## Downloaded from Stanmorephysics.com



## **KWAZULU-NATAL PROVINCE**

EDUCATION REPUBLIC OF SOUTH AFRICA

### NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS 72

PREPARATORY EXAMINATION

SEPTEMBER 2024 Stanmorephysics.com

MARKS: 150

TIME: 3 hours

This question paper consists of 13 pages and 1 information sheet.

### INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- Answer ALL the questions in the ANSWER BOOK provided.
- Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off your answers to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.



The Human Resource Department of a company in KwaZulu-Natal wants to create a model to be used in determining the monthly salaries of its employees. Twelve of their current employees were surveyed and the information is displayed in the table below:

| Employees' experience in number of years (x) | 26 | 1 , | 3    | 5  | 6  | 6  | 10 | 14 | 12 | 33 | 20 | 8 |
|----------------------------------------------|----|-----|------|----|----|----|----|----|----|----|----|---|
| Salary in R1000s per month (y)               | 20 | 9   | 10,5 | 11 | 10 | 12 | 16 | 15 | 12 | 23 | 18 | 9 |

| -11   | ata : | 61mm     |
|-------|-------|----------|
| aicui | are   | ine      |
|       | alcul | alculate |

| 1.1   | Calculate the                                                                                                                                         |     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Stann | 1.1.1 mean of the monthly salaries of these twelve employees. Round your answer off to the nearest rand.                                              | (2) |
|       | 1.1.2 standard deviation of the monthly salaries of these twelve employees.<br>Round your answer off to the nearest rand.                             | (1) |
| 1.2   | How many of the twelve employees earn a monthly salary that is more than one standard deviation above the mean?                                       | (2) |
| 1.3   | Determine the equation of the least squares regression line for the data given in the table.                                                          | (3) |
| 1.4   | Calculate the correlation coefficient between the experience in years and the monthly salary of an employee.                                          | (1) |
| 1.5   | Predict what the monthly salary will be of an employee who has been working for this company for 30 years. Round your answer off to the nearest rand. | (2) |
| 1.6   | Is the prediction that is made in question 1.5 likely to be reliable? Give a reason for your answer.                                                  | (2) |

Please Turn Over

[13]

The cumulative frequency graph (ogive) drawn below shows the ages of the people who voted in the Local Government elections at one voting station. Use the graph to answer the questions that follow.



- 2.1 How many people voted at this voting station?
- 2.2 Determine the interquartile range of the ages of the voters. (3)
- 2.3 What percentage of the voters was 25 years or younger? (2)

[6]

(1)

ABCD is a parallelogram with A(0;4), B(-6;-2), C(x;y) and D(10;-1) as shown below.

AC is drawn. F, G and H are the x-intercepts of AB, AC and AD respectively.

E is a point on the x-axis to the left of F and J a point on the x-axis to the right of H.



- 3.1 Determine the gradient of AB. (2)
- 3.2 Determine the equation of CD. (3)
- 3.3 Determine the coordinates of M, the midpoint of AC. (3)
- 3.4 Determine the coordinates of C. (2)
- 3.5 Determine the size of BĈD. (6)

[16]

4.1 The diagram below shows two circles touching at J(2;-1).

The smaller circle has its centre at the origin and the bigger circle has centre K(a;-3).

The length of the radius of the bigger circle is TWICE the length of the radius of the smaller circle.

SR is a tangent to both circles, touching the bigger circle at S and the smaller circle at R.

KO and SR are both produced to intersect in point P.



- 4.1.1 Calculate the length of the radius of the smaller circle. (2)
- 4.1.2 Show that a = 6. (3)
- 4.1.3 Determine the equation of the bigger circle. (2)
- 4.1.4 Does the point (10; -4) lie outside, inside or on the bigger circle? (3)
- 4.1.5 Calculate the length of PS. (5)
- 4.2 The length of the diameter of the circle with equation  $x^2 4x + y^2 + 5y = -d$  is 24. Determine:
  - 4.2.1 the coordinates of the centre of the circle. (4)
    - 4.2.2 the value of d. (3)

[22]

5.1 If  $\tan 58^\circ = n$ , determine the following in terms of n without using a calculator.

$$\sin 58^{\circ}$$
 (3)

$$\sin 296^{\circ}$$
 (4)

$$5.1.3 \cos 2^{\circ}$$
 (3)

5.2 Given the following identity:

$$\frac{1-\cos 2x}{\sin 2x} = \tan x$$

- 5.2.1 Prove the identity. (3)
- 5.2.2 Use the identity to determine the value of tan 15° in its simplest form.

  No calculator may be used.
- 5.3 Simplify to a single trigonometric ratio:

$$\sin(360^{\circ} + x).\cos(90^{\circ} + x) - \frac{\sin x}{\cos(-x).\tan(360^{\circ} - x)}$$
 (6)

- 5.4 Determine the general solution of:  $\cos 2x \frac{1}{3} = \frac{1}{3} \sin x$  (6)
- 5.5 For which values of k will  $\sin(2x+30^\circ)+k=3$  have no solution? (5)



In the diagram below, the graphs of  $f(x) = \tan bx$  and  $g(x) = \cos(x-30^\circ)$  are drawn on the same system of axes for  $-180^\circ \le x \le 180^\circ$ .

The point  $P(90^\circ; 1)$  lies on f.



Use the diagram to answer the following questions:

6.1 Determine the value of 
$$b$$
. (1)

6.2 Write down the period of 
$$g$$
. (1)

6.4 Write down the equation(s) of the asymptote(s) of 
$$y = \tan b(x + 20^\circ)$$
 for  $x \in [-180^\circ; 180^\circ]$ . (1)

6.5 Determine the range of 
$$h$$
 if  $h(x) = 2g(x) - 1$ . (2)

[7]

In the diagram, B, C and D lie in the same horizontal plane.

BD = 2CD.

 $\hat{CBD} = x$ ,  $\hat{BCD} = y$  and  $\hat{CD} = b$  meters.

AB is a vertical tower.

The angle of elevation of A from C is  $\theta$ .



7.1 Show that 
$$\sin y = 2\sin x$$
. (2)

7.2 Prove that 
$$AB = b \tan \theta \sqrt{5 + 4\cos(x+y)}$$
 (7)

7.3 Hence, determine the height of the tower, rounded off to two decimal places, if: 
$$b = 54.8$$
 metres,  $x = 31^{\circ}$ ,  $\theta = 42.6^{\circ}$  and  $y = 75.84^{\circ}$ . (2)

[11]

### GIVE REASONS FOR YOUR STATEMENTS IN QUESTIONS 8, 9 AND 10.

### **QUESTION 8**

In the diagram, A, C, E and G are points on the circumference of the circle with centre O.  $\hat{COE} = 136^{\circ}$ . DEF is a tangent to the circle at E, with DF||CA. BOE is a straight line, with B a point on AC. AE is drawn. AC=14 units.



