Download Restands EDUCATION DISTRICT

CLIMATE & WEATHER

You must be able to:

- Recognise/Identify a cold, warm, occlusion front, wind direction, cloud cover, temperature, cloud types and stages of formation (sources1,
- Name the general direction of movement and give a reason for it (source 8)
- **Define** a cold and warm front (source 4)
- **Describe** where & why it forms there (sources 2
- State/Describe changes in weather caused by a cold front (source 6)
- Draw a labelled cross-section of a cold, warm and occlusion front (source 4 & ask teacher)
- State/Describe the impact of the cold front
- Suggest strategies to reduce the impact (see

REASON: driven by westerly winds therefore moves eastwards

- **Recognise/Identify** a tropical cyclone and the stages of formation (source 5)
- Name the general direction of movement and give a **reason** for it (sources 1 & 8)
- Name/Describe the general characteristics (source 1)
- State/Describe where & why it forms there (sources 2 and 3)
- **State/Describe** changes in the weather as the storm approaches and the eye passes over (source 4)
- State/Describe the impact (source 6)
- **Suggest** strategies to reduce the impact (source 7)
- State/Describe how it is named (source 1)
- Explain why wind speeds decrease or increase (ask you teacher)

• <u>**RIDGING**</u> – outward extension/bulging of isobars away from the highpressure centre (see source 2).

- Recognise/Identify the 3 high-pressure cells on maps (source 1 & 2)
- Name the 3 high-pressure cells that influence the weather of South Africa (source 1)
- Define an inversion and ridging (source 4)
- **Recognise/Identify** ridging of a high pressure on a synoptic map (source 2)
- Identify the season (winter) by looking for the presence of the Kalahari high over the land (source 1)
- **Describe** the seasonal movement of the Kalahari high and give a **reason** for it e.g., Kalahari High is replaced by a Heat Low in summer because the land is warm (source 1)
- Name/Describe the general characteristics of a high-pressure cell (source 3)
- **Name/Describe** how these 3 high-pressure cells influence the weather (source 1)
- **Describe & Explain** how the height of the inversion along the escarpment changes in winter and summer (source 1 & 4)

• Identify slope aspect, thermal belts, katabatic and anabatic winds, frost pockets and radiation fog

MAPWORK TIP - You must be able to:

- · Identify urban heat islands and cooler rural areas
- Give reasons for the presence of urban heat islands or cooler rural areas (source 1 and causes of source 2)

The relationship between the length of streams in a drainage basin and the size of the drainage basin.

GEOMORPHOLOGY

- **Define** a drainage basin and all the features (source 1), types of rivers (source 2), drainage density (source 3), turbulent and laminar flow (source 5)
- **Identify** the watershed, interfluve, source, confluence, tributary and mouth on diagrams and on maps (source 1)
- Identify and Describe types of rivers on maps (source 2)
- Identify and describe the 2 drainage densities (source 3)
- Give reasons for high and low drainage density (source 3)
- Determine stream order (source 4)
- Give reasons for turbulent and laminar flow (source 5)
- **Describe** the impact of turbulent and laminar flow (source 5)

Downloaded from Stanmorep DR.A.DNAGE PATTERNS												
Pattern	Dendritic	Trellis	Radial	Rectangular	Centripetal	Deranged	Parallel					
Diagram	X	X 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	K K	状	X	N.S.						
Description	Looks like branches of a tree. Tributaries join at acute angles.	Strong main stream joined by short tributaries at right angles	Looks like spokes of a wheel when viewed from above	Tributaries join at right angles and have bends of 90°	Opposite of radial pattern.	Small streams that have no specific pattern	Streams flow parallel to each other					
Underlying structures	Uniform rocks of similar hardness	Gently sloping alternating layers of hard and soft rock	Rivers flow away from a high central point such like a butte or mesa	In areas with hard rock that is well jointed.	Streams flow towards a central basin such as a marsh or lake	Very flat areas that have experienced recent glaciation	Common along a ridge or hills.					

