

basic education

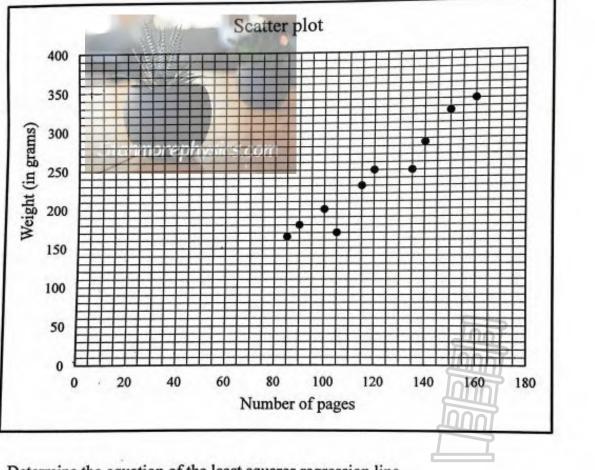
Department: Basic Education REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

This question paper consists of 12 pages, 1 information sheet and an answer book of 23 pages. SC/NSC Confidential

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.


- 1. This question paper consists of 10 questions.
- Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- Answers only will NOT necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

QUESTION 1000

The number of pages in ten A4 books and their corresponding weights (in grams) are given in the table below. The data is also represented in the scatter plot.

Number			100	100	90	140	135	105	115	160
of pages (x)	85	150	100	120	90	140	155			
Weight (in grams) (y)	165	325	200	250	180	285	250	170	230	340

1.1 Determine the equation of the least squares regression line.

1.2 Draw the least squares regression line on the scatter plot in the ANSWER BOOK. (2)

1.3 Predict the weight of an A4 book that has 110 pages.

1.4 Calculate the percentage weight increase between a book with 110 pages and a book with 130 pages.

(3) [10]

(2)

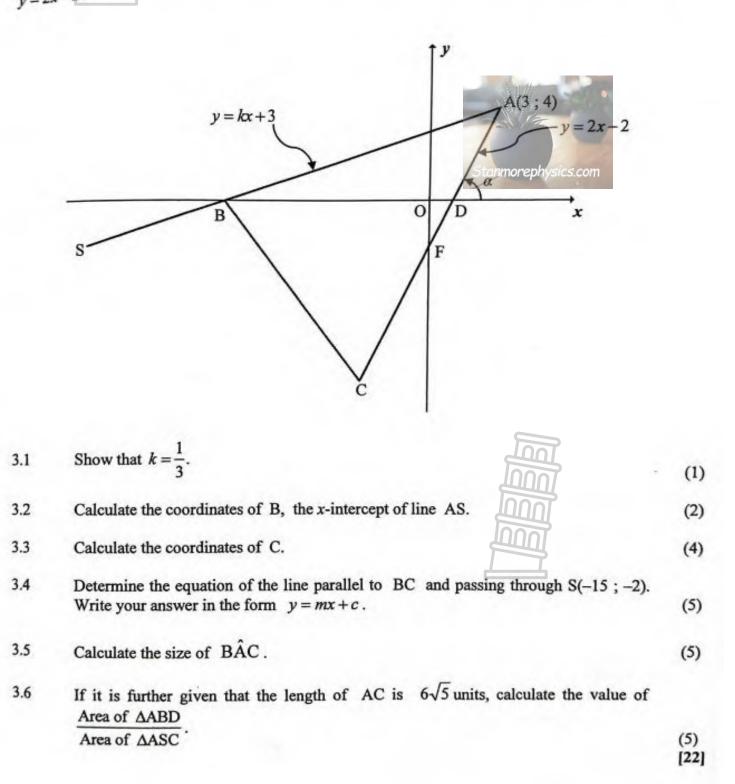
(3)

SC/NSC Confidential

QUESTION 2

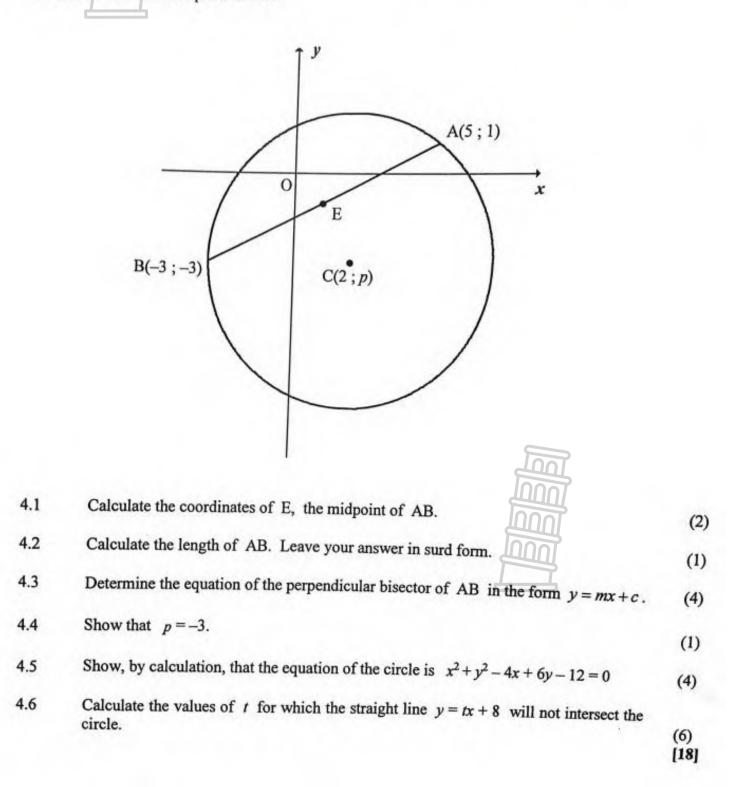
Fifty athletes need to access suitable training facilities. The table below shows the distances, in km, that they need to travel to obtain access to suitable training facilities.

DISTANCE (x km)	NUMBER OF ATHLETES
$0 \le x < 5$	3
$5 \le x < 10$	7
10≤x<15	20
$15 \le x < 20$	12
$\frac{1}{20} \le x < 25$	5
$25 \le x < 30$	3


- 2.1 Complete the cumulative frequency column provided in the table in the ANSWER
- (2)2.2 On the grid provided in the ANSWER BOOK, draw a cumulative frequency graph (ogive) to represent the above data. (3)2.3
- Calculate the interquartile range (IQR) of the above data.
- (2)2.4 The families of 4 of the athletes above who stay between 15 and 20 km from a suitable training facility, decide to move 10 kilometres closer to the facility. In which interval will the number of athletes increase?
- (1) Calculate the estimated mean distance that the fifty athletes need to travel after the 2.5 4 families have moved 10 kilometres closer to the facility. Clearly show ALL working.

