

# **PROVINCIAL EXAMINATION**

# **NOVEMBER 2023**

# **GRADE 11**

MATHEMATICS

PAPER 2

TIME: 3 hours

**MARKS: 150** 

12 pages + 1 information sheet and 3 answer sheets



#### INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions.
- 3. Clearly show Allocalculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round-off answers to TWO decimal places, unless stated otherwise.
- 7. Answer sheets for answering QUESTIONS 1.1, 1.2 and 9.1 are provided at the end of the question paper. Write you name in the spaces provided on the ANSWER SHEETS and submit them together with your ANSWER BOOK.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Number the answers correctly according to the numbering system used in this question paper.
- 10. Write neatly and legibly.



#### **QUESTION 1**

A small tuck shop displayed a record of daily sales in rands, for the past two months (60 days) using the following histogram.



1.1 Complete the following table. Use the table provided on ANSWER SHEET A.

| Class interval    | Frequency | Cumulative frequency |
|-------------------|-----------|----------------------|
| $300 < x \le 400$ | 4         | 4                    |
| $400 < x \le 500$ |           |                      |
| $500 < x \le 600$ |           |                      |
| $600 < x \le 700$ |           |                      |
| $700 < x \le 800$ |           |                      |
| $800 < x \le 900$ |           |                      |

- 1.2 Draw a cumulative frequency curve for the sales over the past two months. Use the graph sheet provided on ANSWER SHEET B.
- 1.3 Use the graph in QUESTION 1.2 and determine the estimated median value for the daily sales.
- 1.4 The tuck shop must make R475 in sales per day to break-even. On how many days did the tuck shop make a profit?
- 1.5 On the first day of the following month, the tuck shop made R725 in sales. Does this day lie within the top 25% of sales from the previous two months?

(2) [**11**]

(2)

(3)

(2)

(2)

#### **QUESTION 2**

Five data values are represented as follows: 2k; k + 1; k + 2; k - 3; 2k - 2

- 2.1 If the mean of the data set is 15, show that k = 11.
- 2.2 Calculate the standard deviation ( $\sigma$ ) for this data, rounded-off to one decimal place. (2)
- 2.3 If t units are subtracted from each data value in the set, without further calculation, explain how the mean and standard deviation would be affected in terms of t. (2)

[7]

(3)

#### **QUESTION 3**

In the diagram below,  $\Delta RPQ$  is drawn, with P(0; 6), Q(4; -2). M(-2; 0) is the midpoint of RQ.



| 3.1 | Determine the gradient of the line MQ.                                                                 | (2)                  |
|-----|--------------------------------------------------------------------------------------------------------|----------------------|
| 3.2 | Determine the equation of the line MP, in the form $y = mx + c$ .                                      | (3)                  |
| 3.3 | Determine the coordinates of R.                                                                        | (3)                  |
| 3.4 | Calculate the length of PQ, in simplified surd form.                                                   | (2)                  |
| 3.5 | Given that RPQT is a parallelogram, determine the coodinates of T if point T is in the third quadrant. | (2)                  |
| 3.6 | Explain why RPQT is a rhombus.                                                                         | (2)<br>[ <b>14</b> ] |

#### **QUESTION 4**

In the diagram below, lines AC and BD intersect at B, where AC  $\perp$  BD. C and D lie on the *y*-axis, while A lies on the *x*-axis. The equation of AC is py - x - 5p = 0, while  $\alpha$  is the angle of inclination for AC, with  $\hat{CDB} = \beta$ .



| 4.1 | Determine the coordinates of C.                                                        | (3)                  |
|-----|----------------------------------------------------------------------------------------|----------------------|
| 4.2 | If the gradient of AC is $\frac{1}{2}$ , show that $p = 2$ .                           | (2)                  |
| 4.3 | Calculate the coordinates of B.                                                        | (5)                  |
| 4.4 | Determine the size of $\alpha$ .                                                       | (2)                  |
| 4.5 | Hence, or otherwise, prove that ABOD is a cyclic quadrilateral.                        | (3)                  |
| 4.6 | Determine the coordinates of the centre of the circle which passes through D, B and C. | (2)<br>[ <b>17</b> ] |



#### **QUESTION 5**

- 5.1 If  $3\sin \beta = 2$ . and  $\cos \beta < 0$ , determine with the aid of a diagram and without the use of a calculator, the value of:
  - 5.1.1  $3\cos^2\beta$  (4)

5.1.2 
$$\tan(-\beta = 80^{\circ})$$
 (3)

5.2 Given:  $t \cos 15^\circ = 4$ 

Determine the following in terms of *t*, without the use of a calculator:

| 5.2.1 | sin 15° | (3 |
|-------|---------|----|
| 5.2.1 | sın 15° |    |

- $5.2.2 \quad \sin 75^{\circ}$  (2)
- 5.2.3  $1 \tan^2 15^\circ$  (Give the answer as a single fraction.) (3)
- 5.3 Simplify the following to a single trigonometric function, without the use of a calculator.

$$\frac{\cos\left(90^{\circ}-\alpha\right)\sin\left(-\alpha-540^{\circ}\right)}{\tan 225^{\circ}+\sin\alpha.\sin\left(180^{\circ}+\alpha\right)}$$
(5)

5.4 Given:  $1 - \cos\theta = 2\sin^2\theta$ 

5.4.1 Show that the equation can be written as:  $(2\cos\theta + 1)(\cos\theta - 1) = 0.$  (2)

5.4.2 Hence, determine the general solution of  $(2\cos\theta + 1)(\cos\theta - 1) = 0.$  (5)

[27]



