

GRADE 9

MATHEMATICS

MARKS: 60

Mathematics Test 1st Paper

INTRUCTION AND INFORMATION

Read all the instructions carefully

- 1. Answer ALL questions...
- 2. Clearly show ALL calculations, diagrams, graphs, etc. that you used to determine the answer.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. You may use an approved scientific calculator (non-programmable and non-graphical) unless stated otherwise
- Diagrams are NOT necessarily drawn to scale.
- 6. Answers only will NOT necessarily be awarded full marks.
- 7. Write neatly and legible.

Copyright reserved Page 2 of 6 Please turn over

[11]

Mathematics Test 1st Paper

QUESTION 1

- 1.1 The temperature at Golden gate is -5°C. It increases by 4°C. What is the new temperature? (1)
- 1.2 The sum of two numbers is -1 and their product is -12. Find the two numbers. (2)
- 1.3 Simplify the following: $2(-2) \sqrt[3]{27} + (-3)^3$ (4)
- 1.4 Use prime factors to find the HCF and the LCM of 300 and 135 (4)

[11]

QUESTION 2

- 2.1 Simplify the following ratio: 120c : 30c (1)
- 2.2 Show by calculations which deal is cheaper: 30 milk chocolate bars for R270 or 42 mint chocolate bars for R320. (3)
- 2.3 In a bag of marbles there are blue and pink marbles in the ratio 3:11. If there are 18 blue marbles, how many marbles are in the bag?
- 2.4 Simplify the following WITHOUT the use of a calculator

$$2.4.1 a^x \times a^{x-1} \times a^2 (1)$$

2.4.1
$$a^{2} \times a^{2} \times a^{2}$$
 (1)
2.4.2 $(3 \cdot 2^{2})^{3}$ (3)
 $2^{2 \cdot 3^{5}}$

QUESTION 3

3.1 Simplify the following

$$3.1.1 x^2 - 5x - 11 + 3x^2 - 5x + 6 (2)$$

$$3.1.2 (x+3)(x-4) (3)$$

3.2 Factorise the following

$$3.2.1 3(y+2) - x(y+2) (2)$$

$$3.2.2 4x^3 - 4x (3)$$

3.3 Find the value of p if
$$(x - 4)$$
 is a factor of $x^2 - px + 20$ (3)

3.4 Simplify:
$$\frac{x^2 + xy - 2y^2}{x^2 - y^2}$$
 [16]

FS NOV 2022

[8]

Mathematics Test 1st Paper

QUESTION 4

Solve for x:

$$4.1 35 + x = 75 (1)$$

$$4.2 12x - 10 = 6x + 32 (2)$$

$$4.3 2^{x+1} = 1 (2)$$

$$4.4 \qquad \frac{x-11}{2} - 5 = \frac{x+2}{6} \tag{3}$$

QUESTION 5

5.1 Study the pattern below and **write down** the 7th and 9th term (2)

$$\frac{1}{2}$$
; 1; $\frac{3}{2}$; 2; $\frac{5}{2}$; 3;...

5.2 Consider the pattern: 14; 12; 10; 8; ...

5.2.1 Write the general rule
$$(T_n)$$
 for the pattern. (2)

5.2.2 Which term has the value of
$$-74$$
 (2)

5.3 Study the pattern below and find the general rule (1)

[7]

QUESTION 6

The graph below shows the temperature on a certain day taken every hour.

Time of Day

Sketch the graph of
$$y = 2x - 4$$
 (3)

6.3 Determine the equation of the graph below (3)

[7]

TOTAL [60]

Copyright reserved Page 5 of 6 Please turn over

NAME:			
Loni			

GRADE 9: CLASS: _____

ANNEXURE A

6.2

Copyright reserved Page 6 of 6 Please turn over

GRADE 9

MATHEMATICS

MARKING GUIDELINES 2022

PAPER 1

DURATION 1HOUR 30 MINUTES

MARKS: 60 S.com

QUESTION 1

	The temperature at Golden gate is -5°C. It increases by 4°C. What is the new temperature?	✓ for -1	
	-5 + 4 = -1		1
1.2	The sum of two numbers is -1 and their product is -12 . Find the two numbers? $3 + (-4) = -1 \text{ and } 3 \times (-4) = -12$	✓ for 3 ✓ for -4	2
1.3	Simplify the following WITHOUT the use of a calculator $2(-2) - \sqrt[3]{27} + (-3)^3 CA$ $= -4 - 3 - 27$ $= -34$	✓ for -4 ✓ for -3 ✓ for -27 ✓ for -34	4
1.4	Use prime factors to find the HCF and the $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ for prime factors $2^2 \times 3 \times 5^2$ ✓ for prime factors $3^3 \times 5$ ✓ for HCF = 15 ✓ for LCM = 2700	4
			[11]

Nov Test 2022

QUESTION 2

2.1	Simplify the following ratio $120c: 30c$ 4:1	✓ for 4:1	1
2.2	Show by calculations which deal is cheaper? 30 milk chocolate bars for R270 or 42 mint chocolate bars for R320. Milk chocolate $cost = \frac{R270}{30} = R9 \ per \ bar$ and	 ✓ for Cost of milk chocolate bar = R9 ✓ for Cost of Mint chocolate bar = R7,62 ✓ for Mint chocolate bars is cheaper 	3
	Mint chocolate cost $\frac{320}{42}$ = R7.62 per bar \therefore 42 mint chocolate bars is the cheapes		

