Downloaded from Stanmorephysics.com

PROVINCIAL EXAMINATION

NOVEMBER 2022

GRADE 11

MATHEMATICS

(PAPER 1)

TIME: 3 hours

MARKS: 150

9 pages

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. Answer ALL the questions.
- 2. This question paper consists of 9 questions.
- 3. Present your answers according to the instructions of each question.
- 4. Clearly show ALL calculations, diagrams, graphs etc., which were used in determining the answers.

(PAPER 1)

- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, answers should be rounded-off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Number the questions correctly according to the numbering system used in this question paper.
- 10. Write neatly and legibly.

Downloaded from Stanmore MATHEMATICS (PAPER 1)

GRADE 11

3

QUE	STION	A Contraction of the second seco	
1.1	Given:	$\sqrt{3-x} = 2x - 3.$	
		If $x \in \{$ Natural Numbers $\}$, determine the value(s) of x for which $\sqrt{3-x}$ is a rational number.	(2)
[1.1.2	If $x \in \{\text{Real Numbers}\}$, prove that $1,5 \le x \le 3$.	(3)
1.2	Solve f	for the values of a and b:	
	(3a - 8)	b)(2b+7) = 0	(2)
1.3	Solve f	for x:	
	1.3.1	$4x^2 - 20x + 1 = 0$ (correct to TWO decimal places)	(3)
	1.3.2	(x+1)(x-3) > 12	(4)
	1.3.3	$x - \sqrt{5 + x} = 7$	(5)
1.4	If $x = 3$	B and $y = a$ satisfy the equations $x - y = 1$ and $x^2 - 3xy + by^2 = -5$,	
	Determ	nine:	
	1.4.1	The values of <i>a</i> and <i>b</i> .	(4)
	1.4.2	The other solution to the equations if ONE solution is (3; 2).	(6)
1.5	Given:	$(p+1)x^2 + 2px + (p+2) = 0$	
	1.5.1	Determine the value of p if the roots of the equation are equal.	(4)
	1.5.2	Determine the value(s) of $p, p \neq -1$, so that the above equation has roots which are real, rational and unequal.	(2) [35]

Р.Т.О.

Downloaded from Stanmore MATHEMATICS (PAPER 1) GRADE 11

QUESTION 2

2.1 Simplify WITHOUT the use of a calculator:

$$2.1.1 \left(\frac{1}{3^{n-1}} \cdot \frac{1}{3^{n+1}}\right)^{\frac{1}{n}}$$

$$2.1.2 \quad \sqrt[3]{27^2} - \frac{2}{8^{-\frac{2}{3}}} + \frac{5\sqrt{2}}{4^{-\frac{2}{5}}}$$
(3)
(3)

2.2 Solve for *x*:

$$3^{2-x} + 8 = 3^x \tag{4}$$
[11]

QUESTION 3

A packer packs cans into a pyramid.

The cans above are numbered forming a pattern from the FIRST number in each row.

This pattern is illustrated below.

ROW 1				1			
ROW 2			2	3	4		
ROW 3		5	6	7	8	9	
ROW 4	10	11	12	13	14	15	16

3.1	Determine an expression for the FIRST value in the n^m row of the pattern in the form $T_n = an^2 + bn + c$.	(4)
3.2	Write down the number of the first can in the 50^{th} row	(2)
3.3	In which row will the LAST numbered can be 121?	(2)
3.4	If this pattern continues consistently, which row would have 241 cans?	(3) [11]

4

GRADE 11

5

(4)

(3)

Downloaded	from	Stanmore physics com
		(PAPER 1)

QUESTION 4

Given the quadratic pattern: 4

- ; 9 ; x ; 37 ;... 4.1 Calculate the value of x.
- 4.2 If x = 20, calculate between which two terms of the quadratic pattern will the FIRST difference be 599? (4)
- An expression for the n^{th} term in the pattern can be written in the form $T_n = an^2 + bn + c$. 4.3
 - 4.3.1 State whether the turning point of T_n is a local minimum or local maximum value. Substantiate your answer. (3)
 - If $T_n = 3n^2 4n + 5$, determine the range of T_n . 4.3.2
- 4.4 If it is given that in the above pattern:
 - The equation of the FIRST differences is $T_n = 6n 1$. The quadratic equation is $T_n = 3n^2 4n + 5$. •
 - •