### **QUESTION 6**

In the diagram below, the graphs of  $f(x) = \tan x - 1$  and  $g(x) = -\frac{1}{2} \cos 2x$  are drawn, where  $x \in [-90^\circ; 180^\circ]$ .



| 6.1 | Write down the period of <i>g</i> . | (1) |
|-----|-------------------------------------|-----|
| 6.2 | Determine the range of $g(x)$ .     | (2) |

- 6.3 Use the graphs to determine graphically the values of *x* where:
  - $6.3.1 \quad f(x) \ge 0 \tag{2}$
  - $6.3.2 \quad f(x).g(x) > 0 \tag{2}$
  - 6.3.3  $2\tan x + \cos 2x = 2$  (3)

(2) [**14**]

6.4 If 
$$h(x) = \frac{\sin x + \cos x}{\cos x}$$
, describe the vertical translation of *h* from *f*. (2)

6.5 Determine the maximum value of p(x) = 4g(x).

#### **QUESTION 7**

In the figure below,  $\triangle ABC$  is drawn where  $AB \perp BC$  and  $A\hat{C}B = p$ , with CB = 3AB.  $\triangle DCB$  is drawn such that  $D\hat{C}B = 135^{\circ}$ , and BD = 121 m



| 7.1 | Determine the value of <i>p</i> , correct to 3 decimal places. | (2) |
|-----|----------------------------------------------------------------|-----|
|-----|----------------------------------------------------------------|-----|

7.2 If  $p = 18,4^{\circ}$ , determine the length of CD.

#### **QUESTION 8**

The diagram below represents an open tank with a square base (side dimensions of x cm) and a height of h cm. The tank has a volume of 490 cm<sup>3</sup>.



8.1 Determine the height (h) of the tank in terms of x.

(3) [**5**]

- 8.2 Show that A, the external surface area of the tank, is given by the formula:  $A = x^2 + \frac{1.960}{x} cm^2$
- 8.3 Given that the tank is 10 *cm* high, calculate the external surface area of the tank. (4)

#### **QUESTION 9**



9.1 In the diagram below, O is the centre of the circle passing through P, Q and R. Chords PQ and PR are drawn, with OQ and OR joined.



Use the diagram provided in ANSWER SHEET C to prove the theorem that states that the angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle, that is  $\hat{ROQ} = 2\hat{P}$  (6)



(2)

[8]

9.2 In the diagram below, DF is a diameter of the circle with centre O. Chord EG intersects DF at H such that DF  $\perp$  EG. Chords EF and GF are drawn. E $\hat{G}F = 55^{\circ}$ .



- 9.2.1 Determine, giving reasons, the size of:
  - (a)  $\hat{\mathbf{D}}$  (2)
  - (b)  $\hat{O}_2$  (2)
  - (c)  $\hat{E}_2$  (2)
  - (d)  $\hat{E}_3$  (3)
- 9.2.2 Determine the length of OH, if the diameter of the circle is 10 units and GE = 9.4 units. (4)
  - [19]



### **QUESTION 10**

In the diagram below, AT is a tangent to the circle at T. Chords BT, BV and VC are drawn. CB is extended to A, such that AC || TV. BC = CV and  $\hat{BVT} = x$ .



| 10.1 | Determine, with reasons, 3 angles equal to $x$ .   | (6)                  |
|------|----------------------------------------------------|----------------------|
| 10.2 | If ATVC is a parallelogram, prove that $AT = BT$ . | (5)                  |
| 10.3 | Determine the size of $x$ .                        | (2)<br>[ <b>13</b> ] |



#### **QUESTION 11**

DE is a tangent to the larger circle at E. DH is a tangent to the smaller circle at H. Chord HK is extended to meet the larger circle at E. F and K are the points of intersections between the circles, with FK produced to D. GK is a chord of the smaller circle with FE a chord of the larger circle. HF, GH and GF are joined.



11.1 Complete the following:

|      | $\hat{D}_3 = \dots + \dots$ (ext $\angle \Delta$ )                                                  |        | (1)                  |
|------|-----------------------------------------------------------------------------------------------------|--------|----------------------|
| 11.2 | Prove that DEFH is a cyclic quadrilateral.                                                          |        | (4)                  |
| 11.3 | Prove that DF bisects HFE.                                                                          |        | (3)                  |
| 11.4 | If $\hat{\mathbf{K}}_1 = \hat{\mathbf{E}}_1$ , prove that GK is a tangent to the larger circle at K |        | (7)<br>[ <b>15</b> ] |
|      |                                                                                                     | TOTAL: | 150                  |