(3) [11]_

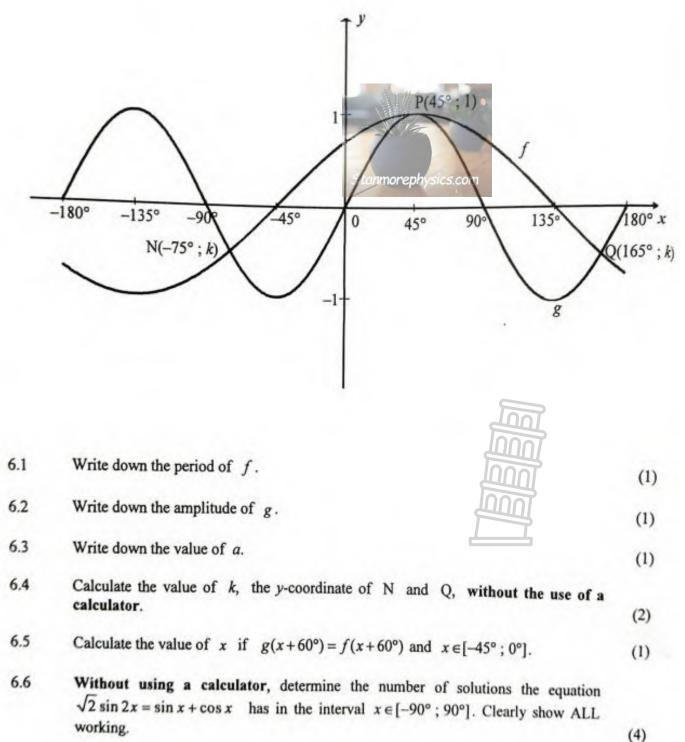
QUESTION 3


In the diagram, A(3; 4), B and C are vertices of \triangle ABC. AB is produced to S. D and F are the x- and y-intercepts of AC respectively. F is the midpoint of AC and the angle of inclination of AC is α . The equation of AB is y = kx+3 and the equation of AC is y = 2x-2.

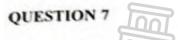
Downloaded from Stanmorephysics.com Mathematics/P2 SC/NSC Confidential

QUESTION 4

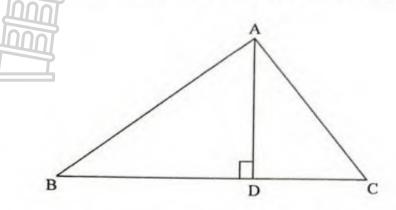
In the diagram, the circle centred at C(2; p) is drawn. A(5; 1) and B(-3; -3) are points on the circle. E is the midpoint of AB.

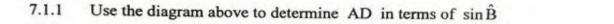


Mathema		aded from Stanmorephysics.com	,
	5	Schac Confidential	
QUES	TION 5		
5.1	If sin 4	p, write EACH of the following in terms of p .	
	5.1.1	sin 220°	
	5.4.4	311 220	(2)
	5.1.2	cos ² 50°	(2)
			(2)
	5.1.3	$\cos(-80^{\circ})$	(3)
5.2	Given:	$\tan x (1 - \cos^2 x) + \cos^2 x = \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{(1 - \sin x \cos x)}$	
		cosx	
	5.2.1	Prove the above identity.	(5)
	5.2.2	For which values of x, in the interval $x \in [-180^\circ; 180^\circ]$, will the identity be undefined?	
			(3)
5.3	Given th	the expression: $\frac{\sin 150^\circ + \cos^2 x - 1}{2}$	
	5.3.1	Without using a calculator, simplify the expression given above to a single trigonometric term in terms of $\cos 2x$.	(6)
			(0)
	5.3.2	Hence, determine the general solution of $\frac{\sin 150^\circ + \cos^2 x - 1}{2} = \frac{1}{25}$	
		2 25	(5) [26]

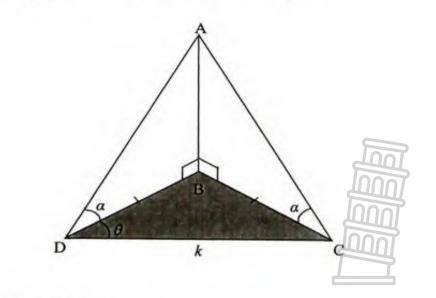


QUESTION 600


In the diagram, the graphs of $f(x) = \cos(x+a)$ and $g(x) = \sin 2x$ are drawn for the interval $x \in [-180^{\circ}, 180^{\circ}]$. The graphs intersect at N(-75°; k), P(45°; 1) and Q(165°; k). P is also a turning point of both graphs.



[10]


7.1 In the diagram, $\triangle ABC$ is drawn. AD is drawn such that $AD \perp BC$.

7.1.2 Hence, prove that the area of $\triangle ABC = \frac{1}{2} (BC) (AB) \sin \hat{B}$ (1)

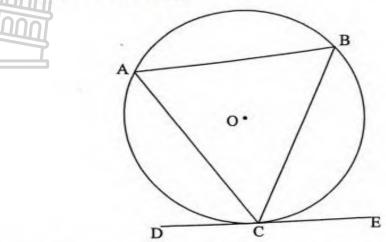
7.2 In the diagram, points B, C and D lie in the same horizontal plane. $\hat{ADB} = \hat{ACB} = \alpha$, $\hat{CDB} = \theta$ and DC = k units. BD = BC.

7.2.1 Prove that AD = AC

7.2.2 Prove that
$$BD = \frac{k}{2\cos\theta}$$
 (3)

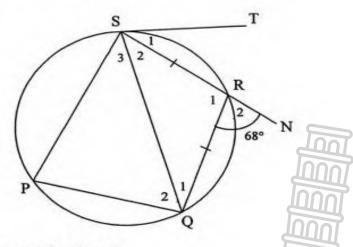
7.2.3 Determine the area of $\triangle BCD$ in terms of k and a single trigonometric ratio of θ . (3)

[11]


(2)

(2)

QUESTION 8


8.1

In the diagram, chords AB, BC and AC are drawn in the circle with centre O. DCE is a tangent to the circle at C.

Prove the theorem which states that the angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment, i.e. $B\hat{C}E = \hat{A}$.

8.2 In the diagram, PQRS is a cyclic quadrilateral with RQ = RS. ST is a tangent to the circle at S. SR is produced to N. $\hat{R}_2 = 68^{\circ}$.

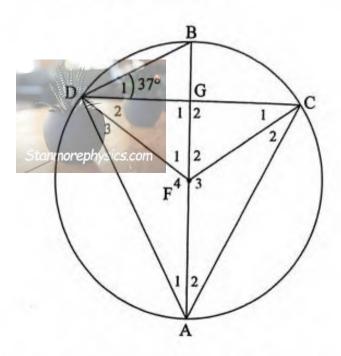
Determine, with reasons, the size of:

- 8.2.1 P
- 8.2.2 Q,
- 8.2.3 Ŝ₁

(5)

(2)

(2)


(2) [11]

Mathematics Winloaded from Stanmorephysics.com

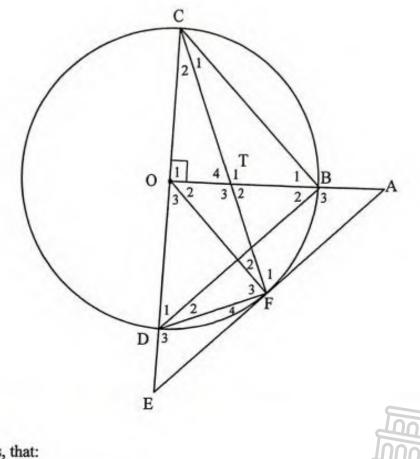
DBE/May/June 2024

QUESTION 9

In the diagram, AB is a diameter of the circle, with centre F. AB and CD intersect at G. FD and FC are drawn. BA bisects CÂD and $\hat{D}_1 = 37^\circ$.

