Downloaded from Stanmorephysics.com

PROVINCIAL EXAMINATION

JUNE 2024

GRADE 11

MATHEMATICS

(PAPER 1)

TIME: 2 hours

MARKS: 100

6 pages

Downloaded from Stanmore MATHEMATICS (PAPER 1)

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Present your answers according to the instructions of each question.
- 4. Clearly show ALL calculations, diagrams, graphs et cetera which were used in determining the answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, answers should be rounded-off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Number the answers according to the numbering system used in this question paper.
- 10. Write neatly and legibly.

Downloaded from Stanmore MATHEMATICS (PAPER 1)

GRADE 11

QUESTION 1

1.1Determine the value(s) of x for which the expression:
$$\sqrt{\frac{x^2+4}{9-x}}$$
1.1.1has real value(s).(1)1.1.2is not defined.(1)1.1.3Given, x =1, is the expression rational or irrational?
Validate your answer with an appropriate calculation.(1)1.1.4Determine a value for x where the expression will yield a recurring decimal
value?(1)1.2Given: $2x^2 - 3x - k = 0$. Determine x if:(2)1.2.1 $k = 5$ (2)1.2.2 $k = 4$ (correct to TWO decimal places)(3)1.3Solve for x:(3)1.3.1 $x - 4 = -\sqrt{x-2}$ (5)1.3.2 $x^2 + 4 > 3x + 2$ (4)1.4Solve simultaneously for x and y. $2x = y + 2$ and $2x^2 = 2 - y^2$ (6)1.5For which values of p will $-2x^2 + 4x - 3 = -p$:(4)1.5.2have roots that are BOTH positive?(2)1.6Show that the equation $(p^2 + 1)x^2 = -2pqx - q^2$ has no real roots for
p and q \in Real numbers and $q \neq 0$.(5)

3

Downloaded from Stanmore MATHEMATICS (PAPER 1) GRADE 11 4

QUESTION 2

2.1 Simplify WITHOUT using a calculator:

$$2.1.1 \quad (2^{-1} + 3^{-1})^2 \tag{3}$$

$$2.1.2 \quad \frac{2.4^{x+2} - 4^{x+3}}{2^{x} \cdot 2^{x}} \tag{3}$$

2.1.3
$$3^{-\frac{1}{2}} \left[\sqrt{12} + \sqrt[3]{3\sqrt{3}} \right]$$
 (4)

2.2 Solve for *x* WITHOUT using a calculator:

2.2.1
$$2x^{\frac{3}{4}} = 16$$
 (3)

$$2.2.2 \quad 5^{x+1} + 5^x = 150 \tag{4}$$

2.3 WITHOUT using a calculator, show that $\frac{9-\sqrt{54}}{6\sqrt{2}}$ is equal to $\frac{3\sqrt{2}-2\sqrt{3}}{4}$. (3)

QUESTION 3

Given the number pattern:

4 ; -3 ; -10 ; ... ; -227

3.2	Determine the general term of the number pattern in the form $T_n = an + b$.	(1)
3.3	Calculate the number of terms of the pattern.	(2)
3.4	The given number pattern above is also the FIRST differences of a quadratic number pattern, $T_n = an^2 + bn + c$.	
	Determine if the quadratic pattern will have a maximum or minimum value. Validate your answer with an appropriate calculation.	(2) [6]
QUES	STION 4	[0]
Cim		

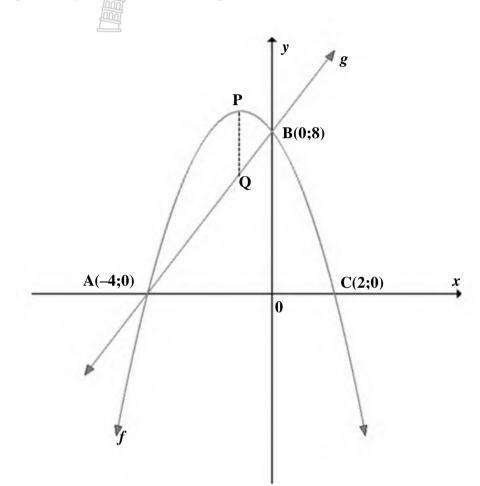
Given the quadratic number pattern:

69;0-63;...