### **INFORMATION SHEET**

| $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{4ac}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                  |                                                                                   |                                    |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|----------------|
| x = 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                  |                                                                                   |                                    |                |
| A = P(1+ni)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A = P(1 - ni)                         | )                                                                                                | A = P(1 -                                                                         | $i)^n$                             | $A = P(1+i)^n$ |
| $T_n = a + (n-1)d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | $\mathbf{S}_n = \frac{n}{2} \left[ 2a + \frac{n}{2} \right]$                                     | +(n-1)d                                                                           |                                    |                |
| $T_n = ar^{n-1} \qquad S_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{a(r^n-1)}{r-1} ; r \neq$       | $\neq 1$ $S_{\infty}$                                                                            | $=\frac{a}{1-r}; -1 <$                                                            | : <i>r</i> < 1                     |                |
| $\mathbf{F} = \frac{x\left[(1+i)^n - 1\right]}{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | $P = \frac{x \left[1 - \left(\frac{x}{1 - 1}\right)\right]}{x \left[1 - \frac{x}{1 - 1}\right]}$ | $\frac{1+i)^{-n}}{i}$                                                             |                                    |                |
| $f'(x) = \lim_{h \to 0} \frac{f(x+h)}{h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -f(x)                                 |                                                                                                  |                                                                                   |                                    |                |
| $d = (x_2 - x_1)^2 + (y_2 -$ | $\overline{(-y_1)^2}$                 | $\mathbf{M}\left(\frac{x_1 + x_2}{2}\right)$                                                     | $\left(\frac{y_1+y_2}{2}\right)$                                                  |                                    |                |
| $y = mx + c \qquad \qquad y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-y_1 = m(x - x_1)$                   | m =                                                                                              | $\frac{y_2 - y_1}{x_2 - x_1}$                                                     | m = ta                             | nθ             |
| $(x-a)^2 + (y-b)^2 = r^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                  |                                                                                   |                                    |                |
| In $\triangle ABC$ : $\frac{a}{\sin A} = \frac{-1}{\sin A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{b}{\sin B} = \frac{c}{\sin C}$ | $a^2 =$                                                                                          | $=b^2+c^2-2b$                                                                     | <i>c</i> .cosA                     |                |
| area ΔA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $BC = \frac{1}{2}ab.sinC$             |                                                                                                  |                                                                                   |                                    |                |
| $\sin(\alpha+\beta)=\sin\alpha.\cos\beta+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-\cos\alpha.\sin\beta$               | $\sin(\alpha - \beta) =$                                                                         | $=\sin\alpha.\cos\beta-\alpha$                                                    | $\cos\alpha.\sin\beta$             |                |
| $\cos(\alpha+\beta)=\cos\alpha.\cos\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-\sin\alpha.\sin\beta$               | $\cos(\alpha - \beta) =$                                                                         | $=\cos\alpha.\cos\beta+$                                                          | $\sin \alpha . \sin \beta$         |                |
| $\int \cos^2 \alpha - \sin^2 \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | χ                                     |                                                                                                  |                                                                                   |                                    |                |
| $\cos 2\alpha = \left\{ 1 - 2\sin^2 \alpha \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | $\sin 2\alpha = 2\sin^2 \alpha$                                                                  | in $\alpha$ .cos $\alpha$                                                         |                                    |                |
| $2\cos^2\alpha - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                  |                                                                                   |                                    |                |
| $\overline{x} = \frac{\sum fx}{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                  | $\sigma^2 = \frac{\sum_{i=1}^n (x_i)}{\sum_{i=1}^n (x_i)}$                        | $\frac{(x_i - \overline{x})^2}{n}$ |                |
| $P(A) = \frac{n(A)}{n(S)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | P(A                                                                                              | or B) = $P(A)$                                                                    | + P(B) -                           | P(A and B)     |
| $\hat{y} = a + bx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | $b = \frac{\sum (x - x)}{\sum (x - x)}$                                                          | $\frac{\overline{x}}{(y-\overline{y})}$ $\frac{\overline{x}}{(x-\overline{x})^2}$ |                                    |                |

Name and Surname: \_\_\_\_\_ Grade: \_\_\_\_\_

### ANSWER SHEET A

### **QUESTION 1**

1.1

| Class interval    | Frequency | Cumulative frequency |
|-------------------|-----------|----------------------|
| $300 < x \le 400$ | 4         | 4                    |
| $400 < x \le 500$ |           |                      |
| $500 < x \le 600$ |           |                      |
| $600 < x \le 700$ |           |                      |
| $700 < x \le 800$ |           |                      |
| $800 < x \le 900$ |           |                      |

(2)



### Name and Surname:

Grade: \_\_\_\_\_

### ANSWER SHEET B



Name and Surname: \_\_\_\_\_ Grade: \_\_\_\_\_

### **ANSWER SHEET C**

### **QUESTION 9**

9.1







# PROVINCIAL EXAMINATION NOVEMBER 2023 GRADE 11 MARKING GUIDELINES

**MATHEMATICS (PAPER 2)** 

14 pages



#### INSTRUCTIONS AND INFORMATION

- $\blacktriangleright$  A ACCURACY
- ► CA CONSISTENT ACCURACY
- $\succ$  S STATEMENT
- $\succ$  R REASON
- > S & R STATEMENT with REASON

#### NOTES:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate crossed OUT an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a question is UNACCEPTABLE.





# **QUESTION 2**

| 2.1 | $\frac{2k+k+1+k+2+k-3+2k-2}{2} - 15$                   | $\checkmark$ 7k-2                       |     |
|-----|--------------------------------------------------------|-----------------------------------------|-----|
|     | 5 - 15                                                 | ✓ Divide by 5                           |     |
|     | $\frac{7k-2}{5} = 15$                                  | ✓ Manipulation                          |     |
|     | 7k - 2 = 75                                            |                                         |     |
|     | 7k = 77                                                |                                         |     |
|     | <i>k</i> = 11                                          |                                         | (3) |
|     |                                                        |                                         |     |
| 2.2 | 22;12;13;8;20                                          | ✓✓ Answer                               |     |
|     | $\sigma = 5,22$                                        |                                         | (2) |
|     |                                                        |                                         |     |
| 2.3 | Mean would decrease by <i>t</i> units but the standard | $\checkmark$ Mean decreases by <i>t</i> |     |
|     | deviation would be unaffected.                         | units                                   |     |
|     |                                                        | ✓ Standard deviation                    |     |
|     |                                                        | unaffected                              | (2) |
|     |                                                        |                                         | [7] |