5.1	Calcula monthl	te the effective interest rate, if the nominal interest rate is 13,5% compounded y.	(4)
5.2	Using s to R7 5	timple interest, how long would it take (to the nearest month) for R6 800 to grow 00 at an interest rate of 7,5% per annum?	(3)
5.3	Simone compou	e invested R5 000 into a savings account with an interest rate of 5% per annum, unded semiannually. How much will Simone have after 6 years?	(3)
5.4	Given:	A = P(1 + in) where P and i are positive constants.	
	5.4.1	State whether the graph of A , as a function of n , is linear, quadratic, exponential or none of these.	(1)
	5.4.2	Draw a possible graph of <i>A</i> , as a function of <i>n</i> in your ANSWER BOOK.	(2)
	5.4.3	If <i>n</i> increases by 1, determine the increase in <i>A</i> .	(1) [14]

Determine if there is a possible common value for *n* in both patterns. Support your answer with an appropriate calculation. (3)[17]

Downloaded from Stanmore Division Stanmore Divisio Stanmore Divisio Stanmore Divisio Stanmore Divisio

(PAPER 1)

GRADE 11

6

QUE	STION 6	
Giver	$f(x) = \frac{2}{x-2} + 1 \text{ and } g(x) = \left(\frac{1}{2}\right)^x - 1$	
6.1	Write down the equations of the asymptotes of f .	(2)
6.2	Write down the equation of the asymptote of g.	(1)
6.3	On the same set of axes, sketch the graphs of f and g in your ANSWER BOOK. Indicate clearly all intercepts with the axes as well as the asymptotes.	(4)
6.4	Write down the domain of f .	(1)
6.5	Write down the range of <i>g</i> .	(1)
6.6	Determine the equation of h , the axis of symmetry of f , which has negative gradient.	(2)
6.7	Describe how the graph of $p(x) = \frac{2}{x}$ was transformed to obtain <i>f</i> .	(2)
6.8	Calculate the distance between the intersection of f with g , and the intersection of the asymptotes of f .	(2)
6.9	The graph of g intersects f at the point $K(0; 0)$.	
	Determine <i>K</i> ', the point of intersection of $f(x-3)$ and $g(x-3)$.	(2)
6.10	For which values of x is: $f(x) \cdot g(x) \ge 0$?	(1)

6.10 For which values of x is: $f(x).g(x) \ge 0$?

[18]

GRADE 11

QUESTION 7

The graphs of $f(x) = ax^2 + bx + c$ and g(x) = mx + q are sketched below.

- The x-intercepts of f are at (1; 0) and (3; 0).
- The y-intercept of f is (0; 4).
- Point D is the turning point of f.
- The x-intercept of g is at (-8; 0).
- The graphs of f and g intersect at points K and (0; 4).

7.1	Determine the equation of f in the form $y = ax^2 + bx + c$.	(3)
7.2	Determine the coordinates of point D.	(3)
7.3	Determine the equation of a line p , which is perpendicular to g , passing through point D.	(5)
7.4	Calculate the size of $K\hat{R}O$. (correct to TWO decimal places)	(2)
7.5	Determine the coordinates of point K.	(4)

7.6 Write down the values of *x* for which:

> 7.6.1 f(x) < 0

7.6.2 $\frac{f(x)}{g(x)} \ge 0$

7.7 When the graph of f is shifted 3 units down and 2 units to the right it forms the graph of h. Write down the equation of *h* in the form $h(x) = a(x-p)^2 + q$. (2)

7.8 The graph of j(x) = ax - 8 is such that it passes through the point (-4; 0).

7.8.1	Determine the value of <i>a</i> .	(2)
7.8.2	Describe the transformation of the graph of g to j.	(1)

[25]

(1)

(2)

8

QUESTION 8

The Venn diagram below shows the number of learners in a grade 11 class who passed Mathematics (M) and Physical Sciences (S).