8.1 Calculate, with reasons, the size of each of the following:

8.1.1 
$$\hat{A}_1$$
 (2)

8.1.2 
$$\hat{E}_1$$
 (2)

8.2 Calculate, with reasons, the length of AB. (5)

In the diagram,  $\triangle QRS$  is a triangle with RS produced to P. U and V are points on QR such that PU||SV. PU intersects QS in T.  $\frac{QU}{UR} = \frac{2}{3}$  and  $\frac{QT}{TS} = \frac{5}{2}$ .



Calculate, giving reasons, the value of  $\frac{PS}{SR}$ .

[6]

(6)

### **QUESTION 10**

In the diagram below,  $\triangle ABC$  and  $\triangle DEF$  are drawn with  $\hat{A} = \hat{D}$ ,  $\hat{B} = \hat{E}$  and  $\hat{C} = \hat{F}$ .



Use the diagram in the ANSWER BOOK to prove the theorem which states that if two triangles are equiangular, then the corresponding sides are in proportion, i.e.

$$\frac{AB}{DE} = \frac{AC}{DF}.$$
 (6)

# Downloaded from Stanmoren Lysics.com



## **KWAZULU-NATAL PROVINCE**

EDUCATION
REPUBLIC OF SOUTH AFRICA

MATHEMATICS/P2

PREPARATORY EXAMINATION

SEPTEMBER 2024

MARKING GUIDELINES

Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MARKS: 150** 



These marking guidelines consist of 14 pages.

- If a candidate answered a QUESTION TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answer in order to solve a problem is unacceptable.

|     | GEOMETRY                                                                                     |
|-----|----------------------------------------------------------------------------------------------|
| S   | A mark for a correct statement (A statement mark is independent of a reason.)                |
| R   | A mark for a correct reason (A reason mark may only be awarded if the statement is correct.) |
| S/R | Award a mark if the statement AND reason are both correct.                                   |

### **QUESTION 1**

Penalise only once for incorrect rounding in Question 1.

| 1.1.1 | Mean = $\frac{165500}{}$                             |                                                          |                            | ✓A 165 500 in numerator        |     |
|-------|------------------------------------------------------|----------------------------------------------------------|----------------------------|--------------------------------|-----|
| 1.1.1 | = R13792                                             | Also accept: 13,79 thousand rand                         | Answer only:<br>Full marks | ✓ CA answer                    |     |
|       |                                                      | n as 13,79 instead of R13<br>enalise again for this mist |                            |                                | (2) |
| 1.1.2 | Standard deviation                                   | - D4 404                                                 |                            | ✓A answer                      | (2) |
| 1.1.2 | Standard deviation                                   | = R4 404                                                 |                            | ▼ A answer                     | (1) |
| 1.2   | R13 792 +R4 404 = 2 employees earn a above the mean. | R18 1960M<br>salary more than one star                   | Answer only:               | ✓CA R18 196<br>✓CA 2 employees | (-) |
|       |                                                      |                                                          | Full Illaiks               | 444                            | (2) |
| 1.3   | a = 8,45                                             |                                                          |                            | ✓A correct a value             |     |
|       | b = 0,45                                             |                                                          | Answer only:               | ✓A correct b value             |     |
|       | $\hat{y} = 0,45x + 8,45$                             |                                                          | Full marks                 | ✓ CA answer                    | (3) |
| 1.4   | r = 0,94                                             |                                                          |                            | ✓A answer                      | (1) |
| 1.5   | $\hat{y} = 0,45(30) + 8,45$                          | 5                                                        |                            | ✓CA substitution               | (+) |
|       | ŷ = 21,95                                            |                                                          |                            |                                |     |
|       | ∴ R21 950                                            |                                                          |                            | ✓CA answer                     | (2) |
|       | OR                                                   |                                                          |                            | OR                             |     |
|       | R21 804 (calculator                                  | )                                                        |                            | ✓✓ CA CA                       | (2) |

# Mathematic Panloaded from Stanmore physics Intermember 2024 Preparatory Examinations GRADE 12

### Marking Guidelines

| 1.6 | Yes. $r=0,94$ implies a strong correlation between employee experience and monthly salary and therefore a prediction would be reliable. | ✓CA answer<br>✓CA justification | (2)  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------|
|     | OR                                                                                                                                      | OR                              |      |
|     | Yes. $r = 0.94$ , which is close to 1, and therefore implies a strong correlation between employee experience and monthly salary        | ✓CA answer<br>✓CA justification |      |
|     | and therefore a prediction would be reliable.                                                                                           |                                 | (2)  |
|     |                                                                                                                                         |                                 | [13] |

## **QUESTION 2**

| 2.1 | 5500                             | ✓A answer                  |
|-----|----------------------------------|----------------------------|
|     |                                  | (1)                        |
| 2.2 | $Q_1 = 29$ (accept 28 – 29)      | ✓A value of Q <sub>1</sub> |
|     | $Q_3 = 39$ (accept 38 – 39)      | ✓A value of Q <sub>3</sub> |
|     | IQR = 10 (accept $9 - 11$ )      | ✓CA answer                 |
| 11  | , , , ,                          | (3)                        |
| 2.3 | 650<br>5500 (accept 620 – 700)   | ✓A numerator in range 620  |
|     |                                  | to 700                     |
|     | =11,82% (accept 11,27% - 12,73%) | ✓CA answer                 |
|     |                                  | (2)                        |
|     |                                  | [6]                        |

### **QUESTION 3**

| 3.1 | $m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{-2 - 4}{-6 - 0}$ $= 1$         | ✓A substitution ✓CA answer                        |
|-----|--------------------------------------------------------------------------------|---------------------------------------------------|
| 3.2 | $m_{CD} = m_{AB} = 1$ $y = mx + c$                                             | ✓CA m <sub>CD</sub> =1                            |
|     | Substitute (10;-1) and $m_{CD} = 1$ : $-1 = 1(10) + c$ $c = -11$ $y = 1x - 11$ | ✓CA substitution of gradient and point ✓CA answer |