| 3.1 | $m_{\rm MQ} = \frac{0 - (-2)}{-2 - (-4)}$           | ✓            | Substitution into correct formula |     |
|-----|-----------------------------------------------------|--------------|-----------------------------------|-----|
|     | $m_{\rm MQ} = -\frac{1}{3}$                         | ~            | Answer                            | (2) |
|     |                                                     |              |                                   |     |
| 3.2 | $m_{\rm MQ} \times -\frac{1}{2} = -1$ MP $\perp$ MQ | ✓            | Perpendicular gradients           |     |
|     | 5                                                   | ~            | Gradient of MP                    |     |
|     | $m_{\rm MP} = 3$                                    |              |                                   |     |
|     |                                                     | $\checkmark$ | Answer                            |     |
|     | y = 3x + 6                                          |              |                                   | (3) |
|     |                                                     |              |                                   |     |
| 3.3 | $x_{\rm R} + 4$ $y_{\rm R} + (-2)$                  | $\checkmark$ | Substitution into                 |     |
|     | $-2 = \frac{\pi}{2}$ $0 = \frac{\pi}{2}$            |              | midpoint formula                  |     |
|     |                                                     | $\checkmark$ | X <sub>R</sub>                    |     |
|     | $x_{\rm R} = -8 \qquad \qquad y_{\rm R} = 2$        | ✓            | $y_{\rm R}$                       |     |
|     |                                                     |              |                                   |     |
|     | R (-8;2)                                            |              |                                   | (3) |

| 3.4 | $PQ = \sqrt{(0-4)^2 + (6-(-2))^2}$                    | ~ | Substitute into distance formula |      |
|-----|-------------------------------------------------------|---|----------------------------------|------|
|     | $PQ = \sqrt{80}$                                      | ✓ | Simplified surd                  |      |
|     | $PQ = 4\sqrt{3}$                                      |   | 1                                | (2)  |
|     |                                                       |   |                                  |      |
| 3.5 | E(-4;-6)                                              | ✓ | $x_{\rm E} = -4$                 |      |
|     |                                                       | ✓ | $y_{\rm E} = -6$                 | (2)  |
|     |                                                       |   |                                  |      |
| 3.5 | The diagonals of the parallelogram are perpendicular. | ✓ | Diagonals                        |      |
|     |                                                       |   | perpendicular                    |      |
|     |                                                       | ✓ | Given parallelogram              | (2)  |
|     |                                                       |   |                                  | [14] |

| 4.1 | subst. $x = 0$                         | $\checkmark x = 0$                     |     |
|-----|----------------------------------------|----------------------------------------|-----|
|     | py - x - 5p = 0                        | $\checkmark$ Manipulation              |     |
|     | py - (0) = 5p                          | $\checkmark x = 5$                     |     |
|     | 5p                                     |                                        |     |
|     | $y = \frac{1}{p}$                      |                                        |     |
|     | y = 5                                  |                                        |     |
|     | C(0;5)                                 |                                        | (3) |
|     |                                        |                                        |     |
| 4.2 | py - x - 5p = 0                        | $\checkmark$ Standard form             |     |
|     | py = x + 5p                            | <ul> <li>✓ Equate gradients</li> </ul> |     |
|     | $x = \frac{x}{1} + 5$                  |                                        |     |
|     | y = p                                  |                                        |     |
|     | 1                                      |                                        |     |
|     | $m_{\rm AC} = \frac{1}{2}$             |                                        |     |
|     | 1 1                                    |                                        |     |
|     | $\therefore \frac{1}{p} = \frac{1}{2}$ |                                        |     |
|     | p = 2                                  |                                        |     |
|     | ·· <i>p</i> =                          |                                        |     |
|     | OR                                     |                                        |     |
|     |                                        |                                        |     |
|     | $A(-10:0)$ $m_{+0} = \frac{1}{2}$      | $\checkmark$ A (-10 · 0)               |     |
|     | 2 ···································· | $\checkmark$ Substitute $\Delta$       |     |
|     | p(0) - (-10) - 5p = 0                  |                                        |     |
|     | 10 = 5p                                |                                        |     |
|     | <i>p</i> = 2                           |                                        | (2) |

| 4.3 | Equation of AC: $2y - x - 10 = 0$                                                                                          | $\checkmark$ | Substitute $p = 2$                                           |                      |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------|----------------------|
|     | $y = \frac{1}{2}x + 5$<br>Equation of BD: $y = -2x - 10$<br>$\frac{1}{2}x + 5 = -2x - 10$<br>x + 10 = -4x - 20<br>5x = -30 | ~            | Equation of BD<br>Substitute <i>y</i> into other<br>equation |                      |
|     | x = -6                                                                                                                     | ✓            | x = -6                                                       |                      |
|     | y = 2                                                                                                                      | ✓            | y = 2                                                        |                      |
|     | ∴B(-6;2)                                                                                                                   |              |                                                              | (5)                  |
|     |                                                                                                                            |              |                                                              |                      |
| 4.4 | $\tan \alpha = \frac{1}{2}$ $\alpha = 26,57^{\circ}$                                                                       | ✓<br>✓       | Substitution into correct<br>formula<br>Answer               | (2)                  |
|     |                                                                                                                            |              |                                                              |                      |
| 4.5 |                                                                                                                            | ✓<br>✓<br>✓  | AĈD<br>$\beta$<br>Rede                                       |                      |
|     | (converse ∠'s in same segment)                                                                                             |              |                                                              | (3)                  |
|     |                                                                                                                            |              |                                                              |                      |
| 4.6 | DB is a diameter (line subtends 90°)                                                                                       | ~            | x = 0                                                        |                      |
|     | $M_{CD} = \left(\frac{0+0}{2}; \frac{5+(-10)}{2}\right)$                                                                   | ~            | $y = -\frac{5}{2}$                                           |                      |
|     | $= M_{CD}\left(0; -\frac{5}{2}\right)$                                                                                     |              |                                                              | (2)<br>[ <b>17</b> ] |
| L   |                                                                                                                            |              |                                                              | L 1                  |



