(\frac{1}{3}\right)^{r-1}$ (4)

3.2.1 Calculate the number of terms in this sequence. (4)

3.2.2 How many terms of this sequence are integers? (4)

[14]

The graphs of $g(x) = \frac{a}{x} + q$ and $h(x) = x^2 - 2x - 3$ are drawn. The graph of h cuts the x-axis at P and Q. The two graphs intersect at points P, T and K. T is the turning point of h. The line y = -2 is the asymptote of g.

- Calculate the coordinates of P and Q. 4.1 (3)
- Calculate the coordinates of T. 4.2 (3)
- Write down the equation of the vertical asymptote of g. 4.3 (1)
- Determine the equation of g. 4.4 (3)
- Is g a function? Motivate your answer. 4.5 (2)
- Calculate the coordinates of K. 4.6 (5)
- For which values of x will g(x) > h(x)? 4.7 (3)

[20]

Please Turn Over Copyright Reserved

The following graphs are drawn below:

- f(x) = -2x + 3 for $-4 \le x \le 3$; and
- $g(x) = 2^{-x}$

- 5.1 Calculate the x-intercept of f.
- 5.2 For which values of x is $-2^{-x+1}x + 6.2^{-x-1} < 0$? (4)
- A new graph p is formed by reflecting g in the line y = x. Write down the equation of p in the form y = ... (2)
- 5.4 Write down the range of f^{-1} , the inverse of f. (2)
- Determine the coordinates of the point of intersection between f and f^{-1} . (3)

[13]

(2)

- 6.1 Siphokazi invested R6 500 for 4 years at an interest rate of r % p.a., compounded quarterly. At the end of this period, she received R13 460. Calculate r, correct to ONE decimal place. (4)
- 6.2 Terence has been planning to go on an overseas tour during December 2024.

 He needs R65 000 for this tour. Starting from 31 July 2023, he has been depositing Rx in a savings account at the end of each month. He will continue doing this until 30 November 2024, at which time there will be enough money in the account.

Terence will withdraw all the money in the savings account on 30 November 2024, immediately after depositing the last Rx.

Calculate the value of x, if interest was calculated at 8% p.a., compounded monthly. (3)

- 6.3 Mrs Naidoo plans to buy a house. She will need a bank loan for R650 000. The bank charges interest at 11% p.a., compounded monthly, and will require her to pay a monthly instalment of R7 000.
 - 6.3.1 How many instalments of R7 000 will Mrs Naidoo have to pay? (4)
 - 6.3.2 Calculate the final payment that Mrs Naidoo will have to pay to settle the loan. (4)

[15]

QUESTION 7

- 7.1 Given: $f(x) = -x^2 + x$. Determine f'(x) from first principles. (5)
- 7.2 Determine the derivatives of the following:

7.2.2
$$f(x) = \frac{2x^2 + 3}{\sqrt{x}}$$
 (4)

[11]

Mathematics Plumloaded from Stanmore physics. com

QUESTION 8

The graphs of $f(x) = (x-1)^2(x+n)$ and $g(x) = -\frac{1}{2}x+2$ are drawn below.

- P and Q are the x-intercepts of f.
- P and S are the turning points of f.
- g passes through Q.

- 8.1 Calculate the coordinates of Q. (2)
- 8.2 Hence, write down the value of n. (1)
- 8.3 Calculate the length of PQ. (2)
- 8.4 Calculate the coordinates of S. (5)
- 8.5 Describe the concavity of f at x = 0. (1)
- 8.6 Given: $h(x) = -\frac{1}{2}x + k$.

 For which values of x will h be a tangent to f? (5)

[16]

In February 2024, Bafana Bafana played in the semi-finals of the AFCON tournament. During the match, their striker Tebogo Mokoena kicked the soccer ball vertically upwards into the air and its motion was represented by the equation: $h(t) = 1 + 20t - 5t^2$, where h is the height of the ball above the ground in metres, and t is the time in seconds after the ball was kicked.

- 9.1 Determine the maximum height of the ball above the ground. (5)
- 9.2 How long will it take for the ball to hit the ground? (3)
- 9.3 Determine the velocity of the ball 1,5 seconds after he has kicked it. (2)

[10]

QUESTION 10

10.1 During the Covid-19 pandemic, researchers conducted many studies to test the effectiveness of various vaccines. The table below shows data of one of those studies.