# Mathematics Panloaded from Stanmore physics In Semiember 2024 Preparatory Examinations GRADE 12

### Marking Guidelines

|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T                                                                     |                                                                                                                                                                              |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [diagonals of parm. bisect each other]             | of BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓A midpoint of BD                                                     |                                                                                                                                                                              |
| $= M\left(\frac{-6+10}{2} ; \frac{-2-1}{2}\right)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                              |
| $= M\left(2; \frac{-3}{2}\right)$                  | Answer only:<br>Full marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ✓CA x coordinate<br>✓CA y-coordinate                                  | (2)                                                                                                                                                                          |
| OR                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                                                                    | (3)                                                                                                                                                                          |
| C(4;-7)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓A coordinates of C                                                   |                                                                                                                                                                              |
| .: Midpoint of AC                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                              |
| $=M\left(\frac{0+4}{2};\frac{4-7}{2}\right)$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                              |
| Stormorephysics.com                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓CA x coordinate                                                      |                                                                                                                                                                              |
| $\left(\frac{2}{2}, \frac{2}{2}\right)$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓ CA y-coordinate                                                     | (3)                                                                                                                                                                          |
| C(4;-7)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓CA x coordinate                                                      |                                                                                                                                                                              |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V CA y-coordinate                                                     | (2)                                                                                                                                                                          |
| $m_{AB} = 1$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a decomplete and seeks Aurora and                                     |                                                                                                                                                                              |
| $\tan A\hat{F}G = 1$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                              |
| $A\hat{F}G = 45^{\circ}$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓CA AFG = 45°                                                         |                                                                                                                                                                              |
| $m_{AD} = \frac{-1-4}{10-0}$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                              |
| $= -\frac{1}{2}$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\checkmark A m_{-} = -\frac{1}{2}$                                   |                                                                                                                                                                              |
| 2                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 2                                                                   |                                                                                                                                                                              |
| $\tan A\hat{H}J = -\frac{1}{2}$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                              |
| AĤJ = 153, 43°                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓CA AĤJ = 153, 43°                                                    |                                                                                                                                                                              |
| http://                                            | of ∆HAF]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓CA BÂD=108,43°                                                       |                                                                                                                                                                              |
| •                                                  | parm.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓CA BĈD =108 43°                                                      |                                                                                                                                                                              |
|                                                    | 20 種                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37, 555 -100, 10                                                      | (6)                                                                                                                                                                          |
|                                                    | [diagonals of parm. bisect each other] $\therefore \text{ Midpoint of AC}$ $= M\left(\frac{-6+10}{2}; \frac{-2-1}{2}\right)$ $= M\left(2; \frac{-3}{2}\right)$ OR $C(4;-7)$ $\therefore \text{ Midpoint of AC}$ $= M\left(\frac{0+4}{2}; \frac{4-7}{2}\right)$ $= M\left(2; \frac{-3}{2}\right)$ $C(4;-7)$ $m_{AB} = 1$ $\tan A\hat{F}G = 1$ $A\hat{F}G = 45^{\circ}$ $m_{AD} = \frac{-1-4}{10-0}$ $= -\frac{1}{2}$ $\tan A\hat{H}J = -\frac{1}{2}$ $A\hat{H}J = 153, 43^{\circ}$ $B\hat{A}D = 153, 43^{\circ} - 45^{\circ} \text{ [exterior } \angle G = 108, 43^{\circ}$ | ∴ Midpoint of AC<br>= $M\left(\frac{-6+10}{2}; \frac{-2-1}{2}\right)$ | [diagonals of parm. bisect each other] .: Midpoint of AC $= M \left( \frac{-6+10}{2} ; \frac{-2-1}{2} \right)$ $= M \left( 2 ; \frac{-3}{2} \right)$ Answer only: Full marks |

| OR SOL                                                                                                                                                                                                     | OR                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $CD = \sqrt{(10-4)^2 + (-1+7)^2} = 6\sqrt{2}$                                                                                                                                                              | ✓CA length of CD                  |
| BC = $\sqrt{(-6-4)^2 + (-2+7)^2} = 5\sqrt{5}$                                                                                                                                                              | ✓CA length of BC                  |
| BD = $\sqrt{(-6-10)^2 + (-2+1)^2} = \sqrt{257}$                                                                                                                                                            | ✓A length of BD                   |
| $BD^2 = BC^2 + CD^2 - 2.BC.CD.cosB\hat{C}D$                                                                                                                                                                | ✓A use of cosine rule             |
| $(\sqrt{257})^2 = (5\sqrt{5})^2 + (6\sqrt{2})^2 - 2.(5\sqrt{5}).(6\sqrt{2}).\cos B\hat{C}D$ $\therefore \cos B\hat{C}D = \frac{(5\sqrt{5})^2 + (6\sqrt{2})^2 - (\sqrt{257})^2}{2.(5\sqrt{5}).(6\sqrt{2})}$ | ✓CA substitution into cosine rule |
| $B\hat{C}D = 108,43^{\circ}$                                                                                                                                                                               | ✓CA answer (6)                    |
|                                                                                                                                                                                                            | [16]                              |

### **QUESTION 4**

| 4.1.1 | $r^2 = OJ^2 = 2^2 + (-1)^2$                       | ✓A substitution                  |      |
|-------|---------------------------------------------------|----------------------------------|------|
|       | $r = \sqrt{5}$                                    | ✓A length of OJ                  | 5000 |
|       |                                                   |                                  | (2)  |
| 4.1.2 | $OK = OJ + JK = \sqrt{5} + 2\sqrt{5} = 3\sqrt{5}$ | ✓A length of OK                  |      |
|       | $(3\sqrt{5})^2 = (a-0)^2 + (-3-0)^2$              | ✓A substitution                  |      |
|       | $45 = a^2 + 9$                                    |                                  |      |
|       | $a^2 = 36$                                        | ✓A a² subject of formula         |      |
|       | a = -6 or $a = 6$                                 |                                  |      |
|       | N/A                                               | LOOT                             | (3)  |
|       | OR                                                | OR                               |      |
|       | $OJ = \sqrt{5}$                                   |                                  |      |
|       | $\therefore$ JK = $2\sqrt{5}$                     | ✓A length of JK                  |      |
|       | $(2\sqrt{5})^2 = (a-2)^2 + (-3+1)^2$              | ✓A substitution                  |      |
|       | $20 = a^2 - 4a + 4 + 4$                           |                                  |      |
|       | $a^2 - 4a - 12 = 0$                               | ✓ A standard form                |      |
|       | (a-6)(a+2)=0                                      |                                  |      |
|       | a=6 or $a=-2$                                     |                                  |      |
|       | N/A                                               |                                  | (3)  |
| 4.1.3 | $(x-6)^2 + (y+3)^2 = 20$                          | $\checkmark A (x-6)^2 + (y+3)^2$ |      |
|       |                                                   | ✓CA = 20                         |      |
|       |                                                   |                                  | (2)  |