4.1	Write down the value of the next term in the pattern.	(1)
4.2	Calculate an expression for the n^{th} term of the quadratic pattern.	(4)
4.3	Determine the value of the SMALLEST term in this pattern.	(4) [9]

P.T.O.

[20]


Downloaded from Stanmore MATHEMATICS

(PAPER 1)

QUESTION 5

Sketched below are the graphs of $f(x) = ax^2 + bx + c$ and g(x) = mx + k.

- The *x*-intercepts of *f* are at points A and C.
- The graphs of f and g intersect at points A and B respectively.
- Point P is the turning point of *f*.
- Q is a point on g such that line PQ is parallel to the y-axis.

5.1 Determine the equation of g. (3) Calculate the values of a, b and c in $f(x) = ax^2 + bx + c$. 5.2 (5) Show that the coordinates of P are (-1; 9). 5.3 (2) 5.4 Determine the range of f. (1) 5.5 Determine the equation of a line p perpendicular to g passing through point C. (3) 5.6 Calculate the length of line PQ. (2) For which value(s) of x is $\frac{f(x)}{g(x)} \ge 0$? 5.7 (2)[18]

P.T.O.

Downloaded from Stanmore MATHEMATICS (PAPER 1)

6

QUESTION 6

Given: $k(x) = \frac{-4}{x+3} + 1$ and $h(x) = 2^{-x} - 4$

6.1	Write down the equations of the asymptotes of k .	(2)
6.2	Determine the x and y-intercepts of k .	(2)
6.3	Write down the equation of the asymptote of h .	(1)
6.4	Sketch the graph of k and h on the same axes. Clearly indicate ALL intercepts with the axes as well as the asymptotes.	(4)
6.5	If $p(x) = 3h(x)$, write down the equation of the asymptote of p.	(1)
6.6	Write down the equation of q , the reflection of h in the y-axis.	(1)
6.7	Determine the <i>x</i> -values for which $h(x) - q(x) = 0$	(1) [12]
	TOTAL:	100

Downloaded from Stanmorephysics.com

PROVINCIAL EXAMINATION

JUNE 2024

GRADE 11

MARKING GUIDELINES

MATHEMATICS (PAPER 1)

11 pages

INSTRUCTIONS AND INFORMATION

A – ACCURACY CA. – CONTINUED ACCURACY

NOTE:

- If a candidate answerd a question TWICE, mark only the first attempt.
- If a candidate crossed OUT an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a problem is UNACCEPTABLE.

Downloaded from Stanmorep MARKING GU	IDELINES MATHEMATICS (PAPER 1)	GRADE 11

1.1	1.1.1	<i>x</i> < 9	✓ answer	(1)
				(1)
	1.1.2	x = 9	✓ answer	(1)
				(1)
	1.1.3	$\sqrt{(1)^2 + 4}$		
		$\sqrt{\frac{(1)^2 + 4}{9 - 1}}$		
		$\sqrt{\frac{5}{8}}$	✓ answer	
				(1)
		:.Irrational		(1)
	1.1.4	x = 0	✓ answer	
				(1)
1.2	1.2.1	$2x^2 - 3x - k = 0$		
		$2x^2 - 3x - 5 = 0$		
		(2x-5)(x+1) = 0	✓ factors	
		$\therefore x = \frac{5}{2} \cdots of \cdots x = -1$		
		$\dots x = \frac{1}{2} \dots y \dots x = -1$	✓ answer	
				(2)
	1.2.2	$2x^2 - 3x - 4 = 0$		
		$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-4)}}{2(2)}$	✓ substitution	
		$x = \frac{2(2)}{2(2)}$		
		$\therefore x = 2,35 \cdots of \cdots x = -0,85$	✓✓ answer	
		NOTE: Penalise 1 mark for incorrect rounding in this question ONLY.		(3)
				(-)
1.3	1.3.1	$x - 4 = -\sqrt{x - 2}$		
		$16-8x-x^2 = x-2$	\checkmark square both sides	
		$x^2 - 9x + 18 = 0$	✓ standard form	
		(x-6)(x-3) = 0	✓ factors	
		$x = 3$ of $x \neq 6$		
			✓ critical values	
			✓ rejection	(5)