| 5.1 | 5.1.1 | $\sin \beta - \frac{2}{-}$                      | -                    | $\checkmark$ | Quadrant II             |     |
|-----|-------|-------------------------------------------------|----------------------|--------------|-------------------------|-----|
|     |       | $\frac{\sin p}{3}$                              | $(-\sqrt{5}\cdot 2)$ | ~            | $x = -\sqrt{5}$         |     |
|     |       | $x^{2} + (2)^{2} = 3^{2}$                       |                      | ~            | Substitute              |     |
|     |       | $x = -\sqrt{5}$                                 | $\beta$              |              | $\cos\beta$             |     |
|     |       | $\int \frac{1}{(p-1)^2}$                        |                      | ~            | Answer                  |     |
|     |       | $=3\left(\frac{\sqrt{5}}{3}\right) -1$          |                      |              |                         |     |
|     |       | $=\frac{5}{3}-1$                                |                      |              |                         |     |
|     |       | $=\frac{2}{2}$                                  |                      |              |                         |     |
|     |       | 3                                               |                      |              |                         | (4) |
|     | 5.1.2 | $\tan(-\beta-180^\circ)$                        |                      | ✓            | $-\tan\beta$            |     |
|     |       | $=-\tan\beta$                                   |                      | ~            | Substitution            |     |
|     |       | $\left( \begin{array}{c} 2 \end{array} \right)$ |                      | ~            | Answer                  |     |
|     |       | $ - (-\sqrt{5}) $                               |                      |              |                         |     |
|     |       | $=\frac{2}{\sqrt{r}}$                           |                      |              |                         |     |
|     |       | <u>√</u> 5                                      |                      |              |                         | (3) |
| 5.2 | 5.2.1 | $t\cos 15^\circ = 4$                            |                      | ./           | $15^\circ - t$          |     |
|     |       | $\cos 15^\circ = \frac{4}{-1}$                  |                      | ľ            | $\cos 13 = \frac{-}{4}$ |     |
|     |       | t                                               | t                    | ~            | $\sqrt{t^2 - 16}$       |     |
|     |       | sin 15°                                         | $\sqrt{t^2-16}$      | 1            | <i>t</i>                |     |
|     |       | $\sqrt{t^2-16}$                                 | 15°                  | ľ            | l                       |     |
|     |       | = $t$                                           | 4                    |              |                         | (3) |
|     |       |                                                 |                      |              |                         |     |
|     | 5.2.2 | sin 75°                                         |                      |              | Complement              |     |
|     |       | $= \cos 15^{\circ}$                             |                      |              | Answer                  |     |
|     |       | $=\frac{4}{t}$                                  |                      | 4            |                         | (2) |
| L   | 1     | 1                                               |                      | <u> </u>     |                         | (-) |

|     | 5.2.3                 | $   \begin{vmatrix}     1 - \tan^2 15^\circ \\     = 1 - \left(\frac{\sqrt{t^2 - 16}}{4}\right)^2 \\     = 1 - \frac{t^2 - 16}{6} $                                           | $\checkmark \left(\frac{\sqrt{t^2 - 16}}{4}\right)^2$ $\checkmark \frac{t^2 - 16}{16}$ $\checkmark \text{ Correct}$ |      |
|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|
|     |                       | $=\frac{16}{16} + 16$                                                                                                                                                         | multiplication by                                                                                                   |      |
|     |                       | 16<br>$32 - t^2$                                                                                                                                                              | LCD                                                                                                                 |      |
|     |                       | $=\frac{32}{16}$                                                                                                                                                              |                                                                                                                     | (3)  |
| 5.2 |                       |                                                                                                                                                                               | (                                                                                                                   |      |
| 5.3 | $\cos(9)$             | $20^\circ - \alpha)\sin(-\alpha - 540^\circ)$                                                                                                                                 | $\checkmark$ tan 45°                                                                                                |      |
|     | tan 22                | $5^{\circ} + \sin \alpha . \sin(180^{\circ} + \alpha)$                                                                                                                        | $\checkmark$ sin $\alpha$ sin $\alpha$                                                                              |      |
|     |                       | $\sin \alpha . \sin \alpha$                                                                                                                                                   | $\checkmark 1 - \sin^2 \alpha$                                                                                      |      |
|     | tan 4                 | $45^{\circ} + (\sin \alpha)(-\sin \alpha)$                                                                                                                                    | 1                                                                                                                   |      |
|     | sin                   | $^{2} \alpha$                                                                                                                                                                 | $\frac{1}{\tan^2 \alpha}$                                                                                           |      |
|     | $=$ $\frac{1-s}{1-s}$ | $\overline{\operatorname{in}^2 \alpha}$                                                                                                                                       |                                                                                                                     |      |
|     | $-\frac{\sin^2}{2}$   | α                                                                                                                                                                             |                                                                                                                     |      |
|     | $-\cos^2$             | α                                                                                                                                                                             |                                                                                                                     |      |
|     | $= \tan^2 \phi$       | α                                                                                                                                                                             |                                                                                                                     | (5)  |
| 5.4 | 5 4 1                 | 1 0 0 2 2 0                                                                                                                                                                   |                                                                                                                     |      |
| 5.4 | 5.4.1                 | $1 - \cos\theta = 2\sin^2\theta$                                                                                                                                              | $\checkmark 2(1-\cos^2\theta)$                                                                                      |      |
|     |                       | $1 - \cos\theta = 2 (1 - \cos\theta)$ $1 - \cos\theta = 2 - 2 \cos^2\theta$                                                                                                   | $\checkmark$ standard form                                                                                          |      |
|     |                       | $\frac{1}{2}\cos^2\theta - \cos\theta - 1 = 0$                                                                                                                                |                                                                                                                     |      |
|     |                       | $(2\cos\theta + 1)(\cos\theta - 1) = 0$                                                                                                                                       |                                                                                                                     | (2)  |
|     |                       |                                                                                                                                                                               |                                                                                                                     |      |
|     | 5.4.2                 | $2\cos\theta + 1 = 0  \text{or}  \cos\theta - 1 = 0$ $\cos\theta = -\frac{1}{2}  \text{or}  \cos\theta = 1$                                                                   | $\checkmark \cos\theta = -\frac{1}{2}$                                                                              |      |
|     |                       | $\begin{vmatrix} 2 \\ RA - 60^{\circ} \\ or \\ \theta - 0^{\circ} \pm K 360^{\circ} \cdot K = 7 \end{vmatrix}$                                                                | • $\theta = 1$<br>• Both solutions for                                                                              |      |
|     |                       | $0II \cdot \theta = 120^{\circ} + K 360^{\circ} \cdot K \circ \mathbb{Z}$                                                                                                     |                                                                                                                     |      |
|     |                       | $OIII \cdot \theta = 240^\circ + K 360^\circ \cdot K \circ \mathbb{Z}$                                                                                                        | $\cos\theta = -\frac{1}{2}$                                                                                         |      |
|     |                       | $\mathbf{\chi}_{\mathbf{H}} \cdot \mathbf{v} = 2 + \mathbf{v} + \mathbf{K} \cdot \mathbf{J} \cdot \mathbf{v} + \mathbf{K} \cdot \mathbf{K} \cdot \mathbf{k} \cdot \mathbf{k}$ | $\checkmark  \theta = 0^\circ + \text{K.360}^\circ$                                                                 |      |
|     |                       |                                                                                                                                                                               | $\checkmark$ + K $\varepsilon \mathbb{Z}$                                                                           | (5)  |
|     |                       |                                                                                                                                                                               |                                                                                                                     | [27] |