9.1	Determine, giving reasons, any three other angles equal to \hat{D}_1 .	(4)
9.2	Show that $DG = GC$.	(4)

- 9.3 If it is further given that the radius of the circle is 20 units, calculate the length of BG.
- (4) [12]


TOTAL:

150

Mathematexenvnloaded from Stanmorephysics.com

QUESTION 10

In the diagram, COD is the diameter of the circle with centre O. EA is a tangent to the circle at F. AO \perp CE. Diameter COD produced intersects the tangent to the circle at E. OB produced intersects the tangent to the circle at A. CF intersects OB in T. CB, BD, OF and FD are drawn.

Prove,	with reasons, that:	
10.1	TODF is a cyclic quadrilateral	(4)
10.2	$\hat{\mathbf{D}}_3 = \hat{\mathbf{T}}_1$	(3)
10.3	ΔTFO ΔDFE	(5)
10.4	If $\hat{B}_2 = \hat{E}$, prove that DB EA.	(2)
10.5	Prove that $DO = \frac{TO.FE}{AB}$	(5)
		(5) [19]

INFORMATION SHEET $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n$ A = P(1+i)'' $T_n = a + (n-1)d$ $S_n = \frac{n}{2}[2a + (n-1)d]$ $S_n = \frac{a(r^n - 1)}{r + 1}$; $r \neq 1$ $S_\infty = \frac{a}{1 - r}$; -1 < r < 1 $T_n = ar^{n-1}$ $P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$ $F = \frac{x\left[(1+i)^n - 1\right]}{i}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y-y_1=m(x-x_1)$ $m = \tan \theta$ y = mx + c $(x-a)^2 + (y-b)^2 = r^2$ In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$ area $\triangle ABC = \frac{1}{2}ab.\sin C$ $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$ $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ $\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \end{cases}$ $\sin 2\alpha = 2\sin \alpha . \cos \alpha$ $2\cos^2\alpha - 1$ $\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{1 - \overline{x}^2}$ $\overline{x} = \frac{\sum x}{x}$ $P(A) = \frac{n(A)}{n(S)}$ P(A or B) = P(A) + P(B) - P(A and B)

 $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$

 $\hat{y} = a + bx$

Copyright reserved

basic education

Department: Basic Education REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

MAY/JUNE/MEI/JUNIE 2024

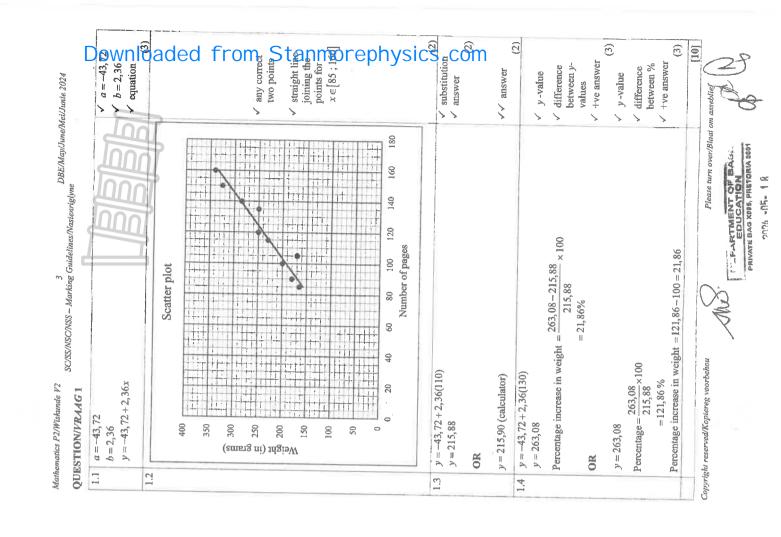
MARKS: 150 PUNTE: 150 Approved (UMALUSI) 2024-05-14 These marking guidelines consist of 26 pages. Hierdie nasienriglyne bestaan uit 26 bladsye. M. LOVED 12524 US Oprombil (DBE IM) 14/5/2024 PARTMENT OF BAG Approved PRIVATE BAG X895, FRETORIA 0001 2024 -05- 18 2024-05-14 PPROVED MARKING GUIDELINF PUBLIC EXAMINATE 1

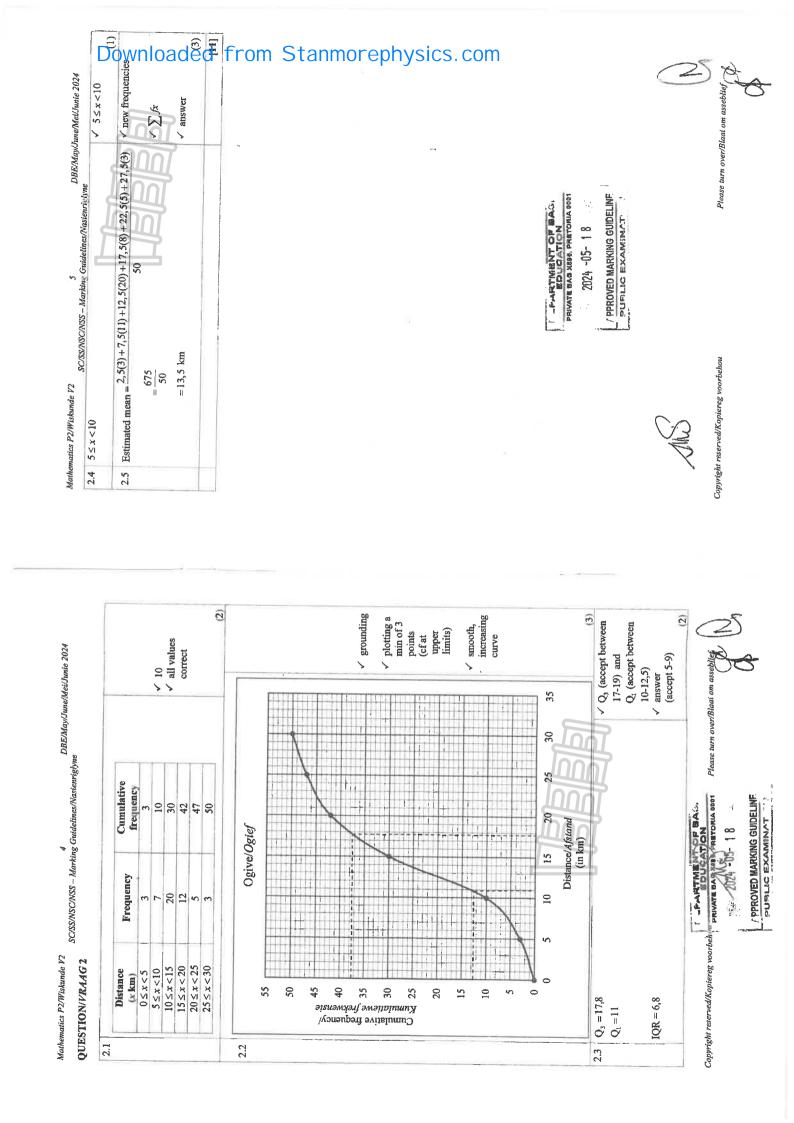
2 L SC/SS/NSC/NSS – Marking Guidelines/Nasienrighme Mathematics P2/Wiskunde V2