Mathematics meloaded from Stanmore physics.com Grade 9

Nov Test 2022

-5		the state of the s	South Section	
2.3		g of marbles there are blue and pink marbles in	$\sqrt{\text{for } \frac{x}{18} = \frac{11}{3}}$	
4	The second second	to 3:11. If there are 18 blue marbles, how many		
TU	marble	s are in the bag?	\checkmark for $x = 66$ pink marbles	
In	Blue: P	ink	√ for 84 marbles	
100	#		tunmorephysics.com	
44	M_3 :	11		
	18 :	\boldsymbol{x}		3
	$\frac{x}{18} = \frac{11}{3}$	CA		
	$x = \frac{11}{3}$	× 18		
	x = 66	pink marbles		
	∴ Total	$= 18 + 66 = 84 \ marbles$		
2.4	Simpli	fy the following WITHOUT the use of a calculate	or	
	2.4.1	$a^x \times a^{x-1} \times a^2$	\checkmark for a^{2x+1}	
		$=a^{2x+1}$		1
		$(3 \cdot 2^2)^3$	\checkmark for $3^3 \cdot 2^6$	
	2.4.2	$2^2 \cdot 3^5$		
	2.4.2	33.26	✓ for $3^{-2} \times 2^4$ or $\frac{16}{9}$	
		$\frac{(3 \cdot 2^2)^3}{2^2 \cdot 3^5}$ $= \frac{3^3 \cdot 2^6}{2^2 \cdot 3^5} \text{ CA}$		2
		$= 3^{-2} \times 2^4$ or $\frac{16}{9}$		
2				[10]
				A 5

QUESTION 3

3.1	Simplify	the following		
n	3.1.1	$x^2 - 5x - 11 + 3x^2 - 5x + 6$	\checkmark for $4x^2$	
Di	置	$=4x^2-10x-5$	✓ for -10 <i>x</i>	2
_	3.1.2	(x+3)(x-4)	\checkmark for x^2	
		$x^2 - x - 12$ Stanmorephysics.com	\checkmark for $-x$	
			✓ for -12	3
3.2	Factorise	e the following fully		
	3.2.1	3(y+2)-x(y+2)	\checkmark for $(y+2)$	
		(y+2)(3-x)	\checkmark for $(3-x)$	2
	3.2.2	$4x^3 - 4x$	✓ for common factor 4x	
		$=4x(x^2-1)$	✓ for $(x^2 - 1)$	
		=4x(x-1)(x+1)	$\checkmark \text{ for } 4x(x-1)(x+1)$	3
3.3	Find the	value of p if $(x - 4)$ is a factor of $x^2 - px + 20$	✓ for $((x-4)(x-5)$	
		$x^2 - px + 20$	$\checkmark \text{ for } -5x - 4x = -px$	
		=(x-4)(x-5)	\checkmark for $p=9$	
		-5x - 4x = -px		
		-9x = px		
		∴ <i>p</i> = 9		3
3.4	Simplify	7	$\checkmark \text{ for } x - y)(x + 2y)$	
		$\frac{x^2 + xy - 2y^2}{x^2 - y^2}$	$\checkmark \text{ for } (x-y)(x+y)$	
			\checkmark for $\frac{(x+2y)}{(x+y)}$	
		$\frac{(x-y(x+2y))}{(x-y(x+y))}$	(~1))	
		$=\frac{(x+2y)}{(x+y)}$		
		(x+y)		3
				[16]

Mathematica meloaded from Stanmore physics.com Grade 9 - 6 -

Nov Test 2022

	Solve for x		
4.1	35 + x = 75	\checkmark for $x = 40$	
ā	x = 40		1
4.2	12x - 10 = 6x + 32	✓ for $6x = 42$	
	12x - 6x = 32 + 10 CA	\checkmark for $x = 7$	
	6x = 42		
	x = 7		2
4.3	$2^{x+1}=1$	✓ for 2 ⁰	
	$2^{x+1}=2^0$	✓ for $x = -1$	
	Stanmore physics.com		2
4.4	$\frac{x-11}{2}-5=\frac{x-3}{6}$	✓ for LCD = 6	
	2 0	\checkmark for $3(x-11)-30 =$	
	$multiply\ by\ LCD = 6$	x-3	
	3(x-11) - 30 = x - 3 CA	✓ for $2x = 60$	
	3x - 33 - 30 = x - 3		
	2x = 60	\checkmark for $x = 30$	
	x = 30		
			4
			[9]

\perp	DOL			
In	QUESTION 5			
	Study	the patterns below and write down the 7 th and 9 th term $\frac{1}{2}$; 1; $\frac{3}{2}$; 2; $\frac{5}{2}$; 3; $\frac{7}{2}$; $\frac{9}{2}$	✓ for $\frac{7}{2}$ ✓ for $\frac{9}{2}$	
				2
5.2.	Consid	ler the pattern: 14; 12; 10; 8;		
	5.2.1	Write the general rule (T_n) for the pattern	✓ for -2 <i>n</i>	
		$T_n = -2n + 16$	✓ for +16	2
	5.2.2	Which term has the value of −74	✓ for $-2n + 16 = -74$	
		-2n + 16 = -74 CA	\checkmark for $n = 45$	
		n = 45		2
5.3.	Study	the pattern below and find the general rule	\checkmark for $T_n = n^2$	
				1
	70			[7]

Determine the equation of the graph below

$$Gradient = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{4 - 0}{-1 - 2}$$

$$m = -\frac{4}{3}$$

Substitute m and (-1; 4) on the line to find c

$$y = mx + c$$

$$4 = -\frac{4}{3}(-1) + c$$
Stanmorephysics.com
$$c = 4 - \frac{4}{3}$$

$$c = 4 - \frac{4}{3}$$

$$c = \frac{8}{3}$$

$$\therefore y = -\frac{4}{3}x + \frac{8}{3}$$

✓ for gradient $\left(-\frac{4}{3}\right)$

✓ for y-intercept $(\frac{8}{3})$

✓ for
$$y = -\frac{4}{3}x + \frac{8}{3}$$

3

[7]