	TESTED COVID-19 POSITIVE	TESTED COVID-19 NEGATIVE	TOTAL
MALE	27	189	216
FEMALE	81	567	648
TOTAL	108	Stanmo756 ysics.com	864

- 10.1.1 Calculate the probability that a randomly selected participant is female. (1)
- Is the probability of testing positive for Covid-19 independent of gender?

 Show ALL calculations to motivate your answer.

 (4)

10.2 Towards the end of 2023, the KZN Traffic Department introduced a new number plate system for cars in the province.

Each new number plate consists of:

- two letters of the alphabet;
- followed by two digits;
- followed by two letters of the alphabet; and
- lending with the letters ZN.

One example of such a number plate is:

RR 23 GB ZN

All 26 letters of the alphabet, excluding Q and the 5 vowels, may be used. Any two digits from 0 to 9 may be used.

- 10.2.1 How many different number plates can be made if letters and digits may be repeated?
- How many different number plates can be made if letters and digits may not be repeated? (2)
- 10.2.3 If letters and digits may not be repeated, what is the probability that a number plate of this form will start with the letters B and C in any order? (3)
- 10.3 Tracey has 10 sweets in a bag. Some are green and some are red. She picks a sweet from the bag, takes note of the colour, and then puts it back into the bag. She does this four times.

How many green sweets are there in the bag, if the probability that she picks at least one green sweet is 97,44%?

[16]

(4)

(2)

TOTAL: 150

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d]$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; \quad r \neq 1$$

$$S_{\infty} = \frac{a}{1-r}$$
; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{x}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area\Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATIONREPUBLIC OF SOUTH AFRICA

MATHEMATICS P1

COMMON TEST

SEPTEMBER 2024

MARKING GUIDELINES

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

These marking guidelines consist of 17 pages.

Marking Guideline

QUESTION 1

1.1.1	x(x-5) = 0	✓A factors
		wer only: \checkmark A answer (0)
	Full	marks CA answer (5)
1.1.2	$-2\pm\sqrt{(2)^2-4(5)(-6)}$	
1.1.2	$x = \frac{-2 \pm \sqrt{(2)^2 - 4(5)(-6)}}{2(5)}$	✓A substitution into formula
		/3 ✓ CA answer ✓ CA answer
		(3)
	Penalise for incorrect rounding only in this qu	estion.
1.1.3	$2^{x}(2-3.2^{-1}+1)=12$	
	$2^{x}\left(3-\frac{3}{2}\right)=12$	✓A factors
	$2^x \left(\frac{3}{2}\right) = 12$	
	$2^{x} = 8$	
	$2^x = 2^3 \qquad \mathbf{OR} \qquad x = \log_2 8$	✓CA prime bases (or use of logarithms)
	$\therefore x = 3$	✓CA answer
		(3)
1.1.4	(2x+3)(2x+3) > 0	✓A factors
	CV: $-\frac{3}{2}$	
	$+$ $-\frac{3}{2}$ $+$ OR $+$	$0 + \frac{3}{3}$
	3 3 2	2
	$x \in \mathbb{R}$, but $x \neq -\frac{3}{2}$ OR $x < -\frac{3}{2}$ or $x > -\frac{3}{2}$ O	OR \checkmark A $x \in \mathbb{R}$; \checkmark CA $x \neq -\frac{3}{2}$
	$\left(-\infty; -\frac{3}{2}\right) \text{ or } \left(-\frac{3}{2}; \infty\right)$	$ \begin{array}{c c} $