9

9.1 A supermarket conducted a survey on its service to customers. This was done on a Wednesday morning. The survey indicated that 78% of the customers were satisfied with the service offered and 90% agreed that the supermarket was a stress-free environment to do shopping. The total number of customers interviewed was 130. 9.1.1 Would you agree that the supermarket can regard the findings of the survey as reliable? Motivate your answer. (2)9.1.2 Give ONE recommendation to the supermarket on using surveys to gather information regarding its customer service. (1)9.2 Three cards are selected at random (WITHOUT replacement) from a standard full pack of playing cards. There are 52 cards in the pack, jokers are excluded. Determine the probability that the cards are all the same colour. (5)[8] **TOTAL:** 150

Downloaded from Stanmorephysics.com

PROVINCIAL EXAMINATION NOVEMBER 2022 GRADE 11 MARKING GUIDELINES

MATHEMATICS (PAPER 1)

19 pages

Downloaded from Sta

)	tanmore	Σhγ	/SI	CS.	COI	m
	MARKING	GĬ	JID	ELI	NES	5

MATHEMATICS (PAPER 1)

QUE	QUESTION 1				
1 1		When $y = 2$ and when $y = 2$			
1.1	1.1.1	when $x = 2$ and when $x = 3$			
		$\sqrt{3-x}$ $\sqrt{3-3}$			
	<u> </u>	$\sqrt{3-2}$ $\sqrt{0}$			
		$\sqrt{1}$ = 0			
		= 1			
		$\therefore x = 2 or x = 3$	✓ ✓ answers	(2)	
	1.1.2	$\sqrt{3-x} = 2x - 3$			
		$\therefore 3 - x \ge 0$ and $2x - 3 \ge 0$	✓ setting up correct		
		$\therefore -x \ge -3$ and $2x \ge 3$	mequanties		
		$\therefore x \le 3 and x \ge \frac{3}{2}$	✓✓ answers		
		$\therefore \frac{3}{2} \le x \le 3$			
		NOTE: Answer can be written as separate inequalities.			
		OR			
		3			
		answers are: $x = -4$ or $x = 2$, the answer			
		of $x = \frac{3}{4}$ must be rejected to obtain $\frac{3}{3}$, but			
		if not rejected, award $\frac{2}{3}$.		(3)	
1.2	(2 a	(2b + 7) = 0			
1.2	(3u - c)	$5/(20 \pm 1) = 0$			
	∴ 3a-	-8 = 0 or $2b + 7 = 0$			
	∴ <i>a</i> =	$\frac{8}{3}$	✓ value of a		
	∴ <i>b</i> =	$-\frac{7}{2}$	✓ value of b	(2)	

MATHEMATICS (PAPER 1)

GRADE	11

1.2	121	1^{2} 20 1^{1} 0		
1.3	1.3.1	$4x^2 - 20x + 1 = 0$		
		$-b+\sqrt{b^2-4ac}$		
		$x = \frac{b \pm \sqrt{b}}{2a}$		
	Æ	$(-(-20) \pm \sqrt{(-20)^2 - 4(4)(1)})$	\checkmark substitution	
		$x = \frac{1}{2(4)}$		
		$x = \frac{20 \pm \sqrt{384}}{\sqrt{384}}$		
		8		
		x = 4.95 or $x = 0.05$	d d anomara	
		x = 4,95 or $x = 0,05$	• • answers	
		NOTE: Penalise one mark for incorrect rounding-off		
		in this question ONLY.		(3)
	1.3.2	(x+1)(x-3) > 12		
	1.5.2			
		$x^2 - 2x - 3 > 12$		
		$x^2 - 2x - 15 > 0$	\checkmark standard form	
		(x-5)(x+3) > 0	✓ factors	
		+1 - 1 +		
		-3 5		
		U		
		$\therefore x > 5 or x < -3$	✓✓ answers	(4)
	1.2.2			
	1.5.5	$x - \sqrt{5} + x = 7$	LOOI	
		$r - 7 - \sqrt{5 + r}$		
		$(x-7)^2 = (\sqrt{5+x})^2$	\checkmark squaring both sides	
		$x^2 - 14x + 49 = 5 + x$	\checkmark simplification	
		$x^2 - 15x + 44 = 0$	✓ standard form	
		(x-4)(x-11) = 11	✓ factors	
		$x = 11$ or $x \neq 4$	✓ answers with rejection	(5)