| 6.1 | 180°                  |                                                                          | ✓            | Answer                              | (1)  |
|-----|-----------------------|--------------------------------------------------------------------------|--------------|-------------------------------------|------|
|     |                       |                                                                          |              |                                     |      |
| 6.2 | $-\frac{1}{5} \leq 1$ | $r \leq \frac{1}{r}$                                                     | $\checkmark$ | Endpoints                           |      |
|     | $2^{-2}$              |                                                                          | $\checkmark$ | Notation                            | (2)  |
|     |                       |                                                                          |              |                                     |      |
|     | 6.3.1                 | $45^\circ \le x \le 90^\circ$                                            | ✓            | $x \ge 45^{\circ}$                  |      |
|     |                       |                                                                          | $\checkmark$ | <i>x</i> < 90°                      | (2)  |
|     |                       |                                                                          |              |                                     |      |
|     | 6.3.2                 | $-90^{\circ} < x < -45^{\circ} \text{ or } 90^{\circ} < x < 135^{\circ}$ | $\checkmark$ | $-90^{\circ} < x < -45^{\circ}$     |      |
|     |                       |                                                                          | ✓            | 90°< <i>x</i> < 135°                | (2)  |
|     | 622                   | $2 \tan x + \cos 2x - 2$                                                 |              | $2 \tan x$ $2 - \cos 2x$            |      |
|     | 0.3.3                 | $2 \tan x + \cos 2x = 2$                                                 | v            | $2 \tan x - 2 = -\cos 2x$           |      |
|     |                       | $2 \tan x - 2 = -\cos 2x$                                                | $\checkmark$ | $\tan x - 1 = -\frac{1}{2} \cos 2x$ |      |
|     |                       | $\tan x - 1 = -\frac{1}{2} \cos 2x$                                      |              | 2                                   |      |
|     |                       | 2                                                                        | V            | Value of x                          |      |
|     |                       | $\therefore f(x) = g(x)$                                                 |              |                                     |      |
|     |                       | where $x = 45^{\circ}$                                                   |              |                                     | (3)  |
|     |                       |                                                                          |              |                                     |      |
| 6.4 | h(x) =                | $\frac{\sin x + \cos x}{\cos x}$                                         | <b>v</b>     | $\tan x + 1$                        |      |
|     | <i>m(x)</i>           | $\cos x$                                                                 | $\checkmark$ | Up by 2 units                       |      |
|     | $h(\mathbf{x}) =$     | $\frac{\sin x}{1}$ + 1                                                   |              |                                     |      |
|     | n(x) =                | $\cos x$                                                                 |              |                                     |      |
|     | $h(x) = \frac{1}{2}$  | $\tan x + 1$                                                             |              |                                     |      |
|     | h(x) = j              | f(x) + 2                                                                 |              |                                     |      |
|     | ∴ Vert                | tical translation up by 2 units                                          |              |                                     | (2)  |
|     |                       |                                                                          |              |                                     |      |
| 65  |                       | $\begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$    | $\checkmark$ | $-2\cos 2x$                         |      |
| 6.5 | p(x) = c              | $4\left(-\frac{1}{2}\cos 2x\right)$                                      | $\checkmark$ | Max of 2                            |      |
|     | p(x) = -              | $-2\cos 2x$                                                              |              |                                     |      |
|     | ∴ Max                 | timum value of 2                                                         |              |                                     | (2)  |
|     | <u> </u>              |                                                                          |              | <u>画</u>                            | [14] |