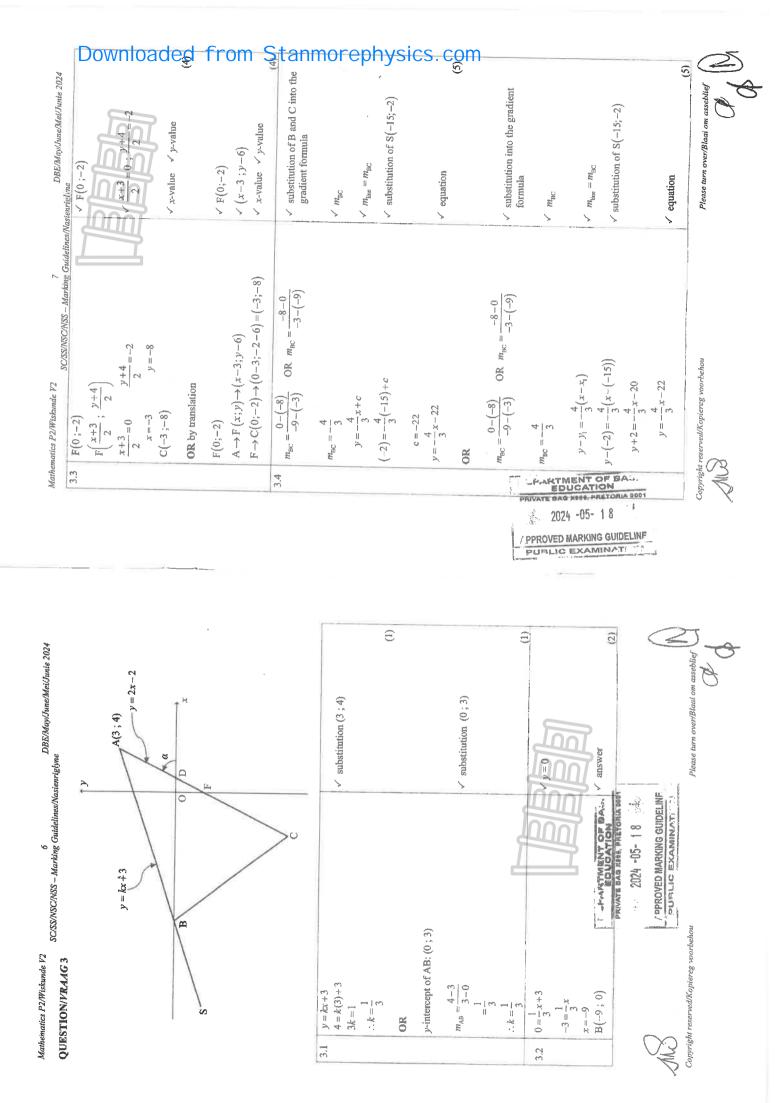
DBE/May/June/Mei/Junie 2024

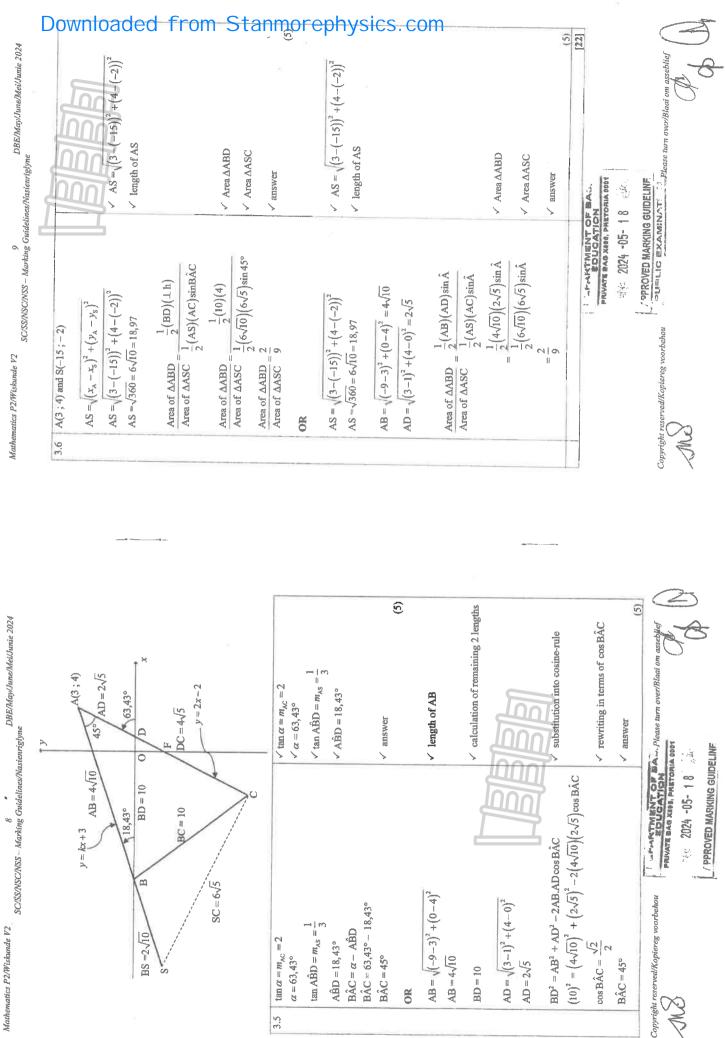
NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and did not redo the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the Marking Guidelines. Stop marking at the second calculation error.
 - Assuming answers/values in order to solve a problem is NOT acceptable.


LET WEL:


.


- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord op 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehowe akkuraatheid word in ALLE aspekte van die Nasienrigtyne toegepas. Hou op nasien by die tweede berekeningsfout.
 - Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.


