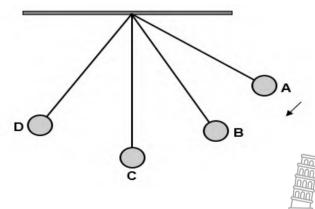

Downloaded from Stanmorephysics.com

11 pages and 2 formula sheets

INSTRUCTIONS AND INFORMATION

- 1. Write your name in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of 8 questions. Answer ALL the questions.
- 3. Start each question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. You may use a non-programmable calculator.
- 6. You may use appropriate mathematical instruments.
- 7. USE the DATA SHEETS that are attached.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Write neatly and legibly.



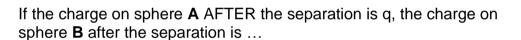
2

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question numbers (1.1 to 1.8) in the ANSWER BOOK, e.g. 1.9 E.

- 1.1 Which of the following physical quantities is not a vector?
 - A Distance
 - B Force
 - C Velocity
 - D Acceleration
- 1.2 In the equation $\Delta x = v_{i.}\Delta t + \frac{1}{2}a\Delta t^2$, the part $v_{i.}\Delta t$ represents the ...
 - A time.
 - B velocity.
 - C acceleration.
 - D displacement.
- 1.3 Which of the following is obtained by calculating gradient of displacement versus time graph?
 - A Time
 - B Velocity
 - C Acceleration
 - D Displacement
- 1.4 In the diagram below, a pendulum bob of mass **m** is released from point **A** and swings past points **B**, **C** and **D**. Ignore all effects of air resistance.

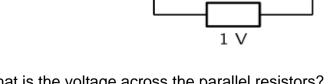
In which of the following positions will the value of the gravitational potential energy of the pendulum bob be the smallest?


- A A
- B B
- C C
- D D

(2)

(2)

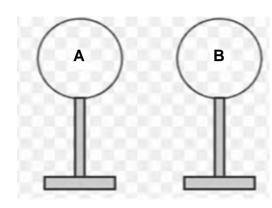
(2)


- 1.5 The number of sound vibrations per second is the:
 - А Period
 - В Frequency
 - С Amplitude
 - Wavelength D
- 1.6 Two identical spheres, A and B, on insulated stands, carry different charges. The spheres are brought into contact and separated again.

4 V

- А -q.
- В q.
- С zero.
- D 2q.
- 1.7 Consider the circuit diagram below:

7 V.



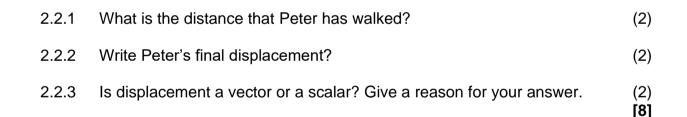
What is the voltage across the parallel resistors?

- 5V А
- В 7V
- С 2V
- D 4V

(2)

(2)

- 1.8 Which of the following statements best describes resistance in parallel?
 - A Adding more resistors in parallel decreases the total current of the circuit
 - B Adding more resistors in parallel decreases the effective resistance of the circuit
 - C Removing a resistor in parallel increases the total current of the circuit
 - D Removing resistor in parallel decreases the effective resistance of the circuit

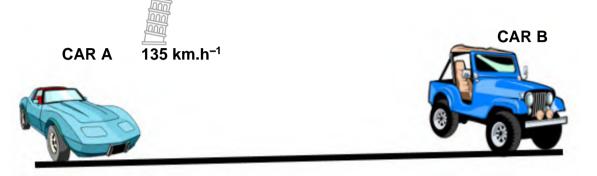

QUESTION 2 (Start on a new page.)

PETER'S

HOUSE

- 2.1 Define the term *vector*.
- 2.2 Peter stands at the front door of his house. Avogadro Street is 25 m away from the front door. Peter walks to Avogadro Street and back to the front door of his house.

25 m


Avogadro street

(2)

(2) [**16**]

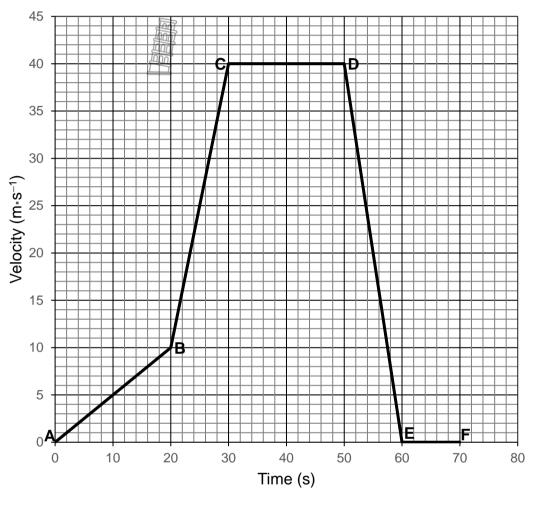
QUESTION 3 (Start on a new page.)