Mathem **Stanmore physics** 2000 Preparatory Examinations GRADE 12

Marking Guideline

1.0	Marking Guideline $2x - y + 1 = 0$	
1.2	y = 2x + 1	\checkmark A $y = 2x + 1$
	$x^2 + x(2x+1) - (2x+1) = 3x-2$	✓CA substitution
	$x^{2} + 2x^{2} + x - 2x - 1 - 3x + 2 = 0$	
	$3x^2 - 4x + 1 = 0$	✓CA standard form
	(3x-1)(x-1) = 0	
	$x = \frac{1}{3}$ or 1	\checkmark CA x -values
	3	
	$y = 2\left(\frac{1}{3}\right) + 1 = \frac{5}{3}$	
	y = 2(1) + 1 = 3	✓CA y-values
	y = 2(1)+1=3	(5)
		, ,
	OR	OR
	2x - y + 1 = 0 $2x = y - 1$	
	$x = \frac{y-1}{2}$	\checkmark A $x = \frac{y-1}{2}$
	$(y-1)^2$ $(y-1)$ $_2(y-1)$ $_3$	2
	$\left(\frac{y-1}{2}\right)^2 + y\left(\frac{y-1}{2}\right) - y = 3\left(\frac{y-1}{2}\right) - 2$	✓CA substitution
	$\frac{y^2 - 2y + 1}{2} + \frac{y^2 - y}{2} - y = \frac{3y - 3}{2} - 2$	
	$y^2 - 2y + 1 + 2y^2 - 2y - 4y = 6y - 6 - 8$	
	$3y^2 - 8y + 1 = 6y - 14$	
	$3y^2 - 14y + 15 = 0$	✓CA standard form
	(3y-5)(y-3) = 0	Cristandard form
	$y = \frac{5}{3}$ or 3	(CA as assistant
	3 5 .	✓CA y-values
	$x = \frac{\frac{5}{3} - 1}{2} = \frac{1}{3}$	
	$x = \frac{3-1}{2} = 1$	<u>trinui</u>
	2	\checkmark CA x-values
1.3	$x^2 - 2x - 3 = y^2 - 2y - 3$	✓A expanding
1.0	$\begin{vmatrix} x - 2x - 3 - y - 2y - 3 \\ x^2 - y^2 - 2x + 2y = 0 \end{vmatrix}$	✓ CA standard form
		\checkmark A factors $(x+y)(x-y)$
	(x+y)(x-y)-2(x-y)=0	
	(x-y)(x+y-2) = 0	✓CA factors
	$x - y = 0 \qquad x + y - 2 = 0$	r = 2 - v
	N/A $x = 2 - y$	✓CA answer $x = 2 - y$ only
		(5) [22]

Copyright Reserved

Marking Guideline

QUESTION 2

2.1.1	5 8 15 2 7	
	2a = 2 $a = 1$ $5 = 3(1) + b$	✓ A a=1
	b = 2	\checkmark CA $b=2$
	3=1+2+c $c=0$	\checkmark CA $c = 0$
	$T_n = n^2 + 2n$	✓CA answer (4)
2.1.2	$n^2 + 2n = 1700$ $n^2 + 2n - 1700 = 0$	✓CA equating T_n to 1700
	$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$n = \frac{-2 \pm \sqrt{2^2 - 4(1)(1700)}}{2(1)}$	✓CA substitution into formula
	n = 40,24 or $n = -42,24$	✓CA values of n
	<i>n</i> is not a natural number and therefore 1700 is not a term in the	✓CA 1700 is not a term in the
	sequence.	sequence (4)

Mathem **Mathem Stanmore physics** (2000) Preparatory Examinations GRADE 12

	Marking Guideline			
2.2	(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+(7-8)(7+8)+	✓A factors		
	$\dots + (399 - 400)(399 + 400)$			
	$= (-1)(3) + (-1)(7) + (-1)(11) + (-1)(15) + \dots (-1)(799)$ = -3 - 7 - 11 - 15 \dots \dots -799			
		✓ A arithmetic series		
	a = -3 $d = 4$			
	$T_n = a + (n-1)d$			
	-799 = -3 + (n-1)4			
	n = 200	✓CA <i>n</i> = 200		
	$S_n = \frac{n}{2} [2a + (n-1)d]$ OR $S_n = \frac{n}{2} (a+l)$			
	$S_{200} = \frac{200}{2} [2(-3) + (200 - 1)(-4)]$ $S_{200} = \frac{200}{2} (-3 - 799)$	\checkmark CA substitution in S_n formula		
	=-80200 $=-80200$	✓CA answer		
	OR	\mathbf{OR} (5)		
	$1^2 + 3^2 + 5^2 + 7^2 + \dots + 399^2$	OK		
	$= (2n-1)^2$			
	-(2n-1)			
	$-2^2-4^2-6^2-8^2-\dots -400^2$			
	$=-(2n)^2$			
	$=(2n-1)^2-(2n)^2$			
		\checkmark A $(2n-1)^2 - (2n)^2$		
	$= 4n^2 - 4n + 1 - 4n^2$ = -4n + 1	$\checkmark A (2n-1)^2 - (2n)^2$ $\checkmark A -4n+1$		
	$4\mu+1$	71 -711		
	2n = 400 OR $2n - 1 = 399$			
	n = 200	✓CA <i>n</i> = 200		
	200			
	$\sum_{n=1}^{200} (-4n-1) = -3 - 7 - 11$	ALION TO THE PARTY OF THE PARTY		
		TUUUT		
	$S_n = \frac{n}{2} [2a + (n-1)d]$	Innni		
	200[2(-2) + (200 - 1)(-4)]	✓CA substitution in S_n formula		
	$S_{200} = \frac{200}{2} [2(-3) + (200 - 1)(-4)]$	\checkmark CA answer		
	=-80200	(5)		
		[13]		