# Mathematics Panloaded from Stanmore hysics Incompensor 2024 Preparatory Examinations GRADE 12

### Marking Guidelines

| 4.1.4 Substitute (10; –4):                                                                                 |                                                |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| $(10-6)^2+(-4+3)^2$                                                                                        | ✓CA substitution                               |
| =17                                                                                                        |                                                |
| 17 < 20,                                                                                                   | ✓CA 17 < 20                                    |
| : the point lies inside the circle                                                                         | ✓CA conclusion (3)                             |
| 4.1.5 $KO = \sqrt{5} + 2\sqrt{5} = 3\sqrt{5}$                                                              | ✓ CA length of KO                              |
| In $\triangle POR$ and $\triangle PKS$ :  1. $\hat{P} = \hat{P}$ [common]                                  |                                                |
|                                                                                                            |                                                |
|                                                                                                            |                                                |
| 3. $P\hat{O}R = P\hat{K}S$ [remaining $\angle S$ ]                                                         |                                                |
| ΔPOR     ΔPKS [∠∠∠]                                                                                        |                                                |
| $\frac{PO}{PK} = \frac{OR}{KS} \qquad [\parallel \Delta s]$                                                |                                                |
|                                                                                                            |                                                |
| $= \frac{OR}{2OR} = \frac{1}{2}$                                                                           |                                                |
| $\therefore PO = \frac{1}{2}PK$                                                                            | 1                                              |
| _                                                                                                          | $\checkmark$ A PO = $\frac{1}{2}$ PK           |
| $PO = OK = 3\sqrt{5}$                                                                                      |                                                |
| $PK = 2(3\sqrt{5}) = 6\sqrt{5}$                                                                            | ✓ CA length of PK                              |
| $P\hat{S}K = 90^{\circ}$ [radius $\perp$ tangent]                                                          |                                                |
| $PS^2 = PK^2 - KS^2$ [Theorem of Pythagoras]                                                               | ✓ CA substitution in Theorem                   |
| $=(6\sqrt{5})^2-(2\sqrt{5})^2$                                                                             | of Pythagoras                                  |
| =160                                                                                                       |                                                |
| $\therefore PS = \sqrt{160} = 4\sqrt{10}$                                                                  | ✓CA answer (5)                                 |
| 4.2.1 $x^2 - 4x + 4 + y^2 + 5y + \frac{25}{4} = -d + 4 + \frac{25}{4}$                                     | 20 201 201                                     |
| $\begin{vmatrix} 4.2.1 & \chi - 4\chi + 4 + y + 5y + \frac{\pi}{4} = -u + 4 + \frac{\pi}{4} \end{vmatrix}$ | ✓A completing the square                       |
| $(x-2)^2 + (y+\frac{5}{2})^2 = -d + \frac{41}{4}$                                                          | $\checkmark A (x-2)^2 + (y+\frac{5}{2})^2$     |
|                                                                                                            | $(\lambda-2)^{-1}\left(y+\frac{\pi}{2}\right)$ |
| Centre $\left(2; -\frac{5}{2}\right)$ Answer only: Full marks                                              | ✓CA x coordinate                               |
| 2)                                                                                                         | ✓CA y coordinate                               |
|                                                                                                            | (4)                                            |
| 4.2.2 diameter = 24 units, ∴ radius =12 units                                                              | ✓A radius =12 units                            |
| $-d + \frac{41}{4} = 144$                                                                                  | 1000 M                                         |
| 484                                                                                                        | ✓CA equating                                   |
| $d = -\frac{535}{4}$                                                                                       | ✓CA answer                                     |
| 4                                                                                                          | (3)                                            |
|                                                                                                            | [22]                                           |



# Mathematic Panloaded from Stanmore hysic SZN Smember 2024 Preparatory Examinations GRADE 12

### Marking Guidelines

| 5.2.1 LHS $ \frac{1+(1-2\sin^2 x)}{2\sin x \cos x} $ $ \frac{2\sin^2 x}{2\sin x \cos x} $ $ \frac{2\sin^2 x}{2\sin x \cos x} $ $ \frac{\sin x}{\cos x} $ $ = RHS $ OR $ \frac{LHS}{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)} $ $ \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} $ $ \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55    |                                                       |                                                        | 9       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------|--------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2.1 | LHS                                                   |                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | $1-(1-2\sin^2x)$                                      | ✓A 1-2sin² x                                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                       | ✓A 2sin x cos x                                        |         |
| $\frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\frac{\sin x}{\cos x} + \cos x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | JETTITI                                               |                                                        |         |
| $\frac{\sin x}{\cos x} = \tan x$ $= RHS$ OR $\frac{\ln x}{\ln x} = \frac{\ln x}{\ln x}$ $= \frac{\ln x}{2 \sin x \cos x}$ $= \frac{2 \sin^2 x}{2 \sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \frac{\sin x}{\cos x}$ $= \frac{\sin x}{\cos x}$ $= \frac{\sin x}{\cos x}$ $= \frac{x \sin x}{\cos x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | =                                                     |                                                        |         |
| $\begin{array}{c} \cos x \\ = \tan x \\ = \text{RHS} \end{array} $ $\begin{array}{c} \text{OR} \\ \text{LHS} \\ \begin{array}{c} \sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x) \\ \\ 2\sin x \cos x \\ \end{array} $ $\begin{array}{c} \cos x \\ = \cos x \\ \\ 2\sin x \cos x \\ \end{array}$ $\begin{array}{c} x + \cos^2 x - 1 \\ x + \cos^2 x - 1 \\ x + \cos^2 x - 1 \\ x + \cos^2 x - \cos^2 x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\sin x \\ \cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ -\cos x \\ -\cos x \\ \end{array}$ $\begin{array}{c} \cos x \\ -\cos x \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | sin x                                                 |                                                        |         |
| $ \begin{array}{c c} = \tan x \\ = \text{RHS} \end{array} $ $ \begin{array}{c c} \text{OR} \\ \text{LHS} \\ \hline & & \\ \hline & &$ |       |                                                       | ✓ A simplification                                     |         |
| OR  LHS $ \begin{array}{c}   Sin^2 + Cos^2 + A \\   Sin^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | = tan x                                               | ,,                                                     |         |
| OR  LHS $ \begin{array}{c}   Sin^2 + Cos^2 + A \\   Sin^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | = RHS                                                 |                                                        | (3)     |
| LHS $ \begin{array}{c}   \text{Sin}^2         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | - Acceptation to                                      |                                                        | 1040141 |
| $\begin{array}{c} sin^2 x + cos^2 x - 4 \\ \hline 2sin x cos x \\ \hline = \frac{2sin^2 x + cos^2 x - (cos^2 x - sin^2 x)}{2sin x cos x} \\ \hline = \frac{2sin^2 x}{2sin x cos x} \\ \hline = \frac{2sin^2 x}{cos x} \\ \hline = \frac{sin x}{cos x} \\ \hline = tan x \\ \hline = RHS \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | OR                                                    | OR                                                     |         |
| $\begin{array}{c} sin^2 x + cos^2 x - 4 \\ \hline 2sin x cos x \\ \hline = \frac{2sin^2 x + cos^2 x - (cos^2 x - sin^2 x)}{2sin x cos x} \\ \hline = \frac{2sin^2 x}{2sin x cos x} \\ \hline = \frac{2sin^2 x}{cos x} \\ \hline = \frac{sin x}{cos x} \\ \hline = tan x \\ \hline = RHS \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | LHS                                                   |                                                        |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                       |                                                        |         |
| $\begin{array}{c} sin^2 x - cos^2 x + 1 \\ \hline 2 sin x cos x \\ \hline 2 sin^2 x - cos^2 x + sin^2 x + cos^2 x \\ \hline 2 sin^2 x - cos^2 x + cos^2 x \\ \hline 2 sin^2 x - cos^2 x - sin^2 x \\ \hline 2 sin^2 x + cos^2 x - (cos^2 x - sin^2 x) \\ \hline = \frac{sin^2 x + cos^2 x - (cos^2 x - sin^2 x)}{2 sin x cos x} \\ \hline = \frac{2 sin^2 x}{2 sin x cos x} \\ \hline = \frac{2 sin^2 x}{cos x} \\ \hline = \frac{sin x}{cos x} \\ \hline = tan x \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | <i>4777777777777</i> 777777777777777777777777         | ✓A 2cos² x-1                                           |         |
| $\frac{\sin^2 x - \cos^2 x + \sin^2 x + \cos^2 x}{2\sin x \cos x}$ $\frac{2\sin^2 x}{\cos x}$ $\frac{2\sin^2 x}{\cos x}$ $\frac{\cos x}{\cos x}$ $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ $(3)$ OR $\checkmark A \operatorname{cos}^2 x - \sin^2 x$ $\checkmark A 2 \sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | //////2\$M/XC08X/////                                 | ✓A 2sin x cos x                                        |         |
| $\frac{\sin^2 x - \cos^2 x + \sin^2 x + \cos^2 x}{2\sin x \cos x}$ $\frac{2\sin^2 x}{\cos x}$ $\frac{2\sin^2 x}{\cos x}$ $\frac{\cos x}{\cos x}$ $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ $(3)$ OR $\checkmark A \operatorname{cos}^2 x - \sin^2 x$ $\checkmark A 2 \sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | = 1 SNO X - COS X X X X / / / / / / / / / / / / / / / |                                                        |         |
| $ \begin{array}{c} 2 \sin^2 x \\ 2 \sin x \cos x \\ = \sin x \\ = \cos x \\ = \tan x \end{array} $ $ = \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2 \sin x \cos x}$ $ = \frac{2 \sin^2 x}{2 \sin x \cos x}$ $ = \frac{\sin x}{\cos x}$ $ = \tan x$ $ = RHS $ $ \begin{array}{c} 3 \cos x \\ = \sin x \\ = \tan x \\ = RHS \end{array} $ $ \begin{array}{c} 3 \cos x \\ = \sin x \\ = \cos x \\ = \tan x \\ = \cos $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | ///2sw/x.cos/x/////////                               |                                                        |         |
| $ \begin{array}{c} 2 \sin^2 x \\ 2 \sin x \cos x \\ = \sin x \\ = \cos x \\ = \tan x \end{array} $ $ = \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2 \sin x \cos x}$ $ = \frac{2 \sin^2 x}{2 \sin x \cos x}$ $ = \frac{\sin x}{\cos x}$ $ = \tan x$ $ = RHS $ $ \begin{array}{c} 3 \cos x \\ = \sin x \\ = \tan x \\ = RHS \end{array} $ $ \begin{array}{c} 3 \cos x \\ = \sin x \\ = \cos x \\ = \tan x \\ = \cos $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | =\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                |                                                        |         |
| OR  LHS $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A 2\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | //////2\$id/\$/\$0\$/\$/////                          |                                                        |         |
| OR  LHS $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A 2\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | <u> </u>                                              |                                                        |         |
| OR  LHS $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A 2\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | //2sig/xc6sx////////                                  |                                                        |         |
| OR  LHS $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A 2\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | =\sin\x////////////////////////////////////           |                                                        |         |
| OR  LHS $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A 2\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                | ✓ A simplification                                     |         |
| OR $ \begin{aligned} LHS \\ &= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} \\ &= \frac{2\sin^2 x}{2\sin x \cos x} \\ &= \frac{\sin x}{\cos x} \\ &= \tan x \\ &= RHS \end{aligned} $ OR $ \checkmark A \cos^2 x - \sin^2 x \\ \checkmark A 2\sin x \cos x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | = 161XX//////////////////////////////////             | 7 Companioación                                        |         |
| OR $ \begin{aligned} LHS \\ &= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x} \\ &= \frac{2\sin^2 x}{2\sin x \cos x} \\ &= \frac{\sin x}{\cos x} \\ &= \tan x \\ &= RHS \end{aligned} $ OR $ \checkmark A \cos^2 x - \sin^2 x \\ \checkmark A 2\sin x \cos x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | FBH8//////////                                        |                                                        | parmag  |
| LHS $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ OR $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A 2\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | OP                                                    |                                                        | (3)     |
| $= \frac{\sin^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ $= \frac{\sin^2 x + \cos^2 x - \sin^2 x}{x \cos^2 x - \sin^2 x}$ $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A \sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                       | OR                                                     |         |
| $= \frac{2\sin x \cos x}{2\sin x \cos x}$ $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ $\checkmark A \cos^2 x - \sin^2 x$ $\checkmark A 2\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 10"                                                   | mini                                                   |         |
| $= \frac{2\sin^2 x}{2\sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ A 2sin x cos x  A simplification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                       | $\checkmark$ A cos <sup>2</sup> x – sin <sup>2</sup> x |         |
| $= \frac{2 \sin x}{2 \sin x \cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | FACE:                                                 | ✓A 2sin x cos x                                        |         |
| $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                       |                                                        |         |
| - cos x<br>= tan x<br>= RHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                       | HIN!                                                   |         |
| = tan x<br>= RHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | <del></del>                                           |                                                        |         |
| = RHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                       | ✓ A simplification                                     |         |
| -1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 554479 500000                                         |                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | - 1010                                                |                                                        | (3)     |