.

rrect statement ark is independent of a reason) orrekte bewering ewering is ouafhanklik van die r correct reason may only be awarded if the state inay only be awarded if the state egs vir die rede toegeken as die b egs vir die rede toegeken as die b egs vir die rede toegeken as die b die bewering EN rede beide ko as die bewering EN rede beide ko as die bewering EN rede beide ko as die bewering EN rede beide ko 2024 - 05 - 1 8 2024 - 05 - 1 8 JALIC EXAMINAT	Amarki	
evering is ouafhanklik van die r correct reason may only be awarded if the state prekte rede egs vir die rede toegeken as die b f statement AND reason are both f statement AND reason are both as die bewering EN rede beide ko as die bewering EN rede beide ko as die bewering EN rede beide ko 2024 - 05 - 1 8 2024 - 05 - 1 8 2024 - 05 - 1 8 2024 - 05 - 1 8		for a correct statement neut mark is independent of a reason)
correct reason may only be awarded if the state errekte rede egs vir die rede toegeken as die b f statement AND reason are both as die bewering EN rede beide ko as die bewering EN rede beide ko as die bewering EN rede beide ko 2024 - 05 - 18 2024 - 05 - 18 2024 - 05 - 18 2024 - 05 - 18		/ir 'n korrekte bewering vir 'n bewering is ouafhanklik van die rede)
rrekte rede egs vir die rede toegeken as die b f statement AND reason are both as die bewering EN rede beide ko die bewering EN rede beide ko Art merving EN rede beide ko 2024 - 05 - 18 2024 - 05 - 18 Janue Examinor		for the correct reason a mark may only be awarded if the statement is correct)
f statement AND reason are both as die bewering EN rede beide ko wart meent of BA. 2024 - 05 - 18 2024 - 05 - 18 BALIC EXAMINAT		ir 'n korrekte rede word slegs vir die rede toegeken as die bewering korrek is
as die bewering EN rede beide ko Art meen of an and an		mark if statement AND reason are both correct
ARTMENT OF BAC ATT AND		ant toe as die bewering EN rede beide korrek is
		-F-ANT MENT OF BAL PRIVATE BAL PRIVATE BAL 2024 -05-18 PURLIC EXAMINAT
	Copyright reserved/Kopiereg voorbehou	orbehou Please turn over/Blaat om atse

bBE/May/June/MeiUmie 2024 *	* substitution of C(2; p) into L bisector of AB * substitution of C and E into the gradient formula * $(x^{-2})^{2} + (y+3)^{2} < r^{2}$ * $(x^{-2})^{2} + (y+3)^{2} < r^{2}$	2=0 2=0 4x + 6(x + 48 - 12 = 0 4x + 6(x + 48 - 12 = 0 5 + 5(x + 48 - 12 = 0 5 + 5(x + 48 - 12 = 0) 5 + 5(x + 12 - 12 =
DBE SC/SS/NSC/NSS – Marking Guidelines/Nasienrighne	$\sim x^2 - x^2 - \sqrt{x^2 - x^2 - \sqrt{x^2 $	$R x^{2} + y^{2} - 4x + 6y - 1$ $R x^{2} + (x + 8)^{2} - 4x + 6(y - 1)$ $R x^{2} + t^{2}x^{2} + 16(x + 64 - 64 - 64)$ $R x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$ $R x^{2} + t^{2}x^{2} + t^{2}x^{2} + 16(x + 64 - 64)$
Mathematics P2/Wiskunde V2 SC/SS/NSC/NS	$y = -2x+1$ $p = -2(2)+1$ $p = -3$ OR $m_{CB} = -2$ $m_{CB} = -2$ $p - (-1) = -2$ $p - (-1) = -2$ $p - 1 = -2$ $p + 1 = -2$ $p = -3$ BC = r = 5 units $\therefore (x-2)^2 + (y+3)^2 = 25$ $x^2 - 4x + 4 + y^2 + 6y + 9 = 25$ $x^2 + y^2 - 4x + 6y - 12 = 0$	$2^{3} + (y + 3)^{2} = 25$ $x + 8$ $2^{3} + (x + 8 + 3)^{2} = 25$ $4x + 4 + t^{2}x^{2} + 22tx + 121 - 11) + 1 + x(22t - 4) + 100 = 0$ $- 4)^{2} - 4(t^{2} + 1)(100) < 0$ $- 176t - 176t + 16 - 400t^{2} - 400 < -176t - 384 < 0$ $- 176t - 384 < 0$ $- 44t - 96 < 0$ $24(3t + 4) < 0$ $- 44t - 96 < 0$ $- 44t - 90 $
Мат	4. 4. 5. 4.	46
DBE/May/June/Mei/Junie 2024 zlyne		$x = 1 \checkmark y = -1$ (2) $x = 1 \checkmark y = -1$ (2) $x = 1 \lor y = -1$ (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3
10 SC/SS/NSC/NSS – Marking Guidelines/Nasienrighne	P C(2 ; p) C(2 ; p)	Distribution in the second state of the second second state of the second state of th
Mathematics P2/Wiskunde V2 SC/SV	QUESTION/VRAAG 4	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