Marking Guideline

3.1.1 81; m ; $\frac{m}{3}$;	
$\frac{m}{m}$	
m 2	
$\boxed{\frac{m}{81} = \frac{3}{m}}$	
$\frac{m}{81} = \frac{1}{3} \qquad \text{OR} \qquad m^2 = \frac{81m}{3}$	
$\begin{vmatrix} 81 & 3 \\ 3m = 81 \end{vmatrix}$ $3m = 81$ Answer only:	
m = 27 $m = 27$ Answer only. Full marks \checkmark A answer	(2)
3.1.2 $\sum_{t=1}^{9} 81 \left(\frac{1}{3}\right)^{t-1} = 81 + 27 + 9 + 3 + \dots$	(2)
$a = 81$ \checkmark A value of a	
$r = \frac{1}{3}$ \checkmark A value of r	
$S_n = \frac{a(r^n - 1)}{r - 1}$	
$S_9 = \frac{81\left(\left(\frac{1}{3}\right)^9 - 1\right)}{\frac{1}{3} - 1}$ \(\sigma CA\) substitute in	nto formula
$= \frac{9841}{81} = 121,49$	(4)
3.2.1 $a = \frac{12}{5}$; $d = \frac{3}{5}$; $T_n = \frac{333}{5}$ $T_n = a + (n-1)d$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 .
222 12 2 2 2	into
$333 = 12 + 3n - 3$ $333n = 324$ formula $\checkmark CA \text{ substitute } a$	d into formula
n = 108	
✓CA answer	(4)

Mathem **Mathem Stanmore physics** (2008) ptember 2024 Preparatory Examinations GRADE 12

Marking Guideline

3.2.2	$\frac{12}{5}$; 3; $\frac{18}{5}$; $\frac{21}{5}$; $\frac{24}{5}$; $\frac{27}{5}$; 6;	✓ A identifying one more term that is an integer
	3; 6; 9;; 66	✓A correct sequence
	$T_n = a + (n-1)d$ 66 = 3 + (n-1)3	✓CA substitution
	66 = 3 + (n-1)3 $66 = 3 + 3n - 3$	· C/1 substitution
	3n = 66	
	n = 22	✓CA answer
	OR	OR
	OR The following terms are integers: T_2 ; T_7 ; T_{107}	OR ✓ A identifying the position of one more term that is an integer
	The following terms are integers:	✓ A identifying the position of
	The following terms are integers: T_2 ; T_7 ; T_{107} Sequence: 2; 7; 12; 107 $T_n = a + (n-1)d$ 107 = 2 + (n-1)5	✓ A identifying the position of one more term that is an integer
	The following terms are integers: T_2 ; T_7 ; T_{107} Sequence: 2; 7; 12; 107 $T_n = a + (n-1)d$	✓ A identifying the position of one more term that is an integer ✓ A correct sequence
	The following terms are integers: T_2 ; T_7 ; T_{107} Sequence: 2; 7; 12; 107 $T_n = a + (n-1)d$ 107 = 2 + (n-1)5 107 = 2 + 5n - 5	✓A identifying the position of one more term that is an integer ✓A correct sequence ✓CA substitution ✓CA answer
	The following terms are integers: T_2 ; T_7 ; T_{107} Sequence: 2; 7; 12; 107 $T_n = a + (n-1)d$ 107 = 2 + (n-1)5 107 = 2 + 5n - 5 5n = 110	✓ A identifying the position of one more term that is an integer ✓ A correct sequence ✓ CA substitution