# Mathematics Panloaded from Stanmore hysics Interpretations GRADE 12

Marking Guidelines

| 5.2.2 | tan15°                                                                                                           |                                                                |
|-------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|       | 1-cos 2(15°)                                                                                                     | 1 cos 2(15°)                                                   |
|       | $= \frac{1}{\sin 2(15^\circ)}$                                                                                   | $\checkmark A \frac{1-\cos 2(15^{\circ})}{\sin 2(15^{\circ})}$ |
|       | 1-cos 30°                                                                                                        | 51112(15)                                                      |
|       | $=\frac{30000}{\sin 30^{\circ}}$                                                                                 |                                                                |
|       | $\sqrt{3}$                                                                                                       |                                                                |
|       | 2                                                                                                                | ✓A substitution of special                                     |
|       | 1                                                                                                                | angle values                                                   |
|       | 2                                                                                                                |                                                                |
|       | $=\left(1-\frac{\sqrt{3}}{2}\right)\times\frac{2}{1}$                                                            |                                                                |
|       |                                                                                                                  |                                                                |
|       | $=2-\sqrt{3}$                                                                                                    | ✓CA answer (3)                                                 |
| 5.3   | $\sin(360^{\circ} + x).\cos(90^{\circ} + x) - \frac{\sin x}{\cos(-x).\tan(360^{\circ} - x)}$                     |                                                                |
|       |                                                                                                                  |                                                                |
|       | $= \sin x.(-\sin x) - \frac{\sin x}{\cos x.(-\tan x)}$                                                           | ✓A sin x ✓A −sin x                                             |
|       | cos x. (—tair x)                                                                                                 | ✓A cos x ✓A – tan x                                            |
|       | $=-\sin^2 x+1$                                                                                                   | ✓CA 1                                                          |
|       | = cos² x morephysics.com                                                                                         | ✓CA answer (6)                                                 |
| 5.4   | $\cos 2x - \frac{1}{3} = \frac{1}{3}\sin x$                                                                      |                                                                |
|       | 3 3                                                                                                              | 1600                                                           |
|       | $1-2\sin^2 x - \frac{1}{3} = \frac{1}{3}\sin x$                                                                  | ✓A 1-2sin² x                                                   |
|       | $3-6\sin^2 x-1=\sin x$                                                                                           |                                                                |
|       | $6\sin^2 x + \sin x - 2 = 0$                                                                                     | ✓A standard form                                               |
|       | $(3\sin x + 2)(2\sin x - 1) = 0$                                                                                 | ✓CA factors                                                    |
|       | $\sin x = -\frac{2}{3}$                                                                                          |                                                                |
|       | $\therefore x = 221,81^{\circ} + k.360^{\circ} \text{ or } x = 318,19^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$ | $\checkmark$ CA $x = 221,81^{\circ} + k.360^{\circ}$           |
|       | or $\sin x = \frac{1}{2}$                                                                                        | or $x = 318,19^{\circ} + k.360^{\circ}$                        |
|       | 2                                                                                                                | ✓CA $x = 30^{\circ} + k.360^{\circ}$ or                        |
|       | $\therefore x = 30^{\circ} + k.360^{\circ}$ or $x = 150^{\circ} + k.360^{\circ}$ , $k \in \mathbb{Z}$            | $x = 150^{\circ} + k.360^{\circ}$                              |
|       | sin (24 · 200) · Is 2                                                                                            | $\checkmark A \ k \in Z$ (6)                                   |
| 5.5   | $\sin(2x+30^{\circ})+k=3$                                                                                        | (0 200) 0 1                                                    |
|       | $\sin(2x+30^{\circ})=3-k$                                                                                        | $\checkmark$ A $\sin(2x+30^\circ)=3-k$                         |
|       | $\sin(2x+30^{\circ})<-1 \text{ or } \sin(2x+30^{\circ})>1$                                                       | ✓ A $\sin(2x+30^{\circ}) < -1$ or                              |
|       |                                                                                                                  | $\sin(2x+30^\circ)>1$                                          |
|       | 3-k < -1 or $3-k > 1$                                                                                            | $\checkmark$ CA 3-k <−1 or 3-k >1                              |
|       | k > 4 or k < 2                                                                                                   | ✓CA k>4                                                        |
|       |                                                                                                                  | ✓CA k < 2 (5)                                                  |
|       |                                                                                                                  | [33]                                                           |