72
atics P2/Wishunde
Mathem

12 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

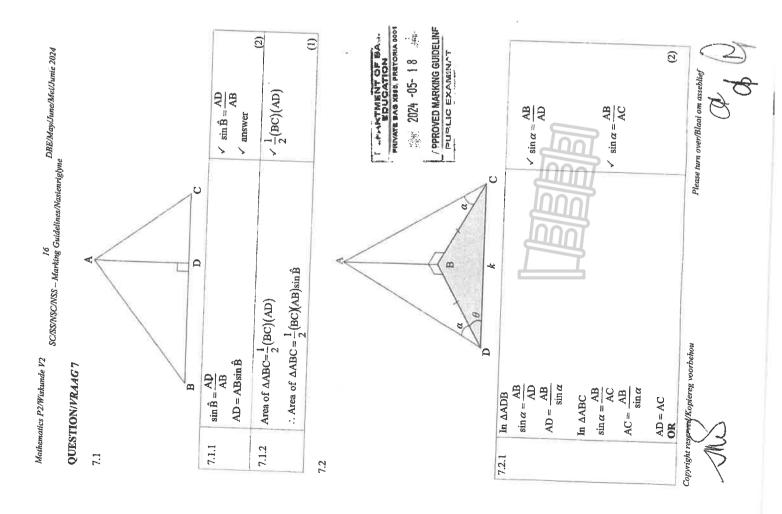
QUESTION/VRAAG 5

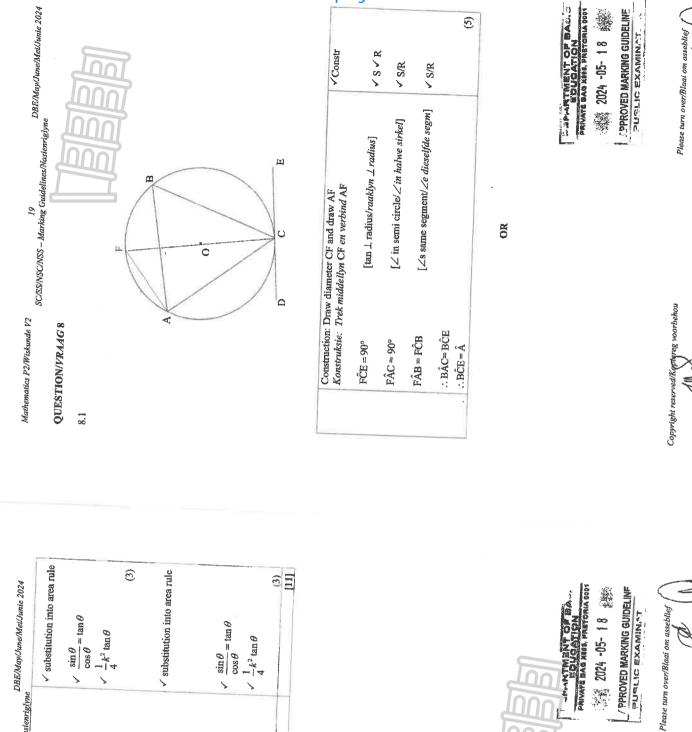
	(2)		(2)			(3)					(3)						(2)	2	
 ✓ -sin 40° ✓ answer 		 sin² 40 answer 		< cos80°	✓ double angle	< answer		< cos 80°		cypansion	. auswer	< sinx / sin ²		✓ simplification	 factorisation of cubes 		$x = x = \cos x = 1$		im overBlaai om asseblief
									130° sin 50°		x)+cos ² x	$+\cos^2 x$			$\left(\sin x + \cos x\right)\left(\sin^2 x - \sin x \cos x + \cos^2 x\right)$	$\cos x$ 1 - $\sin x \cos x$)	*		11-11-11-11-11-11-11-11-11-11-11-11-11-
$= -\sin 40^{\circ}$ = $-p$	cos ² 50°	$=\sin^2 40^\circ$ $=p^2$	cos(-80°) 。	= cos80° = 1 - 2 sin ² 40°	$= 1 - 2p^2$	OR	cos(-80°)	= cos80° = cos(30° ± 50°)	$= \cos 30^{\circ} \cos 50^{\circ} - \sin 30^{\circ} \sin 50^{\circ}$	$=\frac{\sqrt{3}p}{2}-\frac{\sqrt{1-p^2}}{2}$	$LHS = \tan x(1 - \cos^2 x) + \cos^2 x$	$=\frac{\sin x}{\cos x}(\sin^2 x)+\cos^2 x$	$\sin^3 x + \cos^3 x$	cosx	$= \frac{(\sin x + \cos x)}{(\cos x)}$	$= \frac{\cos x}{(\sin x + \cos x)(1 - \sin x \cos x)}$	= RHS cos.x		vedKopiereg voorbehou

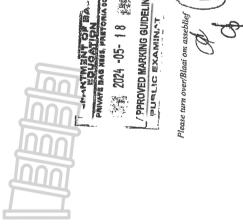
-

rieltre malyJune MeilJunie 2024 multiplication $x + by \cos x$ $x + by \cos x$ $x + 1 = \cos^2 x$ factorisation	from S $x_{xinx} = \frac{\sin x}{\cos x}$	$\sqrt{\cos x} = 0$ or $\tan x$ undefined $\sqrt{x} = 90^{\circ}$ $\sqrt{x} = -90^{\circ}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\sqrt{answer 5.3.1} = \frac{1}{25}$	$\begin{array}{c} < 2x = 80, 79^{\circ} \\ < 2x = 279, 20 \\ < 2x = 40, 40^{\circ} \text{ and } x = 139, 60^{\circ} \\ < + k.180^{\circ}; k \in \mathbb{Z} \\ < + k.180^{\circ}; k \in \mathbb{Z} \end{array} $ (5)	se turn over/Blaai om asseblief
$RHS = \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{(\sin x + \cos x)(1 - \sin x \cos x)}$ $RHS = \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{\cos x}$ $= \frac{(\sin x - \sin^2 x + 1 - \sin x \cos x - \sin x \cos^2 x)}{\cos x}$ $= \tan x - \sin^2 x + 1 - \sin x \cos x$ $= \tan x + \cos^2 x - \sin x \cos x$ $= \tan x + \cos^2 x - \sin x \cos x$	$= \tan x \left 1 - \frac{\sin x \cos x}{\sin x} \right + \cos^2 x$ $= \tan x \left(1 - \cos^2 x \right) + \cos^2 x$ $= LHS$	1	$\frac{11200+\cos 1}{2}$ $\frac{1}{2} - (1 - \cos 1)$ $\frac{1}{2} - (1 - \cos 1)$	$\frac{\sin 150^{\circ} + \cos^2 x - 1}{2} = \frac{1}{25}$ $\frac{\cos 2x}{4} = \frac{1}{25}$ $\cos 2x = \frac{4}{4}$ $\cos 2x = \frac{4}{25}$ $\operatorname{ref} \mathcal{L} = 80, 79^{\circ}$	$2x = 80, 79^{\circ} + k.360^{\circ} \text{ or } 2x = 279, 20^{\circ} + k.360^{\circ}$ $x = 40, 40^{\circ} + k.180^{\circ} \text{ or } x = 139, 60^{\circ} + k.180^{\circ} ; k \in \mathbb{Z}$	\sim

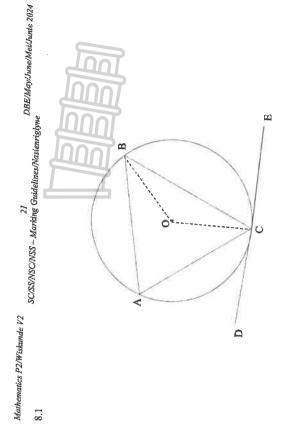
QUES	QUESTION/VR446 6	
6.1	Period = 360°	√ 360°
6.2	Amplitude=1	
6.3	a=-45°	√ a=-45°
6.4	$\sin 2x = k$	
	$k = \sin(2 \times 165^{\circ}) \text{OR} k = \sin(2 \times (-75^{\circ}))$ $k = \sin 330^{\circ} k = \sin(-150^{\circ})$ $k = -\frac{1}{2}$	 -sin 30° -1/2
	OR	8
	$k = \cos(165^{\circ} - 45^{\circ}) \text{ OR } k = \cos(-75^{\circ} - 45^{\circ})$ $k = \cos(120^{\circ}) k = \cos(-120^{\circ})$ $k = -\frac{1}{2}$	
6.5	Points of intersection are translated 60° to the left $x = -15^{\circ}$	2 <u> </u>
6.6	$\sqrt{2}\sin 2x = \sin x + \cos x$	1
	$\sin 2x = \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x$ $\sin 2x = \sin 45^\circ \sin x + \cos 45^\circ \cos x$ $\sin 2x = \cos(45^\circ - x) \text{ OR } \sin 2x = \cos(x - 45^\circ)$	\checkmark division by $\sqrt{2}$ \checkmark special angles $\checkmark \cos(45^{\circ}-x)$ or
	$\therefore 2$ roots in the interval $x \in [-90^{\circ}, 90^{\circ}]$	$\sqrt{2}$ answer $\frac{4}{4}$
	- HANATME PRIVATE BAG XX	-FAKTMENT OF BAL. EDUCATION PRIVATE BAG X695, PRETORIA 0001
	APROVED MA	PROVED MARKING GUIDELINF
right res	Copyright reserved Kopiereg voorbehou MA	Please turn overBlaai om asseblief