Downloaded from Stanmorephysics. Com The MATHEMATICS (PAPER 1)

GRADE 11

$\begin{array}{ c c c c c c c c c } \hline 1.3.2 & x^2 + 4 > 3x + 2 & & & \\ & x^2 - 3x + 2 > 0 & & & \\ & (x-2)(x-1) > 0 & & & + & & \\ & x < 1 \text{ or } x > 2 & & & + & & \\ & & & & & & & \\ & & & & &$	 ✓ standard form ✓ factors ✓ √ answers
$x \in (-\infty; 1) \cup (2; \infty)$	(4)
1.4 $y+2=2x$ $\therefore y = 2x-2\dots(1)$ $2x^2 = 2-y^2\dots(2)$	\checkmark y as subject
$\therefore 2x^{2} = 2 - (2x - 2)^{2}$ $2x^{2} = 2 - (4x^{2} - 8x + 4)$ $2x^{2} = 2 - 4x^{2} + 8x - 4$	✓ substitution
$\therefore 6x^2 - 8x + 2 = 0$	
$\therefore 3x^2 - 4x + 1 = 0$	\checkmark standard form
(3x-1)(x-1) = 0	✓ factors
$\therefore x = \frac{1}{3} \cdots of \cdots x = 1$	✓ both x- values
$\therefore y = -\frac{4}{3} \cdots of \cdots y = 0$	\checkmark both y- values
\mathbf{OR} $y+2=2x$	OR
$\therefore x = \frac{y+2}{2} \dots \dots (1)$ $2x^2 = 2 - y^2 \dots \dots (2)$	$\checkmark x$ as subject
$\therefore 2(\frac{y+2}{2})^2 = 2 - y^2$	\checkmark substitution
$2(\frac{y^2 + 4y + 4}{4}) = 2 - y^2$	
$\therefore (\frac{y^2 + 4y + 4}{2}) = 2 - y^2$	
$\therefore y^2 + 4y + 4 = 4 - 2y^2$ $\therefore 3y^2 + 4y = 0$	✓ standard form
$ \begin{array}{c} \dots 5y + 4y = 0 \\ y(3y + 4) = 0 \end{array} $	
$\therefore y = 0 \cdots of \cdots y = -\frac{4}{3}$	✓ factors✓ both <i>y</i>-values
$\therefore x = 1 \cdots of \cdots x = \frac{1}{3}$	✓ both <i>x</i> -values (6)
1.5 1.5.1 For unequal roots: $\Delta > 0$	✓ condition of Δ

Downloaded fr	rom Stanmorep	hysics.c	MATHEMATICS	
	MARKING GU	IDELINES	(PAPER 1)	GRADE 11