GRADE 12 Marking Guideline

QUESTION 4

4.1	$x^2 - 2x - 3 = 0$			
	(x+1)(x-3)=0		✓A factors	
	x = -1 or $x = 3$			
	$\therefore P(-1;0) \qquad Q(3;0)$		✓CA answer ✓CA answer	
				(3)
4.2	At turning point: $x = \frac{-b}{2a}$			
	2 0			
	$=\frac{-(-2)}{2(1)}$		✓ A substitution	
	=1		✓CA <i>x</i> -value	
	$y=1^2-2(1)-3=-4$		✓CA y-value	
	∴ T(1;-4)			(3)
	OR		OR	(3)
	$h(x) = (x^2 - 2x + 1) - 3 - 1$			
	$h(x) = (x-1)^2 - 4$		✓ A completing the square	
	$\therefore T(1;-4)$	A 1	✓CA <i>x</i> -value	
	(-, .)	Answer only: 2/3	✓CA y-value	
	OR		O.D.	(3)
	x-value at TP: $=\frac{x_1 + x_2}{2}$		OR	
	<u> </u>		(0)	
	$=\frac{-1+3}{2}$		✓ CA average value of <i>x</i> -intercepts	
	=1		✓CA <i>x</i> -value	
	$y = 1^2 - 2(1) - 3 = -4$		✓ CA y-value	
	T(1;-4)			(3)
	OR		OR	
	h'(x) = 2x - 2 = 0		✓ A derivative = 0	
	x = 1		✓CA <i>x</i> -value	
	$y = 1^2 - 2(1) - 3 = -4$		✓CA y-value	
	T(1;-4)			(3)
4.3	x = 0		✓A answer	
				(1)
4.4	$g(x) = \frac{a}{x} - 2$		✓A q = -2	
	Substitute P(-1; 0): $0 = \frac{a}{-1} - 2$		✓CA substitution	
	a = -2		✓CA answer	(3)
	1			\-/

Mathem **Mathem Stanmore physics** (2000) Preparatory Examinations GRADE 12

Marking Guideline

	Warking Guidenne	1 .	
4.5	Yes, it is a function	✓A answer	
	For every <i>x</i> -value, there are only one <i>y</i> -value		
	OR	✓ A justification	
	It passes the vertical line test.		(2)
4.6	$x^2 - 2x - 3 = \frac{-2}{x} - 2$	✓CA equating	
	$x^{3} - 2x^{2} - 3x = -2 - 2x$		
	$x^3 - 2x^2 - x + 2 = 0$	✓ CA simplification	
	$x^{2}(x-2)-(x-2)=0$		
	$\left(x-2\right)\left(x^2-1\right)=0$	✓CA factors	
	(x-2)(x-1)(x+1) = 0		
	x = -1 or $x = 1$ or $x = 2$	\checkmark CA x value	
	At K: $x = 2$		
	$y = \frac{-2}{2} - 2 = -3$	✓CA y value	
	K(2;-3)		(5)
4.7	$x \in (-1;0)$ or $x \in (1;2)$	\checkmark CA \checkmark CA $x \in (-1;0)$	
	OR	\checkmark CA $x \in (1;2)$	(3)
	OK	OR	
	-1 < x < 0 or $1 < x < 2$	\checkmark CA \checkmark CA $-1 < x < 0$	
		\checkmark CA 1< x <2	(3)
			[20]

QUESTION 5

5.1	-2x+3=0		✓A equating to 0	
	$x = \frac{3}{2}$	Answer only: Full marks	$\checkmark A \ x = \frac{3}{2}$	(2)
5.2	$-2^{-x+1} \cdot x + 6 \cdot 2^{-x-1} < 0$ $-2 \cdot 2^{-x} \cdot x + 6 \cdot 2^{-x} \cdot 2^{-1} < 0$ $-2x \cdot 2^{-x} + 3 \cdot 2^{-x} < 0$ $2^{-x} \left(-2x + 3\right) < 0$ $\frac{3}{2} < x \le 3$		✓A splitting exponents ✓A factorisation ✓CA ✓CA answer	
	2			(4)
5.3	$p: x = 2^{-y}$		\checkmark A swapping x and y	
	$y = -\log_2 x$		✓CA answer	
	$OR \qquad \qquad (1)^{y}$		OR	(2)
	$p: x = \left(\frac{1}{2}\right)^y$	Answer only:	\checkmark A swapping x and y	
	$y = \log_{\frac{1}{2}} x$	Full marks	✓CA answer	
	2			(2)