MATHEMATICS (PAPER 1)

	6			
1.4	1.4.1	x=3 and $y=a$		
		x - y = 1		
	1	3 - a = 1		
		$\therefore a = 2$		
		$but x^2 - 3xy + by^2 = -5$	\checkmark value of <i>a</i>	
		$\therefore 3^2 - 3(3)(2) + b (2)^2 = -5$	\checkmark substitute for <i>x</i> and <i>y</i>	
		$\therefore 9-18+4b=-5$		
		$\therefore 4b = 4$	\checkmark simplification	
		$\therefore b = 1$	\checkmark value of b	(4)
	140			
	1.4.2	x - y = 1		
		$\therefore x = y + 1(1)$	$\checkmark x$ as subject	
		$x^2 - 3xy + y^2 = -5(2)$		
		$\therefore (y+1)^2 - 3y(y+1) + y^2 = -5$	\checkmark substitute into (2)	
		$\therefore y^2 + 2y + 1 - 3y^2 - 3y + y^2 = -5$		
		$\therefore -y^2 - y + 6 = 0$	\checkmark standard form	
		$\therefore y^2 + y - 6 = 0$	✓ factors	
		$\therefore (y+3)(y-2) = 0$		
		$\therefore y = -3 or y = 2$	✓ y-values	
		$\therefore x = -2$ or $x = 3$	✓ x-values	
		The other solution: $(-2; -3)$		
		NOTE: Candidates do not have to write the answer in coordinate form.		(6)
		NOTE: Candidates do not have to write the answer in coordinate form.		(

	Dow	alaadad from (1	
	DOWI		MARKING GUIDELINES	MATHEMATICS (PAPER 1)	GRADE 11
	~				
1.5	1.5.1	$(p+1)x^2 + 2px + (p+1)x^2 + 2px + 2p$	(-2) = 0		
		$\Delta = b^2 - 4ac$			
		$\Delta = (2p)^2 - 4(p+1)(p+1)(p+1)(p+1)(p+1)(p+1)(p+1)(p+1)$	(v + 2)	\checkmark substitution for Δ	
		$\Delta = 4p^2 - 4p^2 - 12p -$	8		
		$\Delta = -12p - 8$		\checkmark expression for Δ	
		For equal roots,			
		$\Delta = 0$		\checkmark condition for Δ	
		-12p-8=0			
		$\therefore p = -\frac{8}{12}$			
		$\therefore p = -\frac{2}{3}$		✓ answer	(4)
	1.5.2	$\Delta > 0$		\checkmark condition of Δ	
		$\therefore -12p-8 > 0$			
		$\therefore p < -\frac{2}{3}$		✓ answer	(2)
				•	[35]

Downloaded from Stanmorephysics.com

MATHEMATICS (PAPER 1)

QUESTION 2					
2.1	2.1.1	$\frac{(1)^{n-1}}{(3^{n+1})^{n-1}} \cdot \frac{1}{3^{n+1}} + \frac{1}{3^{n-1}} + \frac{1}{3^{n-1}$	√ simplification		
		$= (3^{-2n})^{\frac{1}{n}}$	simplification		
		$= 3^{-2}$	✓ simplification		
		$=\frac{1}{9}$	✓ answer		
		NOTE: Any other valid method.		(3)	
	2.1.2	$-\sqrt[3]{27^2} - \frac{2}{8^{-\frac{2}{3}}} + \frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}}$			
		$= [(3^{3})^{2}]^{\frac{1}{3}} - \frac{2}{(2^{3})^{-\frac{2}{3}}} + \frac{2^{\frac{1}{5}}}{(2^{2})^{-\frac{2}{5}}}$	✓ simplification		
		$= 3^2 - \frac{2}{2^{-2}} + \frac{2^{\frac{1}{5}}}{2^{-\frac{4}{5}}}$	✓ simplification		
		$=9-2^3+2^1$	✓ simplification		
		= 3	✓ answer		
		NOTE: Any other valid method.		(4)	