		$\therefore 2x^{2} - 4x + (3 - p) = 0$ $\Delta = b^{2} - 4ac$ $\therefore \Delta = (-4)^{2} - 4(2)(3 - p)$ $\Delta = 16 - 24 + 8p$ $\therefore \Delta = -8 + 8p$ $\therefore -8 + 8p > 0$ $8p > 8$	 ✓ substitution into Δ ✓ expression for Δ 	(4)
		$\therefore p > 1$	✓ answer	
	1.5.0	From 151		
	1.5.2	From 1.5.1 $3-p > 0 \cdots (a > 0 \cdots and \cdots b < 0)$ $\therefore -p > -3$	✓ $c > 0$ ✓ answer	
		$\therefore 1NOTE: Any other valid method$		(2)
		NOTE. Any other value include		(2)
1.6	$\therefore (p^2 +$	$)x^{2} = -2pqx - q^{2}$ -1)x ² + 2pqx + q ² = 0 $pq)^{2} - 4(p^{2} + 1)q^{2}$	• standard form • substitute into Δ	
	` 1	$^{2}q^{2}-4p^{2}q^{2}-4q^{2}$	✓ simplification ✓ expression for Δ	
	$\therefore -4q^2$	$0, \dots q \in \Re; \dots q \neq 0$ < 0 as non-real	✓ explanation	(5)
				[35]

Downloaded from	Stanmorephysics.c MARKING GUIDELINES	MATHEMATICS	
	MARKING GUIDELINES	(PAPER 1)	GRADE 11

2.1	2.1.1	$(2^{-1}+3^{-1})^2$		
			\checkmark converting exponents	
		$=(\frac{1}{2}+\frac{1}{3})^{2}$		
		$=(\frac{3+2}{2})$		
			✓ simplification	
		$= (\frac{3+2}{6})$ = $(\frac{5}{6})^2$	· simplification	
			✓ answer	
		$=\frac{25}{36}$	✓ answer	(3)
	2.1.2			
		$2^{x} \cdot 2^{x}$		
		$=\frac{2.4^{x}.4^{2}-4^{x}.4^{-3}}{4^{x}}$		
		$=\frac{4^{x}(32-\frac{1}{64})}{4^{x}}$	✓ ✓ factors	
		$=32-\frac{1}{64}$		
		$=\frac{2.048-1}{64}$		
		$=\frac{2.047}{64}$	✓ answer	
		NOTE: Accept $31\frac{63}{64}$		(3)
	2.1.3	$3^{2}[\sqrt{12} + \sqrt[3]{(3\sqrt{3})}]$		
		$=3^{-\frac{1}{2}}[2\sqrt{3}+(3\sqrt{3})^{\frac{1}{3}}]$		
		$= 3^{-\frac{1}{2}} [2 \cdot 3^{\frac{1}{2}} + 3^{\frac{1}{3}} \cdot 3^{\frac{1}{6}}]$	✓ simplify brackets	
			\checkmark surds as rational	
		$=3^{-\frac{1}{2}}[2.3^{\frac{1}{2}}+3^{\frac{1}{2}}]$	exponents	
		$=3^{-\frac{1}{2}}.3^{\frac{1}{2}}(2+1)$		
		$=3^{\circ}(3)$	✓ factors	
		=3	,	
			✓ answer	(4)

Downloaded from Stanmorephysics. Comathematics MARKING GUIDELINES (PAPER 1)