Copyright Reserved

# QUESTION 6

| 6.1 | $b = \frac{1}{2}$ | ✓A answer   |          |
|-----|-------------------|-------------|----------|
|     | 1000              |             | (1)      |
| 6.2 | period = 360°     | ✓A answer   |          |
|     | Inni              |             | (1)      |
| 6.3 | A(30°;1)          | ✓A 30° ✓A 1 |          |
|     |                   |             | (2)      |
| 6.4 | x = 160°          | ✓A answer   | 0.500 00 |
|     |                   |             | (1)      |
| 6.5 | -3 ≤ y ≤1         | ✓✓ AA       |          |
|     | OR                |             | (2)      |
|     |                   | OR          |          |
|     | $y \in [-3;1]$    | ✓✓ AA       |          |
|     |                   |             | (2)      |
|     |                   |             | [7]      |

### **QUESTION 7**

| 7.1 | $ \begin{array}{ccc} \hline sin y & sin x \\ \hline 2b & b \end{array} $ $ \begin{array}{ccc} sin y & = 2b sin x \\ \hline sin y & = 2sin x \end{array} $                                                                                                                                                                                                                                                                                                                                    | ✓A substitution in sine rule  ✓A sin $y = \frac{2b \sin x}{b}$ OR  bsin $y = 2b \sin x$ (2) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 7.2 | $\frac{AB}{BC} = \tan \theta$ $\therefore AB = BC.\tan \theta$ $\hat{D} = 180^{\circ} - (x + y)$ $BC^{2} = BD^{2} + CD^{2} - 2BD.CD\cos \hat{D}$ $BC^{2} = (2b)^{2} + b^{2} + 2(2b)(b)\cos \left[180^{\circ} - (x + y)\right]$ $BC^{2} = (2b)^{2} + b^{2} + 2(2b)(b)\cos (x + y)$ $BC^{2} = 5b^{2} + 4b^{2}\cos (x + y)$ $BC^{2} = 5b^{2} + 4\cos (x + y)$ $BC^{2} = b^{2} \left(5 + 4\cos (x + y)\right)$ $BC = b\sqrt{(5 + 4\cos (x + y))}$ $AB = b\tan \theta \sqrt{(5 + 4\cos (x + y))}$ |                                                                                             |
| 7.3 | AB = 54,8 tan 42,6° $\sqrt{5+4\cos(31^{\circ}+75,84^{\circ})}$<br>AB = 98,76 metres                                                                                                                                                                                                                                                                                                                                                                                                          | ✓A substitution ✓A answer (2)                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [11]                                                                                        |