# **QUESTION 7**

| 7.1 | $\tan p = \frac{1}{3}$                          | ~            | $\tan p = \frac{1}{3}$ |     |
|-----|-------------------------------------------------|--------------|------------------------|-----|
|     | p = 18,435°                                     | ✓            | Value of <i>p</i> to 3 |     |
|     |                                                 |              | decimal places         | (2) |
|     |                                                 |              |                        |     |
| 7.2 | In ΔBCD                                         | $\checkmark$ | Correct substitution   |     |
|     | CD 121                                          |              | into sine rule         |     |
|     | $\frac{1}{10000000000000000000000000000000000$  | $\checkmark$ | Manipulation           |     |
|     | $\sin\left(\frac{1}{2}\right)$ $\sin(100)$      | ~            | Length of CD           |     |
|     | $CD = \frac{121 \text{ x} \sin 9.2^{\circ}}{2}$ |              |                        |     |
|     | sin135                                          |              |                        |     |
|     | CD = 27,36 <i>m</i>                             |              |                        | (3) |
|     |                                                 |              |                        | [5] |

| 8.1 | $V = x^2 h$                                 | ✓ | Substitute into volume           |     |
|-----|---------------------------------------------|---|----------------------------------|-----|
|     | $490 = x^2 h$                               |   | formula                          |     |
|     | 490                                         | ✓ | h in terms of $x$                |     |
|     | $h = \frac{1}{x^2}$                         |   |                                  | (2) |
|     |                                             |   |                                  |     |
| 8.2 | $A = x^2 + 4xh$                             | ✓ | Base of $x^2$                    |     |
|     | $A = x^2 + 4x \left(\frac{490}{x^2}\right)$ | ~ | $4x\left(\frac{490}{x^2}\right)$ |     |
|     | $A = x^2 + \frac{1960}{x} \ cm^3$           |   |                                  | (2) |
|     |                                             |   |                                  |     |
| 8.3 | 490                                         | ✓ | Substitute $h = 10$              |     |
|     | $10 = \frac{1}{x^2}$                        | ✓ | $x^2 = 49$                       |     |
|     | $x^2 = 49$                                  | ✓ | x                                |     |
|     | $x = 7 \qquad (x > 0)$                      | ✓ | Sufface area                     |     |
|     | 1 960                                       |   |                                  |     |
|     | $A = (7)^{2} + \frac{1}{7}$                 |   |                                  |     |
|     | $A = 329 \ cm^2$                            |   |                                  | (4) |
|     |                                             |   |                                  | [8] |



| (d)   | $\hat{E}_1 = 35^\circ$                    | int $\angle$ 's of $\Delta$    | ✓            | R           |       |      |
|-------|-------------------------------------------|--------------------------------|--------------|-------------|-------|------|
|       | $\hat{E}_3 = 35^\circ$                    | $\angle$ 's in a semi-circle   | V            | 8           | ✓ R   |      |
|       | OR                                        |                                |              |             |       |      |
|       | $\hat{\mathbf{E}}_3 = \hat{\mathbf{F}}_1$ | $\angle$ 's opp equal radii    | √<br>√       | S<br>SD     | ✓ R   |      |
|       | $\hat{E}_{3} = 35$                        | int $\angle$ 's of $\Delta$    |              | ы           |       | (3)  |
| <br>  | <u>e</u>                                  |                                |              |             |       |      |
| 9.2.2 | OE = 5                                    | equal radii                    | $\checkmark$ | SR          |       |      |
|       | HE = 4,7                                  | line from centre perpendicular | $\checkmark$ | S           | ✓ R   |      |
|       |                                           | to chord                       |              |             |       |      |
|       | $OH^2 = 5^2 - (4,7)^2$                    | Pythagoras' Theorem            | $\checkmark$ | S           |       |      |
|       | OH = 1,71 units                           |                                |              |             |       |      |
|       | OR                                        |                                |              |             |       |      |
|       | OE = 5                                    | radii                          | ✓            | SR          |       |      |
|       | $\sin 20^\circ = \frac{\text{OH}}{5}$     |                                | √ \<br>√     | ✓ sir<br>OH | n 20° |      |
|       | OH = 1,71 units                           |                                |              |             |       |      |
|       | OR                                        |                                |              |             |       |      |
|       | HE = 4,7                                  | line from centre               | $\checkmark$ | S           | ✓ R   |      |
|       |                                           | perpendicular to chord         | $\checkmark$ | tan         | 20°   |      |
|       | $\sin 20^\circ = \frac{\text{OH}}{4,7}$   | ~ ~                            | ~            | OH          | [     |      |
|       | OH = 1,71 units                           |                                |              |             |       | (4)  |
|       |                                           |                                |              |             |       | [19] |

| 10.1 | $\hat{\mathbf{B}}_1 = x$                     | alt. ∠'s, AC III TV         | ✓ S | ✓ R |     |
|------|----------------------------------------------|-----------------------------|-----|-----|-----|
|      | $\hat{\mathbf{V}}_1 = x$                     | $\angle$ 's opp equal sides | ✓ S | ✓ R |     |
|      | $\hat{\mathbf{T}}_2 = x$                     | tan chord theorem           | ✓ S | ✓ R | (6) |
|      |                                              |                             | 600 |     |     |
| 10.2 | $\hat{A} = 2x$                               | opp ∠'s parm                |     | ✓ R |     |
|      | $\hat{\mathbf{B}}_3 = 2x$                    | ext $\angle$ cyclic quad    | ∠S  | ✓ R |     |
|      | $\therefore \hat{\mathbf{A}} = \mathbf{B}_3$ | both equal $2x$             | ✓ R |     |     |
|      | AT = BT                                      | sides opp equal $\angle$ 's |     |     |     |