MATHEMATICS (PAPER 1)

GRADE 11

2.2	$3^{2-x} + 8 = 3^x$		
	$3^2 \cdot 3^{-x} + 8 = 3^x$		
	$\frac{9}{3^x} + 8 = 3^x$	✓ simplification	
	$9 + 8.3^x = 3^{2x}$		
	$3^{2x} + 8.3^x - 9 = 0$	✓ standard form	
	$(3^x - 9)(3^x + 1) = 0$	✓ factors	
	$3^x = 9$ or $3^x = -1$		
	$3^x = 3^2 or NA$	\checkmark answer with rejection	
	$\therefore x = 2$		
	NOTE: Any other valid method.		(4)
	· · ·	·	[11]

2.1	1 . 2 . 5 . 1	0			
3.1	1;2;5;1	0			
	+1 +3 +5				
	+2 +2			2^{nd} difference	
	2a = 2	3a + b = 1	a+b+c=1	\checkmark value of a	
	<i>a</i> = 1	3(1) + b = 1	1 - 2 + c = 1	\checkmark value of <i>b</i>	
		<i>b</i> = -2	c = 2	\checkmark value of c	
	\therefore $Tn = n^2 - 2n$	<i>n</i> +2			
	NOTE: No	penalty if not writt	en as an equation.		(4)
3.2	$T_{50} = 50^2 - 2(5)$	50) + 2		✓ substitution	
	$T_{50} = 2402$			✓ answer	(2)
3.3	ROW 11			✓✓ answer	(2)

Downloaded from Stanmorephysics.com MARKING GUIDELINES (PAPER 1) GRADE 11

3.4	1;3;5;7		
	+2 +2 +2		
	Tn = 2n - 1	\checkmark correct equation	
	241 = 2n - 1	\checkmark <i>Tn</i> = 241	
	n = 121	✓ answer	(3)
			[11]

4.1	4 ; 9 ; <i>x</i> ; 37		
	5; $x-9$; $37-x$	$\checkmark 1^{st}$ differences	
	x-9-5; $37-x-(x-9)$	✓ 2^{nd} differences	
	x - 14; $46 - 2x$		
	x - 14 = 46 - 2x	✓ equating	
	$\therefore 3x = 60$		
	$\therefore x = 20$	✓ answer	(4)
4.2	5; 11; 17; (first differences)		
	$T_n = 6n - 1$	\checkmark correct equation	
	599 = 6n - 1	✓ equating	
	600 = 6n		
	n = 100	\checkmark value of <i>n</i>	
	\therefore Between 100 th and 101 th terms	✓ conclusion	(4)

MATHEMATICS (PAPER 1)

	1			
4.3		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ 2^{nd} difference	
		a = 3 $\therefore Tn = 3n^2 + bn + c$	✓ value of a	
		Since the <i>a</i> -value is positive, T_n has a MINIMUM value.	✓ conclusion	(3)
	4.3.2	$y = 3n^2 - 4n + 5$		
		$\therefore x = \frac{-(-4)}{2(3)}$		
		$\therefore x = \frac{4}{6}$	✓ value of x	
		$\therefore x = \frac{2}{3}$		
		$\therefore f\left(\frac{2}{3}\right) = \frac{11}{3}$	✓ value of $f\left(\frac{2}{3}\right)$	
		\therefore range: $y \ge \frac{11}{3}$	✓ answer	
		$y \in [\frac{11}{3}; \infty)$		
		NOTE: Correct brackets must be used to obtain the answer mark in option 2. This is a theoretical solution as it is understood that a number pattern is composed of terms which are indicated as natural numbers.		(3)

	<u> </u>	0			
Downloaded	trom	Stanmoren	hvsics.com		
Dominoadod				MATHEMATICS	
		MARKING	GUIDELINES	$(\mathbf{D} \wedge \mathbf{D} \mathbf{E} \mathbf{D} 1)$	CDADE 11
				(PAPER I)	GKADE II