Car **A** driving at 135 km.h⁻¹ approaches a stationery car **B**. The driver of car **B** noticed that car **A** is approaching him at a very high speed. The driver of car **B** reacted suddenly by accelerating his car from rest at 1,5 m·s⁻² for 11,5 s. After 11,5 s car **B** continued driving with a

- 3.1 Convert 135 km.h⁻¹ to $m \cdot s^{-1}$.
- 3.2 Determine the velocity of car **B** while trying to avoid car **A**.
- 3.3 How far has car **B** driven after 11,5 seconds?
- The driver of car A suddenly hit the brakes and managed to stop after 40 m.
 What acceleration does car A experience to come to a standstill after 4 seconds?

[14]

(2)


(4)

(4)

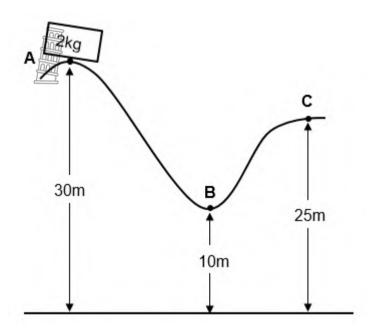
QUESTION 4 (Start on a new page.)

Study the velocity versus time graph below for the motion of a car travelling east.

Velocity vs time graph

4.1 Define the term *acceleration*.

4.3

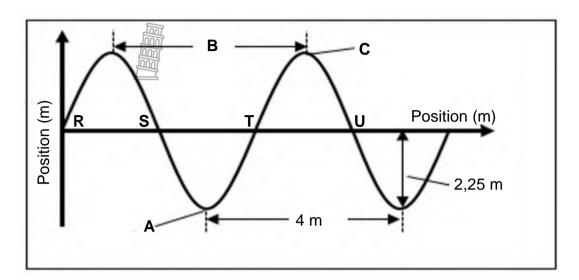

- (2)
- 4.2 Use the graph to describe the motion of the car in the following sections:

4	.2.1	AB		(2)
4	.2.2	CD		(2)
4	.2.3	EF		(2)
C	Calcula	ate the acceleration of the car between D and E .		(4)
h	n whic	h section AB or BC is the acceleration of the ca	r the greatest? Give a	

4.4 In which section, AB or BC, is the acceleration of the car the greatest? Give a reason for your answer.
 (2)
 [14]

QUESTION 5 (Start on a new page.)

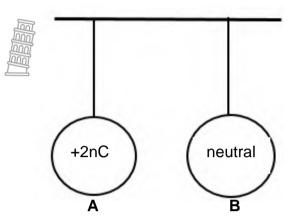
A rollercoaster cart of mass 2 kg is released from rest at point **A**, 30 metres above the ground. The cart moves along a frictionless surface **ABC** as shown below.



5.1	Define the term gravitational potential energy.	(2)
5.2	Prove with calculations that the mechanical energy of the cart at point ${f A}$ is 588 J.	(3)
5.3	State the law of conservation of mechanical energy in words.	(2)
5.4	Calculate the velocity of the cart when it is at point B .	(4)
5.5	How will the mechanical energy of the cart at point C compare with the mechanical energy of the cart at point B ? Write only GREATER THAN, LESS THAN or EQUAL TO. Give a reason for your answer.	(2) [13]

QUESTION 6 (Start on a new page.)

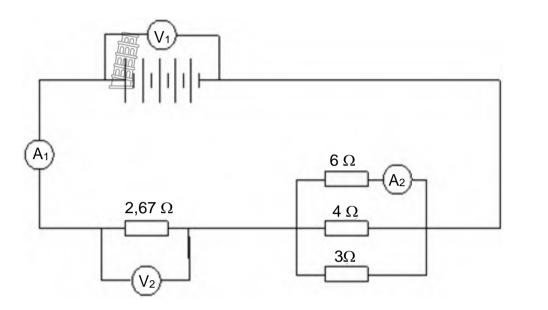
The diagram represents the pattern of waves with frequency 30 Hz, moving from the left to right.