You must be in a position to do the following:

- Identify each of the patterns on diagrams.
- Identify stream patterns on topographic maps.
- Give a description of the patterns.
- Describe the underlying structures that caused the stream pattern.

- **Define** a natural levee, meander, oxbow lake, braided stream, delta and a waterfall (source 1-6)
- Identify all 6 fluvial landforms/features on diagrams and maps e.g., topographic maps (source 1-6)
- **Describe** how all 6 features develop/form (source 1-6)
- **Draw** a correct labelled cross-section of a meander (source 2)

- Define stream piracy (source 1)
- **Define** headward erosion, captor river, captured river, misfit stream, elbow of capture, wind gap and waterfall (source 4)
- **Identify** where headward erosion occurs, where the captor river, captured river, misfit stream, elbow of capture and wind gap is (source 2)
- **Draw** a labelled line sketch/plan view of stream piracy after capture has taken place (source 3)
- **Define** superimposed and antecedent drainage (source 5)
- **Describe** superimposed and antecedent drainage (source 5)

How must we manage drainage basins and catchment areas?

Make sure that you can do all these calculations for Paper 1

Downloaded from Stanpennterpretation

1 Know the definition of GIS

2 Know all concepts and terminology.

Geographic Information Systems

Start with the definition and systematically work your way to the right and downwards.

DeFINITION: A computer system of hardware, software and methods where spatial data (georeferenced) together with non-spatial data (attributes) are captured, managed, manipulated, analysed, modelled and displayed in order to solve complex planning and management problems.

Components	Hardware, software, data, people and methods	Computer and GIS programme, screen, keyboard, mouse, printer, scanner and digitizing table	 Capturing, importing, managing and display of data Capturing: keyboard, digitizing, scanning Importing: digital products managing: accuracy and integrity, data sharing, data standardisation and data security 					GIS TIP: Make sure you
Data 2	Data sources Topographic maps Satellite images Aerial photos Fieldwork Administrative records	Remote sensing	 the collecting of information about the earth's surface With sensors on platforms such as weather balloons, aeroplanes or satellites using the sun's energy that is reflected or emitted by the earth's surface without being in physical contact with the object 		Resolution refers to the ability of the sensor to create a sharp and clear imageSpatial resolution: quantity of detail that can be detected - determined by the pixel size e.g.0,5m ; 10m; 30mSpectral resolution: sensor detects over several spectral bands e.g. blue, green, red,		•	know all your GIS concepts. Make sure you can apply some of the GIS concepts on the
	Data types Spatial dataspatially linked data/geo- referenced data)	All geographic objects on the earth's surface. <i>Maps</i> : point, line, area (PLA) <i>GIS</i> : node, vector, polygon (NVP)	Two data structure types	Raster (pixels) Vector (PLA=NVP)	High resolution Small pixels Many pixels High quality image 	Low resolution Large pixels Few pixels Poor quality image 		map e.g., buffering.
	Non-spatial data (attribute data)	Characteristics, features, description of the spatial (geographic) objects	In table format: qualitative and quantitative		Used for querying and analyses			
Functions	capturing, managing, manipulater, analyse, model and display	 Integration₍₁₎ Data manipulation (change/alter) Querying₍₂₎ Buffering₍₃₎ 	 (1) Combining two or more layers in order to create new layer (2) Solving a geographic problem (3) A zone around a certain geographic object at a specified distance to "something in or out". 		Trees Grass Vagetation Vagetation Stope	Clay Band Soll		
People ()	GIS technician	Data capturers, data processors, GIS programmers and Data managers	Capturing, importing and managing		Data sharing, data standardisation and data security becomes highly important			
	GIS users	All users of spatial products	 Maps. Orthophotos, aerial photos and satellite images Attribute analyses and statistics 		Organisations such as: n conservation, governmer developers, police and de etc.	nunicipalities, nature nt departments, efence force, mines,		
Purpose	to solve complex planning and management problems	Answers/solutions for geographic questions	Who, what, where, why, when, how		© J.A. Jacobs www.cartografix.co.za andre@cartografix.co.za			20