## **QUESTION 8**

| 8.1.1 $\hat{A}_1 = \frac{1}{2}(\hat{COE})$ [ $\angle$ at centre = $2 \times \angle$ at circumference] $\sqrt{R}$ $\sqrt{A}$ answer (2)  8.1.2 $\hat{E}_1 = \hat{A}_1$ [tan chord theorem] $\sqrt{R}$ $\sqrt{CA}$ answer (2)  8.1.3 $\hat{BCE} = \hat{E}_1$ [alt $\angle$ s; $DF \parallel CA$ ] $\sqrt{R}$ $\sqrt{CA}$ answer (2)  8.1.4 $\hat{G} = 180^\circ - \hat{BCE}$ [opp. $\angle$ s of cyclic quad] $\sqrt{R}$ $\sqrt{CA}$ answer (2)  8.2 $\hat{BED} = 90^\circ$ [radius $\perp$ tangent] $\sqrt{S} \times R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | . 61/4                                                                    | 2795 EU 93 SOF 1933                                               |             |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|------------|
| 8.1.2 $\hat{E}_1 = \hat{A}_1$ [tan chord theorem] $\checkmark$ R $\checkmark$ CA answer (2)  8.1.3 $\hat{BCE} = \hat{E}_1$ [alt $\angle$ s; DF    CA] $\checkmark$ R $\checkmark$ CA answer (2)  8.1.4 $\hat{G} = 180^\circ - \hat{BCE}$ [opp. $\angle$ s of cyclic quad] $\checkmark$ R $\checkmark$ CA answer (2)  8.2 $\hat{BED} = 90^\circ$ [radius $\bot$ tangent] $\checkmark$ S $\checkmark$ R $\checkmark$ CA answer (2)  8.2 $\hat{BED} = 90^\circ$ [radius $\bot$ tangent] $\checkmark$ S $\checkmark$ R $\checkmark$ S/R $\checkmark$ S/R $\checkmark$ S/R $\checkmark$ S $\checkmark$ B | 8.1.1         | $A_1 = \frac{1}{2}(COE)$                                                  | $[\angle$ at centre = $2 \times \angle$ at circumference]         | √R          |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | = 68°                                                                     |                                                                   | ✓A answer   | 0.00000000 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                           |                                                                   |             | (2)        |
| 8.1.3 $B\hat{C}E = \hat{E}_1$ [alt $\angle s$ ; DF    CA] $\angle R$ $\angle CA$ answer (2)  8.1.4 $\hat{G} = 180^\circ - B\hat{C}E$ [opp. $\angle s$ of cyclic quad] $\angle R$ $\angle CA$ answer (2)  8.2 $B\hat{E}D = 90^\circ$ [radius $\perp$ tangent] $\angle R$ $\angle CA$ answer (2)  8.4 $AB = \frac{1}{2}AC$ [line from centre $\perp$ to chord] $\angle R$ $\angle R$ $\angle CA$ answer (5)  Corrected by the contract of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1.2         |                                                                           | [tan chord theorem]                                               | 0, 505      |            |
| 8.1.3 $B\hat{C}E = \hat{E}_1$ [alt $\angle$ s; DF    CA] $\checkmark$ R $\checkmark$ CA answer (2)  8.1.4 $\hat{G} = 180^\circ - B\hat{C}E$ [opp. $\angle$ s of cyclic quad] $\checkmark$ R $\checkmark$ CA answer (2)  8.2 $B\hat{E}D = 90^\circ$ [radius $\bot$ tangent] $\checkmark$ S $\checkmark$ R $\checkmark$ S/R $\checkmark$ S/R $\checkmark$ S/R $\checkmark$ S/R $\checkmark$ A answer (5)  OR [line from centre $\bot$ to chord] $\checkmark$ R $\checkmark$ A answer (5)  OR $B\hat{E}D = 90^\circ$ [radius $\bot$ tangent] $\checkmark$ S $\checkmark$ R $\checkmark$ A answer (5) $CR$ $CR$ $CR$ $CR$ $CR$ $CR$ $CR$ $CR$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | = 68°                                                                     |                                                                   | ✓CA answer  | (0)        |
| 8.1.4 $\hat{G} = 180^{\circ} - B\hat{C}E$ [opp. $\angle$ s of cyclic quad] $\angle$ R $\angle$ CA answer (2)  8.2 $B\hat{E}D = 90^{\circ}$ [radius $\bot$ tangent] $\angle$ S/R $\angle$ S/R $\angle$ Answer (2)  8.2 $AB = \frac{1}{2}AC$ [line from centre $\bot$ to chord] $\angle$ R $\angle$ A answer (5)  OR $B\hat{E}D = 90^{\circ}$ [radius $\bot$ tangent] $\angle$ A answer (5) $CB$ $CB$ $CB$ $CB$ $CB$ $CB$ $CB$ $CB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1.0         | nôn ô                                                                     | F. H. A. DE HOAT                                                  | √D          | (2)        |
| 8.1.4 $\hat{G} = 180^{\circ} - B\hat{C}E$ [opp. $\angle$ s of cyclic quad] $\checkmark$ R $\checkmark$ CA answer  8.2 $B\hat{E}D = 90^{\circ}$ [radius $\bot$ tangent] $\checkmark$ S/R $\therefore AB = \frac{1}{2}AC$ [line from centre $\bot$ to chord] $\checkmark$ R $\Rightarrow$ The system of the sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1.3         | 0.T.                                                                      | [ alt ∠s; DF    CA]                                               | 92.75       |            |
| 8.1.4 $\hat{G} = 180^{\circ} - B\hat{C}E$ [opp. $\angle$ s of cyclic quad] $\checkmark$ R $\checkmark$ CA answer  8.2 $B\hat{E}D = 90^{\circ}$ [radius $\bot$ tangent] $\checkmark$ S $\checkmark$ R $= \hat{B}_{1}$ [co-interior $\angle$ s; DF $\parallel$ CA] $\checkmark$ S/R $\therefore AB = \frac{1}{2}AC$ [line from centre $\bot$ to chord] $\checkmark$ R $= 7 \text{ units}$ $\checkmark$ A answer  OR $B\hat{E}D = 90^{\circ}$ [radius $\bot$ tangent] $\checkmark$ S $\checkmark$ R $\therefore \hat{B}_{1} = 180^{\circ} - (B\hat{C}E + \hat{E}_{2})$ [sum of $\angle$ s of $\triangle$ BCE] $= 180^{\circ} - (68^{\circ} + 22^{\circ})$ $= 90^{\circ}$ $\checkmark$ S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | = 68°                                                                     |                                                                   | · CA answer | (2)        |
| $=112^{\circ}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1.4         | Ĝ = 180° – BĈE                                                            | [opp. ∠s of cyclic quad]                                          | √R          |            |
| 8.2 $B\hat{E}D = 90^{\circ}$ [radius $\perp$ tangent] $\checkmark S \checkmark R$ $= \hat{B}_1$ [co-interior $\angle s$ ; DF    CA] $\checkmark S/R$ $\therefore AB = \frac{1}{2}AC$ [line from centre $\perp$ to chord] $\checkmark R$ $= 7$ units $\checkmark A$ answer (5)  OR $B\hat{E}D = 90^{\circ}$ [radius $\perp$ tangent] $\checkmark S \checkmark R$ $\therefore \hat{E}_2 = 22^{\circ}$ $\therefore \hat{B}_1 = 180^{\circ} - (B\hat{C}E + \hat{E}_2)$ [sum of $\angle s$ of $\triangle BCE$ ] $= 180^{\circ} - (68^{\circ} + 22^{\circ})$ $= 90^{\circ}$ $\checkmark S/R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9-50681125696 | =112°                                                                     |                                                                   | ✓ CA answer | 1 2753     |
| $= \hat{B}_1 \qquad [\text{co-interior} \angle s  ;  \text{DF} \parallel \text{CA}] \qquad \checkmark  \text{S/R}$ $\therefore  \text{AB} = \frac{1}{2} \text{AC} \qquad [\text{line from centre} \perp \text{ to chord}] \qquad \checkmark  \text{R}$ $= 7 \text{ units} \qquad \checkmark  \text{A answer} \qquad (5)$ $\text{OR} \qquad \qquad \text{OR}$ $\hat{BED} = 90^\circ \qquad [\text{radius} \perp \text{ tangent}] \qquad \checkmark  \text{S/R}$ $\therefore  \hat{E}_2 = 22^\circ$ $\therefore  \hat{B}_1 = 180^\circ - \left( \hat{BCE} + \hat{E}_2 \right) \qquad [\text{sum of}  \angle  \text{s of }  \Delta  \text{BCE}]$ $= 180^\circ - \left( 68^\circ + 22^\circ \right)$ $= 90^\circ \qquad \checkmark  \text{S/R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0           | ^                                                                         |                                                                   |             | (2)        |
| $\therefore AB = \frac{1}{2}AC \qquad [line from centre \perp to chord] \qquad \checkmark R$ $= 7 \text{ units} \qquad \checkmark A \text{ answer} \qquad (5)$ $\mathbf{OR} \qquad \qquad \mathbf{OR}$ $B\hat{E}D = 90^{\circ} \qquad [radius \perp tangent] \qquad \checkmark S \checkmark R$ $\therefore \hat{E}_2 = 22^{\circ}$ $\therefore \hat{B}_1 = 180^{\circ} - \left(B\hat{C}E + \hat{E}_2\right) \qquad [sum of \angle s \text{ of } \Delta BCE]$ $= 180^{\circ} - \left(68^{\circ} + 22^{\circ}\right)$ $= 90^{\circ} \qquad \checkmark S/R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2           | 3                                                                         |                                                                   | √S√R        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | $= B_1$                                                                   | [co-interior $\angle$ s; DF    CA]                                | ✓ S/R       |            |
| OR $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | $\therefore AB = \frac{1}{2}AC$                                           | [line from centre $\perp$ to chord]                               | ✓ R         |            |
| $B\hat{E}D = 90^{\circ} \qquad [radius \perp tangent] \qquad \checkmark S \checkmark R$ $\therefore \hat{E}_{2} = 22^{\circ}$ $\therefore \hat{B}_{1} = 180^{\circ} - (B\hat{C}E + \hat{E}_{2}) \qquad [sum of \angle s of \triangle BCE]$ $= 180^{\circ} - (68^{\circ} + 22^{\circ})$ $= 90^{\circ} \qquad \checkmark S/R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | = 7 units                                                                 |                                                                   | ✓A answer   | (5)        |
| $\therefore \hat{E}_2 = 22^\circ$ $\therefore \hat{B}_1 = 180^\circ - \left(B\hat{C}E + \hat{E}_2\right) \qquad [\text{sum of } \angle \text{ s of } \Delta BCE]$ $= 180^\circ - \left(68^\circ + 22^\circ\right)$ $= 90^\circ$ $\checkmark \text{ S/R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | OR                                                                        |                                                                   | OR          |            |
| $\therefore \hat{E}_2 = 22^{\circ}$ $\therefore \hat{B}_1 = 180^{\circ} - \left(B\hat{C}E + \hat{E}_2\right) \qquad [\text{sum of } \angle \text{ s of } \Delta BCE]$ $= 180^{\circ} - \left(68^{\circ} + 22^{\circ}\right)$ $= 90^{\circ}$ $\checkmark \text{ S/R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | BÊD = 90°                                                                 | [radius $\perp$ tangent]                                          | √S√R        |            |
| = 180° − (68° + 22°)<br>= 90°<br>✓ S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | ∴ Ê <sub>2</sub> = 22°                                                    |                                                                   |             |            |
| = 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | $\therefore \hat{B}_1 = 180^{\circ} - \left( B\hat{C}E + \hat{E} \right)$ | $\left(\frac{1}{2}\right)$ [sum of $\angle$ s of $\triangle$ BCE] |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | $=180^{\circ}-(68^{\circ}+22$                                             | °)                                                                |             |            |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                           |                                                                   | ✓ S/R       |            |
| $\therefore AB = \frac{1}{2}AC$ [line from centre $\perp$ to chord]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | $\therefore AB = \frac{1}{2}AC$                                           | [line from centre $\perp$ to chord]                               | √ R         |            |
| $= 7 \text{ units} $ $\checkmark A \text{ answer} $ (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | = 7 units                                                                 |                                                                   | ✓A answer   | (5)        |
| [13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                           |                                                                   | MONT        | [13]       |