4.4	For <i>n</i> to be common to both patterns:		
	$6n - 1 = 3n^2 - 4n + 5$	✓ equating	
	$\therefore 0 = 3n^2 - 10n + 6$		
C	$\therefore n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$\therefore n = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(6)}}{2(3)}$		
	$\therefore n = \frac{5 \pm \sqrt{7}}{3}$	✓ simplification	
	\therefore NO, <i>n</i> is not a Natural Number.	✓ conclusion	(3)
			[17]

QUESTION 5

5.1	$1 + i_{effective} = (1 + i_{nominal})^n$		
	$\therefore i_{nominal} = \frac{0,135}{12}$	✓ i _{nominal}	
	$\therefore 1 + i_e = (1 + \frac{0,135}{12})^{12}$	 ✓ correct substitution into correct formula 	
	$\therefore 1+i_e=1,14$		
	$\therefore i_e = 0,14$	• simplification i_e	
	$\therefore i_e = 14\%$	✓ answer	(4)

MATHEMATICS (PAPER 1)

	6	2		
5.2	$A = P($ $\therefore 75($ $\frac{.75}{.68})$	1 + in) $00 = 6\ 800(1 + 0,075n)$ $\frac{00}{00} - 1 = 0,075n$	 ✓ substitution into correct formula 	
	$\therefore 0,07$ $\therefore n =$	5n = 0,10 1,333 yrs	✓ value of n	
	$ \therefore n = \\ \therefore n = \\ \therefore n \approx $	1,333(12) 15,996 16 mnths	✓ answer	
	NOTE	C: The answer mark is for 16 months.		(3)
5.3	Compo	ounded semiannually for 6 years.		
	∴ <i>n</i> =	12	\checkmark value of <i>n</i> and <i>i</i>	
	∴ <i>i</i> =	$\frac{0.05}{2} = 0.025$		
	A = P($(1 + i)^n$		
	<i>A</i> = 5 0	$000(1+0,025)^{12}$	✓ substitution into correct formula	
	$\therefore A =$	R6 724,44	✓ answer	(3)
54	541	A = P(1 + in)		
J.T	5.7.1	A = P + Pin		
		∴ linear function	✓ answer	(1)
_				_

Downloaded from Stanmorephysics.com MARKING GUIDELINES (PAPER 1) GRADE 11

6			
5.4.2	$m = Pi$ $P > 0$ $i > 0$ $\therefore m > 0$ $A \uparrow 7$	 ✓ m > 0 ✓ shape (c > 0) 	
	P n \rightarrow n		(2)
5.4.3	n = 0:		
	A = P + Pi(0)		
	$\therefore A = P$		
	n=1:		
	A = P + Pi(1)		
	A = P + Pi		
	\therefore an INCREASE in <i>Pi</i>	✓ answer	
	NOTE: Answer only, full marks.		(1)
			[14]

MATHEMATICS (PAPER 1)

QUE	STION 6		
6.1	x = 200	✓ answer	
	y 1 1	✓ answer	(2)
6.2	y = -1	✓ answer	(1)
6.3	x = 1 x = -1 x = 2	 ✓ shape of <i>f</i> ✓ intercepts of <i>f</i> ✓ shape of <i>g</i> ✓ intercept of <i>g</i> 	(4)
6.4	$x \in R; x \neq 2$ or $x \in (-\infty; 2) \text{ or } (2; \infty)$	✓ answer	
	NOTE: Must state both conditions in option 1.		(1)
6 5			
0.5	y > -1 or		
	$y \in (-1;\infty)$	✓ answer	(1)
6.6	Point of intersection of asymptotes:		
	(2;1)		
	$y - y_1 = m(x - x_1)$		
	y - 1 = -1(x - 2)	✓ substitute <i>m</i> and pt (2; –1)	
	y = -x + 3	✓ answer	(2)
6.7	2 units to the right and 1 unit upwards	✓ units right✓ units up	(2)

Douvelooded	fice				
Downloaded	I r'Om	Stanmorephy	VSICS.COM	MATHEMATICS	
		MADVINC CI	IDEL INES	MATHEMATICS	
		MAKKING GU	JIDELINES	$(\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{F}\mathbf{D}1)$	CDADE 11
				$(\mathbf{I} \mathbf{A} \mathbf{I} \mathbf{E} \mathbf{K} \mathbf{I})$	GRADE II