Mathem **Stanmore Physics** (2000) Preparatory Examinations GRADE 12

Marking Guideline

Warking Guideline		
range of f^{-1} = domain of f $-4 \le y \le 3$	✓✓ A A answer	(2)
Intersection between $y = -2x + 3$ and $y = x$: $-2x + 3 = x$ $-3x = -3$ $x = 1$ $y = 1$ OR $f^{-1}: x = -2y + 3$ $y = \frac{-x + 3}{2}$	✓A $-2x+3=x$ ✓A x -value ✓A y -value OR	(3)
$-2x+3 = \frac{-x+3}{2}$ $x = 1$ $y = 1$ OR	✓A $-2x+3 = \frac{-x+3}{2}$ ✓A x-value ✓A y-value OR ✓A $x = \frac{-x+3}{2}$	(3)
x = 1 $y = 1$	✓ A x-value ✓ A y-value	(3) [12]
	Intersection between $y = -2x + 3$ and $y = x$: $-2x + 3 = x$ $-3x = -3$ $x = 1$ $y = 1$ OR $f^{-1}: x = -2y + 3$ $y = \frac{-x + 3}{2}$ $-2x + 3 = \frac{-x + 3}{2}$ $x = 1$ $y = 1$ OR $x = \frac{-x + 3}{2}$ $x = 1$ $x = 1$	Intersection between $y = -2x + 3$ and $y = x$: $-2x + 3 = x$ $-3x = -3$ $x = 1$ $y = 1$ $-2x + 3 = \frac{-x + 3}{2}$ $-2x + 3 = \frac{-x + 3}{2}$ $x = 1$ $y = 1$ $x = \frac{-x + 3}{2}$ $x = \frac{-x + 3}{2}$ $x = 1$ $x = -x + 3$

Marking Guideline

QUESTION 6

6.1	$A = P(1+i)^n$	
	$13460 = 6500 \left(1 + \frac{i}{4}\right)^{16}$	✓A n = 16
	$13460 = 6500 \left(\frac{1+-}{4} \right)$	✓CA substitution
	$\left(1 + \frac{i}{4}\right)^{16} = \frac{13460}{6500}$	
	$\binom{1}{4} = 6500$	
	$1 + \frac{i}{4} = \sqrt[16]{\frac{13460}{6500}}$	\checkmark CA $1 + \frac{i}{4} = \frac{16}{6500} \frac{13460}{6500}$
	$ \begin{array}{ccc} 4 & \sqrt{6500} \\ i = 0.1862 = 18,6\% \end{array} $	7 (0500
	t = 0.1802 = 18,0% r = 18,6	✓CA answer
		(4)
	$F = \frac{x\left[\left(1+i\right)^{n}-1\right]}{x}; n = 17$	
6.2	$F = \frac{1}{i}$; $n = 17$	\checkmark A $n = 17$
	$\begin{bmatrix} 1 & 0.08 \end{bmatrix}^{17}$	
	$65000 = \frac{x \left[\left(1 + \frac{0.08}{12} \right)^{17} - 1 \right]}{0.08}$	✓CA substitution
	12	
	$65000 \times \frac{0.08}{12}$	
	$x = \frac{65000 \times \frac{0.08}{12}}{\left(1 + \frac{0.08}{12}\right)^{17} - 1}$	
	$\left(1+\frac{1}{12}\right)^{-1}$	(0)
	x = R3623,67	✓CA answer (3)
	$x \left[1 - (1+i)^{-n} \right]$, ,
6.3.1	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	
	$7000 \left[1 - \left(1 + \frac{0.11}{12} \right)^{-n} \right]$	
	$7000 \left 1 - \left(1 + \frac{7}{12} \right) \right $	✓ A substitution
	$R650\ 000 = \frac{0.11}{0.11}$	Trodostation
	12	
	$650000 \times \frac{0.11}{12}$ (0.11) ⁻ⁿ	
	$\frac{650000 \times \frac{0,11}{12}}{7000} = 1 - \left(1 + \frac{0,11}{12}\right)^{-n}$	
	$\left(1 + \frac{0,11}{12}\right)^{-n} = \frac{25}{168}$	
	$\log_{\left(1+\frac{0,11}{12}\right)}\left(\frac{25}{168}\right) = -n$	✓CA use of logarithms
	n = 208,7788941	✓CA value of n
	208 instalments of R7 000	✓CA answer
		(4)

Mathem **Mathem Stanmore physics** (2000) Preparatory Examinations GRADE 12

Marking Guideline

	Warking Guidenne	
6.3.2	Outstanding balance at $T_{208} = \frac{7000 \left[1 - \left(1 + \frac{0.11}{12} \right)^{-0.7788941} \right]}{\frac{0.11}{12}}$ $= R5 \ 408.18$	✓CA value of <i>n</i> ✓CA substitution in present value formula
	Final payment = $5408,18\left(1+\frac{0,11}{12}\right)$ = R5 457,75	✓CA compounding ✓CA answer (4)
	OR	OR
	Outstanding balance at T_{208} $= 650000 \left(1 + \frac{0.11}{12}\right)^{208} - \frac{7000 \left[\left(1 + \frac{0.11}{12}\right)^{208} - 1\right]}{\frac{0.11}{12}}$ $= R5 \ 408.18$	✓CA = 650000 $\left(1 + \frac{0.11}{12}\right)^{208}$ ✓CA - $\frac{7000\left[\left(1 + \frac{0.11}{12}\right)^{208} - 1\right]}{\frac{0.11}{12}}$
	Final payment = $5408,18 \left(1 + \frac{0,11}{12}\right)$ = R5 457,75	✓CA compounding ✓CA answer (4)
		[15]