GRADE 11

	1		1		1
	2.2.1	$2x^{\frac{3}{4}} = 16$			
		$\therefore x^{\frac{3}{4}} = 8$			
		$\therefore x^{\frac{3}{4}\times\frac{4}{3}} = 8^{\frac{4}{3}}$	\checkmark	method	
		$\therefore x = (\sqrt[3]{8})^4$	\checkmark	x as subject	
		$\therefore x = 16$	~	answer	
		NOTE: Any other valid method.			(3)
		TOTE. Any other valid method.			
	2.2.2	$5^{x+1} + 5^x = 150$			
		$5^x \cdot 5^1 + 5^x = 150$			
		$\therefore 5^x (5^1 + 1) = 150$	✓	factors	
		$\therefore 5^{x}(6) = 150$			
		$5^{x} = 25$	~	simplification	
		$\therefore 5^x = 5^2$	~	25 as base of 5	
		$\therefore x = 2$	· ✓	answer	(4)
		NOTE: Any other valid method.	ľ	answei	(4)
2.3	$9-\sqrt{2}$	54			
	$6\sqrt{2}$				
	$=\frac{(9-1)^{10}}{100}$	$\frac{-\sqrt{9.2.3}}{6\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$		$\sqrt{2}$	
		$6\sqrt{2}$ $\sqrt{2}$	v	$\times \frac{\sqrt{2}}{\sqrt{2}}$	
	$=\frac{9\sqrt{2}}{2}$	$\frac{\overline{2}-3\sqrt{2}.\sqrt{3}.\sqrt{2}}{6.2}$			
			~		
	$=\frac{9\sqrt{2}}{2}$	$\frac{\overline{2} - 3.2\sqrt{3}}{12}$	v	simplification	
	2(2	$\frac{12}{\sqrt{2}}$ 2 $\sqrt{3}$			
	$=\frac{3(3)}{3}$	$\frac{\sqrt{2}-2\sqrt{3}}{12}$	~	factorisation	
	3√	$\frac{\sqrt{2} - 2\sqrt{3}}{12}$ $\frac{12}{2 - 2\sqrt{3}}$			
	=	4			(3)
			1		[20]

Downloaded from	Stanmorephysics.c	MATHEMATICS	
	MARKING GUIDELINES	(PAPER 1)	GRADE 11

3.1	$T_4 = -17$	✓ answer	(1)
3.2	$T_n = -7n + 11$	✓ answer	(1)
3.3	$T_n = -7n + 11$		
	$\therefore -227 = -7n + 11$	\checkmark substitute T_n	
	-238 = -7n		
	$\therefore n = 34$	✓ answer	(2)
3.4	2a = -7 $a = -\frac{7}{2}$ ∴ maximum NOTE: Any other valid method.	✓ value for <i>a</i>✓ conclusion	(2)
			[6]

4.1	$\begin{array}{c} 69 & 0 & -63 & T_4 \\ -69 & -63 & -57 \\ next term (T_4) is: -120 \end{array}$	✓ answer	(1)
4.2	$T_{n} = an^{2} + bn + c$ $\therefore T_{2} = a(2)^{2} + b(2) + c = 4a + 2b + c$ $\therefore T_{1} = a(1)^{2} + b(1) + c = a + b + c$ $\therefore T_{2} - T_{1} = 3a + b$ 2a = 6 $\therefore a = 3$ 3a + b = -69 3(3) + b = -69 9 + b = -69 $\therefore b = -78$ a + b + c = 69 3 + (-78) + c = 69 $\therefore c = 144$ $\therefore T_{n} = 3n^{2} - 78n + 144$	 ✓ 2nd difference ✓ value for a ✓ value for b ✓ value for c 	(4)

Downloaded from	Stanmorephysics.c MARKING GUIDELINES	MATHEMATICS	
	MARKING GUIDELINES	(PAPER 1)	GRADE 11

4.3	Smallest term (minimum) is at the turning point of the			
	quadratic equation:			
	$\therefore n = \frac{-b}{2a} = \frac{-(-78)}{2(3)} = \frac{78}{6} = 13$	\checkmark	substitute into A.O.S	
		\checkmark	value for <i>n</i>	
	$T_n = 3n^2 - 78n + 144$			
	$\therefore T_{13} = 3n^2 - 78n + 144$			
	$T_n = 3n^2 - 78n + 144$ $\therefore T_{13} = 3n^2 - 78n + 144$ $\therefore T_{13} = 3(13)^2 - 78(13) + 144$	~	substitution	
	$\therefore T_{13} = -363$	~	answer	(4)
				[9]