# **QUESTION 9**

| 9. | In $\triangle QVS$ : $\frac{QU}{UV} = \frac{QT}{TS}$ $= \frac{5}{2}$ $= \frac{5k}{2k}$ | [prop. theorem; UT  VS] OR [line    one side of $\Delta$ ] | √S√R         |
|----|----------------------------------------------------------------------------------------|------------------------------------------------------------|--------------|
|    | ∴5k = 2x;                                                                              | or: $x = \frac{5}{2}k$ . And: $3x = \frac{15}{2}k$         | ✓ x i.t.o. k |
|    | In ΔUPR:                                                                               | · <del>-</del>                                             |              |
|    | $\frac{PS}{PR} = \frac{UV}{UR}$                                                        | [prop. theorem; UP  VS] OR [line    one side of $\Delta$ ] | √S           |
|    | $=\frac{2k}{\frac{15}{2}k}$                                                            |                                                            |              |
|    |                                                                                        |                                                            |              |
|    | $=\frac{4}{15}$                                                                        |                                                            | √S           |
|    | $\cdot \frac{PS}{=} = \frac{4}{}$                                                      |                                                            | 2            |
|    | "SR 11                                                                                 |                                                            | ✓answer (6)  |
|    |                                                                                        |                                                            | [6]          |



### **QUESTION 10**



# Mathematics Panloaded from Stanmore Physics Incompensor 2024 Preparatory Examinations GRADE 12

### Marking Guidelines

|        |                                            |                                                                                                    | -                     |
|--------|--------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|
| 10.2.2 | NPM = L                                    | [from     \( \Delta s \)]                                                                          | √S√R                  |
|        | ∴ KLNP is a cyclic quadrilateral           | [converse: ext. ∠ of cyclic quadrilateral] OR                                                      | √R                    |
|        |                                            | [ext. $\angle$ of quad = int. opp. $\angle$ ]                                                      | (3)                   |
|        | OR                                         |                                                                                                    | OR                    |
|        | $\hat{PNM} = \hat{K}$                      | [from    \( \Delta s \)]                                                                           | √S√R                  |
|        | KLNP is a cyclic quadrilateral             | [converse: ext. $\angle$ of cyclic quadrilateral] OR [ext. $\angle$ of quad = int. opp. $\angle$ ] | ✓R (3)                |
| 10.3.1 | In ∆BCE and ∆ADE:                          |                                                                                                    | ✓ selecting triangles |
|        | 1. $\hat{E}_1 = \hat{E}_3$                 | [vertically opp. $\angle$ s]                                                                       | √S                    |
|        | $2.  \hat{C}_1 = \hat{D}_2$                | $[ \angle s \text{ in the same segment}]$                                                          | √S/R                  |
|        | 3. $\hat{B} = \hat{A}$                     | [sum of $\angle$ s of $\Delta$ s]                                                                  | ✓ B=Â                 |
|        | ∴ ∆BCE   ∆ADE                              | [∠∠∠]                                                                                              | OR                    |
|        | $\therefore \frac{BC}{CE} = \frac{AD}{DE}$ | [from    \( \Delta s \)]                                                                           | [∠∠∠]                 |
|        |                                            |                                                                                                    | √R                    |
|        | $\therefore BC = \frac{AD.CE}{DE}$         |                                                                                                    | √S/R                  |
|        | 912914 (1)                                 |                                                                                                    | (5)                   |
| 10.3.2 | In ΔADE and ΔBDC:                          | Fairmal                                                                                            | ✓ selecting triangles |
|        | 1. $\hat{D}_2 = \hat{D}_1$                 | [given]                                                                                            |                       |
|        | 2. $\hat{A} = \hat{B}$                     | [∠s in the same segment]                                                                           | ✓S/R                  |
|        | 3. Ê <sub>3</sub> = BĈD<br>∴ ΔADE∭ΔBDC     | [sum of $\angle$ s of $\Delta$ s] [ $\angle$ $\angle$ $\angle$ ]                                   | √R                    |
|        | $\therefore \frac{AD}{BD} = \frac{DE}{CD}$ | [from     \( \Delta s \)]                                                                          | √ S                   |
|        | ∴ AD.CD = DE.BD                            |                                                                                                    | 001                   |
|        | = DE.(DE + BE)                             | Tr                                                                                                 | ✓ substitute DE + BE  |
|        | $= DE^2 + DE.BE$                           | ĺ                                                                                                  | (5)                   |
|        |                                            | 8                                                                                                  | [23]                  |
|        | l .                                        |                                                                                                    | 101                   |

150