|      | OR                                                                              |                               |                               |      |
|------|---------------------------------------------------------------------------------|-------------------------------|-------------------------------|------|
|      | $\hat{\mathbf{B}}_3 = 2x$                                                       | ext $\angle$ cyclic quad      | $\checkmark$ S $\checkmark$ R |      |
|      | $\hat{\mathrm{T}}_{1} = 2x$                                                     | alt $\angle$ 's, AC III TV    | ▼ SK                          |      |
|      | $\therefore \hat{\mathrm{T}}_{1} = \hat{\mathrm{V}}_{1} + \hat{\mathrm{V}}_{2}$ | both equal $2x$               | ✓ S ✓ R                       |      |
|      | : BTVC is an isosce                                                             | les trapezium                 |                               |      |
|      | (one pair parallel side                                                         | s and one pair of base angles | ✓ Logic                       |      |
|      | equal)                                                                          |                               |                               |      |
|      | $\therefore$ CV = BT                                                            | sides of isos trap            |                               |      |
|      | en CV = AT                                                                      | opp sides parm                |                               |      |
|      | $\therefore$ AT = BT                                                            |                               |                               | (5)  |
|      |                                                                                 |                               |                               |      |
| 10.3 | In $\triangle ATB$ ,                                                            |                               | ✓ R                           |      |
|      | $5x = 180^{\circ}$                                                              | int $\angle$ 's of $\Delta$   | ✓ S                           |      |
|      | $x = 36^{\circ}$                                                                |                               |                               | (2)  |
|      |                                                                                 |                               |                               | [13] |

| 11.1 | $\hat{\mathbf{D}}_3 = \hat{\mathbf{H}}_1 + \hat{\mathbf{E}}_1$            | ext $\angle$ of $\Delta$                           | ✓            | S                                                 | (1) |
|------|---------------------------------------------------------------------------|----------------------------------------------------|--------------|---------------------------------------------------|-----|
|      |                                                                           |                                                    |              |                                                   |     |
| 11.2 | $\hat{\mathbf{D}}_3 = \hat{\mathbf{H}}_1 + \hat{\mathbf{E}}_1$            | ext $\angle$ of $\Delta$                           |              |                                                   |     |
|      | $\hat{\mathbf{H}}_1 = \hat{\mathbf{F}}_2$                                 | tan chord theorem                                  | <b>√</b>     | S ✓ R                                             |     |
|      | and $\hat{\mathbf{E}}_1 = \hat{\mathbf{F}}_1$                             | tan chord theorem                                  | V            | SR                                                |     |
|      | $\therefore \hat{\mathbf{D}}_3 = \hat{\mathbf{F}}_1 + \hat{\mathbf{F}}_2$ |                                                    |              |                                                   |     |
|      | ∴ DEFH is a cyclic                                                        | c quadrilateral (ext $\angle$ = opp int $\angle$ ) | ✓            | $R \text{ (with } \left( D_3 = F_1 + F_2 \right)$ | (4) |
|      |                                                                           |                                                    |              |                                                   |     |
| 11.3 | $\hat{H}_1 = \hat{F}_2$                                                   | tan chord theorem                                  | ✓            | SR                                                |     |
|      | $\hat{\mathbf{H}} = \hat{\mathbf{E}}$                                     |                                                    | $\checkmark$ | S ✓ R                                             |     |
|      | $\mathbf{n}_1 = \mathbf{r}_1$                                             | $\angle$ 's in the same segment                    |              |                                                   |     |
|      | $\therefore \hat{\mathbf{F}}_1 = \hat{\mathbf{F}}_2$                      |                                                    |              |                                                   | (3) |
|      |                                                                           |                                                    |              |                                                   |     |

| 11.4 | $\hat{H}_3 + \hat{H}_4 = \hat{E}_1 + \hat{E}_2$                                                | ext ∠ cyclic quad                      | ✓ | S   | ✓ R                                          |      |
|------|------------------------------------------------------------------------------------------------|----------------------------------------|---|-----|----------------------------------------------|------|
|      | $\hat{H}_4 = \hat{K}_1$                                                                        | tan chord theorem                      | ✓ | SR  |                                              |      |
|      | $\hat{H}_3 = \hat{K}_2$                                                                        | $\angle$ 's in the same circle segment | ✓ | S   | ✓ R                                          |      |
|      | $\therefore \hat{\mathbf{K}}_1 + \hat{\mathbf{K}}_2 = \hat{\mathbf{E}}_1 + \hat{\mathbf{E}}_2$ |                                        |   |     |                                              |      |
|      | $\hat{\mathbf{K}}_1 = \hat{\mathbf{E}}_1$                                                      | given                                  | ✓ | S   |                                              |      |
|      | $\therefore \hat{\mathbf{K}}_2 = \hat{\mathbf{E}}_2$                                           |                                        |   |     |                                              |      |
|      | ∴ KF is a tangent                                                                              | converse tan chord theorem             | ✓ | R ( | if $\hat{\mathbf{K}}_2 = \hat{\mathbf{E}}_2$ |      |
|      |                                                                                                |                                        |   | pro | oven)                                        | (7)  |
|      |                                                                                                |                                        |   |     |                                              | [15] |

**TOTAL: 150** 