OR AUGUMENT AND AUGUMENTATION OR AUGUMENTALINE	delines/Nasienri Iym	
$\frac{\sin 150^{\circ} + \cos^2 x - 1}{2} \approx \frac{1}{25}$		
$\sin 150^{\circ} + \cos^2 x - 1 = \frac{2}{25}$		
$\sin 30^\circ + \cos^2 x - 1 = \frac{2}{25}$		
$\cos^2 x = \frac{29}{50}$		$\sqrt{\cos^2 x = \frac{29}{29}}$
$\cos x = \pm \sqrt{\frac{29}{50}}$		50
$x = 40,40^{\circ} + k.360^{\circ}$ or $x = 319,60^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$ or	360° ; k ∈ Z	$\sqrt{x} = 40,40^{\circ}$ $\sqrt{x} = 139,60^{\circ}$
$x = 139,60^{\circ} + k.360^{\circ}$ or $x = 220,40^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	60°;k∈Z	$\sqrt{x} = 220,40^{\circ}$ and $x = 319,60^{\circ}$ $\sqrt{+k}.360^{\circ}; k \in \mathbb{Z}$
		(5)




Please turn over/Blaai om asseblief /

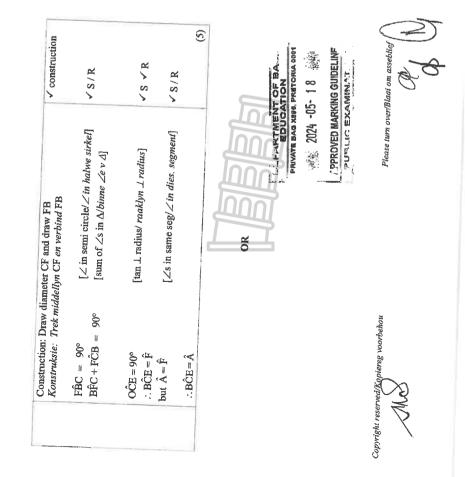
	d from Stan × adda ≤ Adda	<pre>morephysi both Pythagoras statements DB = BC DB</pre>	 (2) substitution of substitution of (180° - 2θ) into sine rule reduction double angle 	 substitution into cosine- rule substitution BC with BD into cosine-rule simplification in terms of BD 	Please turn over/Blaai om asseblief
ACB [common side] [given] [s∠S] [s∠S]	[given] [given] [common side OR given] [∠∠S]	[Pythagoras] [Pythagoras] [given]		ββ β	PRIVATE AND
In AADB and AACB AB = AB ABD = ABC = 90° BD = BC AADB = AACB : AD = AC OR	In AADB and AACB ADB=ACB= <i>a</i> ABD=ABC=90° AB=AB OR BD=BC :: ADB=AACB :: AD = AC	$AD^{2} = AB^{2} + DB^{2}$ $AC^{2} = AB^{2} + BC^{2}$ $But DB = BC$ $\therefore AD^{2} = AC^{2}$ $\therefore AD = AC$	$BD = \frac{k}{\sin\theta} = \frac{k}{\sin(180^{\circ} - 2\theta)}$ $BD = \frac{k\sin\theta}{\sin 2\theta}$ $BD = \frac{k\sin\theta}{2\sin\theta\cos\theta}$ $BD = \frac{k}{2\cos\theta}$	$BC^{2} = k^{2} + BD^{2} - 2k(BD)\cos\theta$ $BD^{2} = k^{2} + BD^{2} - 2k(BD)\cos\theta$ $k^{2} - 2k(BD)\cos\theta = 0$ $2k(BD)\cos\theta = k^{2}$ $\therefore BD = \frac{k}{2\cos\theta}$	Copyright reserved opiereg voorbehou


18 SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne $= \frac{1}{2} \left(\frac{k}{2\cos\theta} \right) \left(\frac{k}{2\cos\theta} \right) (\sin 2\theta)$ Area of $\Delta BCD = \frac{1}{2} (BD) (BC) (\sin(180^{\circ} - 2\theta))$ Area of $\Delta BCD = \frac{1}{2} (DC) (BD) (\sin C\hat{D}B)$ $=\frac{1}{2}k\left(\frac{k}{2\cos\theta}\right)\sin\theta$ $= \frac{2k^2 \sin\theta \cos\theta}{2k^2 \sin\theta \cos\theta}$ 8 cos 8 cos 8 $=\frac{1}{4}k^2 \tan \theta$ $=\frac{1}{4}k^2 \tan\theta$ Mathematics P2/Wiskunde V2 OR 7.2.3

Copyright reserved/Kopigrag voorbehou

щ

b



Construction: Draw radii BO and OC Konstruksie: Trek radiusse BO en OC	lii BO and OC usse BO en OC	< construction
OĈE=90° or BĈE≕	OĈE=90° or BĈE=90°−OĈB [tan⊥radius / raakiyn⊥radius]	V S VR
OĈB = OĤC	[∠s opp equal sides/	S
∴ CÔB=180°-20ĈB	∠e teenoor gelyke sye] [∠s of ∆/∠e van Δ]	
CÂB=90°OĈB	$[\angle$ at centre = $2 \times \angle$ circumf/	✓ S/R
∴ BĈE=CÂB	midptsZ=2× omtreksZ]	

PPROVED MARKING GUIDELINF FLARTINENT OF BAL 2024 -05-18 截载 Please turn over/Blaai oi

Kopiereg voorbehou Copyright reserve

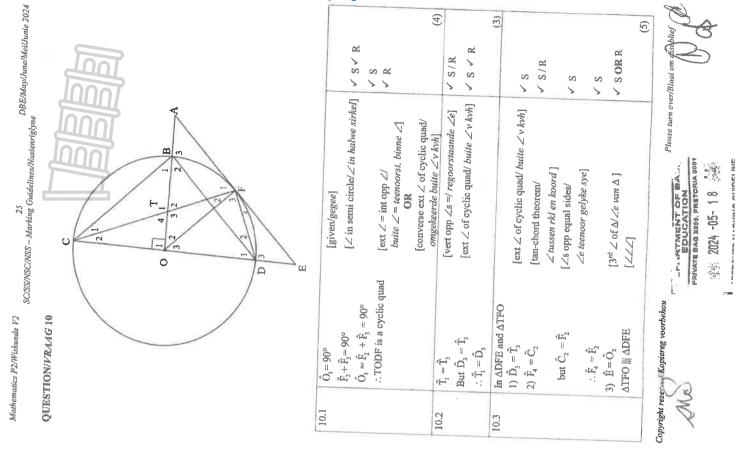
PJIWishtmide V2 20 DBEMdoy/Iune/Mei/Junie 2024 SCSS/NSC/NSS – Marking Guidelines/Nasienrighme