GRADE 12 Marking Guideline

QUESTION 7

Penalise once only for incorrect notation in 7.1.

	se once only for incorrect notation in 7.1.	
7.1	$f(x) = -x^2 + x$	
	$f(x+h) = -(x+h)^{2} + (x+h) = -x^{2} - 2xh - h^{2} + x + h$	\checkmark A value of $f(x+h)$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$ \begin{array}{ccc} J & (\lambda) = \lim_{h \to 0} & h \end{array} $	
	$= \lim_{h \to 0} \frac{-x^2 - 2xh - h^2 + x + h - (-x^2 + x)}{h}$	✓CA substitution into correct formula
	$= \lim_{h \to 0} \frac{-x^2 - 2xh - h^2 + x + h + x^2 - x}{h}$	
	$=\lim_{h\to 0}\frac{-2xh-h^2+h}{h}$	✓CA simplifying
	$=\lim_{h\to 0}\frac{h(-2x-h+1)}{h}$	✓CA factors
	$ \begin{array}{ccc} h \rightarrow 0 & h \\ -\lim \left(-2x - h + 1\right) \end{array} $	CATactors
	$= \lim_{h \to 0} \left(-2x - h + 1 \right)$	(0)
	=-2x+1	✓CA answer (5)
7.2.1	$y = x^3 \left(4 - x^{-3} \right)$	
	$y = 4x^3 - 1$	✓A product
	$\frac{dy}{dx} = 12x^2$	✓CA answer
		(2)
7.2.2	$f(x) = \frac{2x^2 + 3}{\sqrt{x}}$	
	$f(x) = \frac{2x^2 + 3}{\sqrt{x}}$ $f(x) = \frac{2x^2}{x^{\frac{1}{2}}} + \frac{3}{x^{\frac{1}{2}}}$ $f(x) = 2x^{\frac{3}{2}} - 3x^{-\frac{1}{2}}$ $f'(x) = 3x^{\frac{1}{2}} - \frac{3}{2}x^{-\frac{3}{2}}$	
	$f(x) = 2x^{\frac{3}{2}} - 3x^{-\frac{1}{2}}$	\checkmark A $2x^{\frac{3}{2}}$; \checkmark A $-3x^{-\frac{1}{2}}$
	$f'(x) = 3x^{\frac{1}{2}} - \frac{3}{2}x^{-\frac{3}{2}}$	$\checkmark A 2x^{\frac{3}{2}}; \checkmark A -3x^{-\frac{1}{2}}$ $\checkmark CA 3x^{\frac{1}{2}}; \checkmark CA -\frac{3}{2}x^{-\frac{3}{2}}$
		(4)
		[11]

GRADE 12 Marking Guideline

QUESTION 8

8.1	$0 = -\frac{1}{2}x + 2$	✓ A equating to zero
	$\frac{1}{2}x = 2$	
	x = 4	
	$\therefore Q(4;0)$	✓A answer (2)
8.2	n = -4	✓CA answer
		(1)
8.3	$0 = \left(x - 1\right)^2 \left(x - 4\right)$	
	x = 1 or 4	✓CA values of x .
	PQ = 4 - 1 = 3 units	✓CA answer
		(2)
8.4	$f(x) = x^3 - 6x^2 + 9x - 4$	✓CA multiplying out
	$f'(x) = 3x^2 - 12x + 9$	✓CA derivative
	$3x^2 - 12x + 9 = 0$	✓CA equating to zero
	$x^2 - 4x + 3 = 0$	
	(x-1)(x-3) = 0	CA value of
	x = 3	✓CA value of x
	$y = (3)^2 - 6(3)^2 + 9(3) - 4 = -4$	✓CA value of y
	∴ S(3; -4)	(5)
8.5	f is concave down at $x = 0$.	✓A concave down
8.6	To determine where $f'(x) =$ gradient of h :	(1)
0.0		1
	$\therefore 3x^2 - 12x + 9 = -\frac{1}{2}$	✓ CA equating derivative to $-\frac{1}{2}$
	19	
	$3x^2 - 12x + \frac{19}{2} = 0$	✓CA standard form
	$(12) \cdot (12)^2 \cdot (2)(19)$	min i
	$-(-12)\pm\sqrt{(-12)}$ $-4(3)(\frac{1}{2})$	Janni
	$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(3)\left(\frac{19}{2}\right)}}{2(3)}$	✓CA substitution
	x = 1,09 or $x = 2,91$	
		\checkmark CA \checkmark CA values of x (5)
		[16]
L	I	[=v]