5.1	The points $A(-4; 0)$ and $B(0; 8)$ lie on g.		
	$m_{AB} = \frac{8 - 0}{0 - (-4)}$ $m_{AB} = 2$ $y = mx + c$	 ✓ substitute for m_{AB} ✓ value of m_{AB} 	
	$\therefore 8 = 2(0) + c \cdots A(0;8)$ $\therefore c = 8$	✓ value of c	
	$\therefore g(x) = 2x + 8$ NOTE: Any other valid method.		3)
			5)
5.2	$f(x) = a(x - x_1)(x - x_2)$		
	f(x) = a(x+4)(x-2)	\checkmark substitute points A	
	subst (0;8)	and C	
	8 = a(0+4)(0-2)		
	8 = a(-8)	\checkmark value of a	
	a = -1	\checkmark value of <i>a</i>	
	f(x) = -(x+4)(x-2)		
	$f(x) = -(x^2 + 2x - 8)$		
	$f(x) = -x^2 - 2x + 8$	\checkmark standard form (A)	
	$\therefore a = -1$		
	b = -2	\checkmark value of b	
	<i>c</i> = 8	✓ value of c (5	5)

Downloaded ⁻	from	Stanmorephysics. MARKING GUIDELINES	MATHEMATICS	
		MARKING GUIDELINES	(PAPER 1)	GRADE 11

	·		[18]
5.7	$x \le 2$; $x \ne -4$	$\checkmark \checkmark$ answer (A)	(2)
	$\therefore PQ = 3$		(2)
	$\therefore PQ = 9 - 6$	✓ answer	
	g(-1) = 6		
	<i>DP</i> (-1;9)	✓ using TP and $g(-1)$	
	OR	OR	
	$\therefore PQ = 3$	✓ answer	
	$\therefore PQ = 9 - 6$		
	$\therefore f(-1) - g(-1)$		
	g(-1) = 6	g(-1) = 6	
5.6	f(-1) = 9	✓ $f(-1) = 9$ and	
	$\dots y = -\frac{1}{2}x + 1$	✓ answer	(3)
	$\therefore y = -\frac{1}{2}x + 1$		
	$\therefore y - 0 = -\frac{1}{2}(x - 2)$	✓ substitute point C	
	$ m_p = -\frac{1}{2} y - y_1 = m(x - x_1) $	ν	
	$\therefore m_p = -\frac{1}{2}$	$\checkmark m_p$	
5.5	$m_g = 2$		
5.4	<i>y</i> ≤ 9	✓ answer	(1)
	NOTE. Any other value method.		(2)
	$\therefore f(-1) = 9$ NOTE: Any other valid method.		(2)
	$\therefore f(-1) = -(-1)^2 - 2(-1) + 8$	\checkmark correct substitution	
	$\therefore x = -1$		
	$\therefore x = \frac{-b}{2a} = \frac{-(-2)}{2(-1)}$	\checkmark correct substitution	
	$f(x) = -x^2 - 2x + 8$		

6.1	x = -3 y = 1	✓ ✓	answer answer	(2)

Downloaded from	Stanmorephysics. C	MATHEMATICS	
	MARKING GUIDELINES	(PAPER 1)	GRADE 11

6.2	$f(x) = \frac{-4}{x+3} + 1$ $0 = \frac{-4}{x+3} + 1$ $-1 = \frac{-4}{x+3}$ $-x-3 = -4$ $-x = -1$ $\therefore x = 1$ $y = \frac{-4}{0+3} + 1$ $y = \frac{-4}{3} + 1$ $\therefore y = -\frac{1}{3}$	 ✓ x-intercept ✓ y- intercept 	(2)
6.3	<i>y</i> = -4	✓ answer	(1)
6.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 ✓ shape of k ✓ k and h intercepts ✓ asymptotes k and h ✓ shape of h 	(4)
6.5	p(x) = 3h(x) $\therefore p(x) = 3(2^{-x} - 4)$ $\therefore p(x) = 3 \cdot 2^{-x} - 12$ asymptote: $y = -12$ NOTE : Answer only, full marks.	✓ answer	(1)
6.6	$q(x) = 2^x - 4$	✓ answer	(1)
6.7	<i>x</i> = 0	✓ answer	(1) [12]