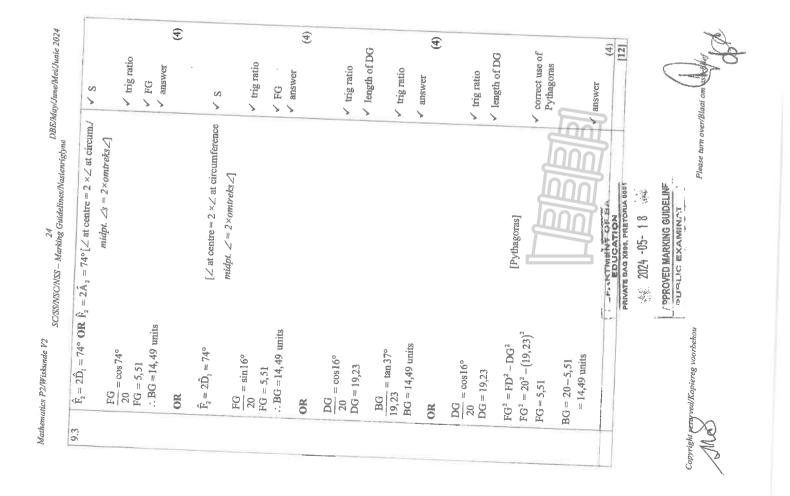
8.1

Mathematics P2/Wiskunde V2

DBEMay/June/Mei/Junie 2024	 S < R V any other the statements 	 < S < R < S < R < S < R < < 	х х х х х х х х х х х х	verBlaci th a sebled
SC/SS/NSC/NSS - Marking Guidelines/Nasienrighme B B B B B B B B B B B B B B B B B B B	L∠s in the same seg/∠e in dies segment] [BA bisects CÂD/BA halveer CÂD] [∠s opp equal sides/∠e teenoor gelyke sye] [∠s opp equal sides/∠e teenoor gelyke sye]	[\angle in semi circle(\angle in halve sirkel] [proved in 9.1/reeds bewys in 9.1] [sum of \angle s in Δ /binne \angle e van Δ] [line from centre \bot to chord/ lyn uit midpt. \bot op koord]	[∠ at centre = 2 ×∠ at circumference/ midpt. ∠s = 2 × omtreks ∠] [proved in 9.1/reeds bewys in 9.1] [∠ in semi circle/∠ in halwe sirkel] [∠ in semi circle/∠ in halwe sirkel] [∠s opp equal sides/∠e teenoor gelyke sye] [win of ∠s in ∆lbinne ∠e van ∆] [line from centre ⊥ to chord/ lyn uit midpt. ⊥ op koord]	OU PERVATE AND AND PROVE BLAND PROVE BLAND OF BLAND PROVED MARKING GUIDELINE
Mathematics P2/Wishunde V2 QUESTION/VRAAG 9 9.1 Â = Ď - 370		9.2 $A\hat{D}G = 53^{\circ}$ $\hat{A}_1 = 37^{\circ}$ $\therefore \hat{G}_1 = 90^{\circ}$ $\therefore CG = DG$ OR	$\hat{\mathbf{f}}_{2}^{*} = 2\hat{\mathbf{D}}_{1} = 74^{\circ}$ $\hat{\mathbf{D}}_{3} = 37^{\circ}$ $\therefore \hat{\mathbf{D}}_{2} = 16^{\circ}$ $\hat{\mathbf{C}}_{1} = \hat{\mathbf{D}}_{2} = 16^{\circ}$ $\therefore \hat{\mathbf{G}}_{2} = 90^{\circ}$ $\therefore \mathbf{CG} = \mathbf{DG}$	Copyright researed Kapiereg voorbehou

Mathematics P2/Wishunde V2 SC/SS/NSC/NSS – Marking Guidelines/Nastenrighyne Z Ά.


	(2)		(2)	(2)	1111
V S V R	< S	8	a > > >	2	
[ext ∠ of cyclic quad /buite ∠ van koh]	[Zs opp equal sides / Ze teenoor gelyke sye] V S	$\begin{bmatrix} \nabla n \leq 0 \end{bmatrix} \Delta build \neq van \Delta \end{bmatrix}$	[tan-chord theorem/ < tussen rkl en koord]		
$\hat{P} = \hat{R}_2 = 68^\circ$	$\hat{Q}_1 = \hat{S}_2$ $\hat{Q}_1 + \hat{S}_2 = 68^\circ$	$\therefore \hat{Q}_1 = 34^\circ$	$\hat{S}_1 = \hat{Q}_1 = 34^\circ$		
8.2.1	8.2.2		8.2.3		



Copyright removed Kopiereg voorbehou

Please turn over/Blaa

8.2

	OR		T
Inn	In ΔDFE and ΔTFO		
	(1) $\hat{D}_3 = \hat{T}_3$	$[ext \angle of cyclic quad/\mathit{buite} \angle \mathit{van} \Delta]$	✓ S
	2) $\hat{F}_4 = \hat{C}_2$	[tan-chord theorem/ \angle tussen rkl en koord]	✓ S/R
	$\hat{F}_{2} + \hat{F}_{3} = 90^{\circ}$	$[\angle \text{ in semi circle}/\angle \text{ in halwe sirke}]$	• 5/K
	$\hat{D}_1 + \hat{D}_2 = 90^\circ - \hat{C}_2$	[sum of \angle s in Δ / binne \angle e van Δ]	
	$\hat{\mathbf{E}} = 90^\circ - 2\hat{\mathbf{F}}_4$	_	10
	$\hat{O}_3 = 2\hat{C}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta / \operatorname{buile} \angle \operatorname{van} \Delta]$	✓ S
	03 202	$[\angle \text{ at centre } = 2 \times \angle \text{ at circumference}/$	
	$\hat{O}_2 = 90^\circ - 2\hat{F}_4$	$midpt. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
		$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	✓ S
	$\hat{O}_2 = \hat{E}$		
	$3) \therefore \hat{F}_4 = \hat{F}_2$	$[3^{rd} \angle \text{ of } \Delta / \angle e \text{ van } \Delta]$	✓ S OR R
10.4	ΔTFO ΔDFE		(5
10.4	$\hat{\mathbf{B}}_2 = \hat{\mathbf{D}}_1$	[∠s opp equal sides/∠e teenoor gelyke sye]	✓ S/R
	$\hat{B}_2 = \hat{E}$	[given/gegee]	
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{E}}$		
	∴DB EA	[corresp ∠s =/ooreenkomstige ∠e gelyk]	✓ R
10 5			(2)
10.5	In $\triangle OEA$ DB EA	Intervention de la construction	Alat of Campy
	OD_OB	[proven/reeds bewys]	
	DE BA	[line one side of Δ/lyn een sy van Δ]	✓ R
	1	OR	
		[prop theorem; DB EA/ eweredigheid stelling; DB EA]	
	$\therefore DE = \frac{DO.AB}{}$		15
	OB FO TO		✓ S
	$\frac{FO}{FE} = \frac{TO}{DE}$	[ΔTFO ΔDFE]	S/R
	$DE = \frac{TO.FE}{TO.FE}$	lanal	
	$\frac{FO}{DO.AB} = \frac{TO.FE}{TO.FE}$	Innat	S
	1000000000000000000000000000000000000		∕s
r.	$\frac{DO.AB}{DO.FE} = \frac{TO.FE}{TO.FE}$		
	DO DO	[DO = OB = FO]	
	$\therefore DO = \frac{TO.FE}{AD}$		
	AB		(5)
	hanna an ann an an an an an ann an an an	TOTAL/TOTAAI	[19]
			. 130
yright res	arved/Kopiereg voorbehou	Please turn over/Blaat	omaseblief
Me		PRIVATE BAG X895, PRETORIA 0001	IVJ
V			

PPROVED MARKING GUIDELINE