Mathem **Mathem Stanmore physics** (2000) Preparatory Examinations GRADE 12

Marking Guideline

9.1	h'(t) = 20 - 10t	✓ A derivative
	0 = 20 - 10t	✓CA equating derivative to zero
	t = 2 seconds	✓CA value of t
	Max height: $h(2) = -5(2)^2 + 20(2) + 1$	✓CA substitution
	= 21metres	✓CA answer
		(5)
9.2	$1 + 20t - 5t^2 = 0$	\checkmark A equating h to zero
	$5t^2 - 20t - 1 = 0$	
	$20 \pm \sqrt{(-20)^2 - 4(5)(-1)}$	
	$t = \frac{20 \pm \sqrt{(-20)^2 - 4(5)(-1)}}{2(5)}$	
	t = -0.05 or 4.05	\checkmark A values of t
	t = 4,05 seconds	✓CA answer
	,	(3)
9.3	h'(t) = 20 - 5t	
	h'(1,5) = 20 - 10(1,5)	✓CA substitution in $h'(t)$
	=5 m/s	✓CA answer
		(2)
		[10]

Marking Guideline

QUESTION 10

10.1.1	$P(\text{Female}) = \frac{648}{864} = \frac{3}{4}$	✓A answer (1)
10.1.2	P(Female) × P(Positive) = $\frac{648}{864} \times \frac{108}{864}$ = $\frac{3}{32} = 0.09$	✓A P(Female) × P(Positive) ✓A 0,09375 or 0,09
	P(Female and Positive) = $\frac{81}{864}$ = $\frac{3}{32} = 0.09$	✓A P(Female and Positive) = 0,09375 or 0,09
	P(Female and Positive) = P(Female) × P(Positive) Events are independent. Testing positive is independent of gender.	✓A conclusion (4)
	OR	OR
	P(Male) × P(Positive) = $\frac{216}{864} \times \frac{108}{864}$ = $\frac{1}{32} = 0.03$	✓A P(Male) × P(Positive) ✓A 0,03125 or 0,03
	P(Male and Positive) = $\frac{27}{864}$ = $\frac{1}{32} = 0.03$ P(Male and Positive) = P(Male) × P(Positive)	✓ A P(Male and Positive) = 0,03125 or 0,03
	Events are independent. Testing positive is independent of gender.	✓ A conclusion (4)
10.2.1	$20 \times 20 \times 10 \times 10 \times 20 \times 20$ =16000000 number plates	$\checkmark A 20 \times 20 \times 10 \times 10 \times 20 \times 20$ $\checkmark A answer$ (2)
10.2.2	$20\times19\times10\times9\times18\times17$ = 10 465 200 number plates Also accept: $18\times17\times10\times9\times16\times15$ = 6609 600	✓ A 20×19×10×9×18×17 ✓ A answer (2)
10.2.3	$ \frac{2 \times 1 \times 10 \times 9 \times 18 \times 17}{10465200} = \frac{1}{190} $ Also accept: $ \frac{2 \times 1 \times 10 \times 9 \times 16 \times 15}{6609600} = \frac{1}{153} $	✓A numerator ✓A denominator ✓CA answer

Mathem **Stanmore physics** (2000) Preparatory Examinations GRADE 12

Marking Guideline

10.3	Let the number of red sweets be <i>x</i> .	
10.5		
	P(at least one green sweet) = 1 - P(no green sweets)	
	$=1-\left(\frac{x}{10}\right)^4$	\checkmark A 1- $\left(\frac{x}{10}\right)^4$
	$1 - \left(\frac{x}{10}\right)^4 = 0,9744$	✓A equating to 97,44%
	$\left(\frac{x}{10}\right)^4 = 1 - 0,9744$	
	$\left(\frac{x}{10}\right)^4 = 0,0256$	
	$\left(\frac{x}{10}\right) = \frac{2}{5}$	
	x = 4	\checkmark CA value of x
	There are 6 green sweets in the bag.	✓CA answer
	There are o green sweets in the bag.	
		(4)
		[16]

TOTAL: 150