			[18]
	$\left \begin{array}{c} x < 2 \end{array} \right $	✓ answer	(1)
0.10	$\int_{\Omega} x \in (-\infty, 2)$		
6 10	$r \in (\infty^2)$		
		✓ y-value	(2)
6.9	(3;0)	✓ <i>x</i> -value	
	No penalty for rounding-off incorrectly.		(2)
	NOTE: Answer only, full marks,		
	d = 2,24	✓ answer	
	$d = \sqrt{5}$		
	$u = \sqrt{(2-0)^2 + (1-0)^2} \dots (0,0)(2,1)^2$	• contect substitution	
	(0,0)(2,1)	a correct substitution	
0.0	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
68			

7.1	$y = a(x - x_1)(x - x_2)$		
	4 = a(0-1)(0-3)	\checkmark substitute roots and point (0; 4)	
	4 = 3a		
	$\therefore a = \frac{4}{3}$	✓ value for a	
	$y = \frac{4}{3}(x-1)(x-3)$		
	$y = \frac{4}{3}(x^2 - 4x + 3)$		
	$y = \frac{4}{3}x^2 - \frac{16}{3}x + 4$	✓ answer	(3)

	Downloaded from Stanmorephysics MARKING GUIDEL	. COM LINES	MATHEMATICS (PAPER 1)	GRAI	DE 11
7.2	$f(x) = \frac{4}{3}x^2 - \frac{16}{3}x + 4$ $x = \frac{-b}{2a}$ $x = \frac{-(-\frac{16}{3})}{2(\frac{4}{3})}$	✓ subs form	titution into correct		
	$\therefore x = 2$	✓ <i>x</i> -va	lue		
	$\therefore f(2) = \frac{4}{3}(2)^2 - \frac{10}{3}(2) + 4$				
	$\therefore f(2) = -\frac{1}{3}$	✓ y-va	lue		
	$D(2; -\frac{1}{3})$ NOTE: Answer does not have to be in coordinate				
	form.				(3)
7.3	$m_g = \frac{0-4}{-8-0} \cdots (0;4)(-8;0)$	✓ subs grad	titute correctly into ient formula		
	$\therefore m_g = \frac{1}{2}$	✓ valu	e of m_g		
	$\therefore m_p = -2$	✓ valu	e of m_p		
	$\therefore -\frac{4}{3} = -2(2) + c \cdots D(2; -\frac{4}{3})$	✓ subs	titute <i>m</i> and point D		
	$\therefore c = 4 - \frac{4}{3}$				
	$\therefore c = \frac{8}{3}$	✓ valu	e of c		
	$\therefore p(x) = -2x + \frac{8}{3}$				
	NOTE: Answer does not have to be an equation.				(5)

÷

		nloaded from Stanmorenhysics	COM	
		MARKING GUIDEL	INES MATHEMATICS	DF 11
			(rarek I) GRA	VE 11
7.4	m = ta	nθ		
	$\frac{1}{2} = t$	$an \theta$	$\checkmark \tan \theta = \frac{1}{2}$	
	θ=	26,57°	✓ answer	(2)
7.5	$\frac{4}{3}x^2$ -	$-\frac{16}{3}x + 4 = \frac{1}{2}x + 4$	✓ equating	
	$\frac{4}{3}x^2$ -	$-\frac{35}{6}x=0$		
	$x\left(\frac{4}{3}x\right)$	$-\frac{35}{6}\bigg) = 0$	✓ factors	
	<i>x</i> = 0	of $x = \frac{35}{8}$	✓ <i>x</i> -answers	
	$y = \frac{1}{2}$	$\left(\frac{35}{8}\right) + 4$		
	$y = \frac{99}{10}$	<u>)</u> 5	✓ <i>y</i> -answer from correct selection of <i>x</i> -value	
	$K\left(\frac{35}{8}\right)$	$\left(\frac{99}{16}\right)$		
	NOT	E: Answer does not need to be in coordinate form.		(4)
7.6	7.6.1	1 < x < 3	✓ answer	
		NOTE: Can be written as separate inequalities.		(1)
	7.6.2	$x \in (-8; 1] \text{ or } [3; \infty)$	✓ answer	
			✓ answer	
		NOTE: Penalise 1 mark if answer is not with correct brackets		
L		with concer blackets.		(4)

MATHEMATICS (PAPER 1)

:
(2)
(2)
(1)

QUE	ESTION	N 8		
8.1	Total :	= 13 + 7 + 24 + 3		
			<i>,</i>	
	Total :	= 47	✓ answer	(1)
8.2	8.2.1	$P(M) = \frac{13+7}{47}$		
		$P(M) = \frac{20}{47} \dots or \dots 0,43$	✓ answer	(1)
	8.2.2	$P(M \text{ and } S) = \frac{7}{47} \text{ or } 0.15$	✓ answer	(1)
	8.2.3	$P(\text{not } M \text{ or } S) = \frac{3}{47} \text{ or } 0,06$	✓ answer	(1)

	DOW	MARKING GUIDE	ELINES	MATHEMATICS (PAPER 1)	GRAI	DE 11
	~					
	8.2.4	$P(M \text{ or } S) = \frac{13 + 7 + 24}{47}$	✓ metl	hod		
		$P(M \text{ or } S) = \frac{44}{47}$ or 0,94	✓ ansv	ver		
		P(M or S) = P(M) + P(S) - P(M and S)				
		$=\frac{20}{47}+\frac{31}{47}-\frac{7}{47}$	✓ metl	hod		
		$P(M \text{ or } S) = \frac{44}{47} \text{ or } 0,94$	✓ ansv	ver		(2)
	8.2.5	P(M or only S) = $\frac{13 + 24}{47}$	✓ metl	nod		
		P(M or only S) = $\frac{37}{47}$ or 0,79	✓ ansv	ver		
		NOTE: Answer only, full marks.				(2)
8.3	8.3.1	P(A or B) = P(A) + P(B) - P(A and B)				
		= 0,95 + 0,98 - 0,94	✓ corr	ect substitution		
		P(A or B) = 0,99	✓ ansv	ver		
		NOTE: Answer only, full marks.				(2)
	0.2.2					
	8.3.2	P(Not Detected) = 1 - 0,99		1000		
		P(Not Detected) = 0,01	✓ ansv	ver		
		NOTE: Answer only, full marks.				(1)

Downloaded	from	Stanmorer	hysics com		
Dominodaca	i i oni	MARKING	GUIDELINES	MATHEMATICS	
				(PAPER I)	GRADE II

9.1	9.1.1 NO. The survey was done on ONE day of the	✓ NO	
	month and only in the morning.	\checkmark reasonable motivation	
	NOTE: Answer must be NO.		(2)
	9.1.2 The survey should be done:		
	• At different TIMES of the day.	✓ answer	
	• On different DAYS of the month,		
	especially at the end of the month when		
	most people do shopping.		
	NOTE: Any other valid reason		(1)
	NOTE. Any other valu reason.		(1)
9.2	26 25 24	, 26 25 24	
	$P(black) = \frac{1}{52} \times \frac{1}{51} \times \frac{1}{50}$	$\checkmark \frac{1}{52} \times \frac{1}{51} \times \frac{1}{50}$	
	$\therefore P(black) = \frac{2}{r} or 0.118$	✓ answer P(black)	
	17 17	unswer r (black)	
	26 25 24		
	$P(red) = \frac{20}{52} \times \frac{23}{51} \times \frac{24}{50}$		
	52 51 50		
	P(-)) 2 0.110		
	$\therefore P(red) = \frac{1}{17} or 0.118$	✓ answer P(red)	
	\therefore P(3 black or 3 red) = 0,118 + 0,118	\checkmark method (+)	
	50		
	: P(3 black or 3 red) = 0,236 or $\frac{39}{250}$	\checkmark answer P(3 black or 3 red)	(5)
	230		<u>(3)</u> [8]
			[~]
		TOTAL:	150