6.1	Define the term <i>transverse wave.</i>	(2)
6.2	Label points A , B and C .	(3)
6.3	How much time has lapsed while the wave moved from R to T ?	(2)
6.4	Are points R and S on the wave in phase? Explain your answer.	(2)
6.5	Calculate the speed of the wave.	(3) [12]

QUESTION 7 (Start on a new page.)

Two identical insulated spheres, **A** and **B**, suspended by a light inextensible string from a ceiling, are held a distance apart, as shown below.


Sphere **A** carries a charge of + 2nC, while sphere **B** is neutral.

7.1	Explain what is meant by <i>neutral charge</i> .	(2)
each c	e A is brought near the neutral sphere B and the spheres are allowed to touch other. Immediately after touching, sphere B moves away from sphere A . e B now has an excess of 20 electrons.	
7.2	State the principle of conservation of charge in words.	(2)
7.3	Briefly explain how the neutral sphere B is attracted to sphere A .	(2)
7.4	Calculate the magnitude of the charge of sphere B .	(3)
7.5	Calculate the charge on each sphere after they have separated.	(3) [12]

QUESTION 8 (Start on a new page.)

In the circuit diagram below, each cell has a voltage of 1,5 V. Use the diagram to answer the questions that follow.

8.1 What is the reading on V_1 ?

8.2

Calculate the following:

(1)

		TOTAL:	100
8.3	Determ	nine the magnitude of the charge that flows through ${f A}_1$ in 6 minutes.	(3) [11]
	8.2.3	The reading on V ₂	(2)
	8.2.2	Reading on A ₁	(2)
	8.2.1	Total resistance of the circuit	(3)

DATA FOR PHYSICAL SCIENCES GRADE 10 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 10 VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m⋅s ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m⋅s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ^{−34} J⋅s
Charge on electron Lading op elektron	e	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	Me	9,11 x 10 ⁻³¹ kg

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_{f} = v_{i} + a\Delta t$	$\Delta \mathbf{x} = \mathbf{v}_{i} \Delta t + \frac{1}{2} \mathbf{a} \Delta t^{2}$
$v_f^2 = v_i^2 + 2a\Delta x$	$\Delta \mathbf{x} = \left(\frac{\mathbf{v}_{f} + \mathbf{v}_{i}}{2}\right) \Delta \mathbf{t}$

WORK, ENERGY AND POWER/ARBEID, ENERGIE EN DRYWING

$U = mgh or/of E_P = mgh$	$K = \frac{1}{2} mv^2$ or/of $E_k = \frac{1}{2} mv^2$
$E_M = E_k + E_p$ or/of $E_M = K + U$	

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$	
$E = hf or/of E = h\frac{c}{\lambda}$		

ELECTROSTATICS/ELEKTROSTATIKA

0	O + O
n = -	$Q = \frac{\alpha_1 + \alpha_2}{\alpha_1 + \alpha_2}$
е	2

ELECTRIC CIRCUITS

$Q = I \Delta t$	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
$R_{s} = R_{1} + R_{2} + \dots$	$V = \frac{W}{Q}$

Downloaded from Stanmorephysics.com

PROVINCIAL EXAMINATION NOVEMBER 2022 GRADE 10 MARKING GUIDELINES

PHYSICAL SCIENCES (PAPER 1)

8 pages

	Downloaded	from S	TANMOREPHYSICS.COM MARKING GUIDELINES	PHYSICAL SCIENC (PAPER 1)	CES GRADE 10
QUE	CSTION 1				
1.1	A✓✓				(2)
1.2	D√√				(2)
1.3	B √√				(2)
1.4	C ✓✓				(2)
1.5	B√√				(2)
1.6	B √√				(2)
1.7	C ✓✓				(2)
1.8	B ✓✓				(2) [16]

2.1	2.1 Physical quantity with both magnitude and direction. $\checkmark \checkmark$		(2)
2.2	2.2.1	50 m ✓✓	(2)
	2.2.2	0 m ✓✓	(2)
	2.2.3	Vector \checkmark – It has magnitude, unit and direction. \checkmark	(2) [8]

Downloaded from S	anmorephysics.com	PHYSICAL SCIENCES (PAPER 1) GRADE 10
	MARKING GUIDELINES	(PAPER 1) GRADE 10

3.1	$\frac{135 \text{ km.h}^{-1}}{3,6} \checkmark$	
	$37,5 m \cdot s^{-1} \checkmark$ $vf = vi + a\Delta t \checkmark$	(2)
3.2	$vf = vi + a\Delta t \checkmark$	
	$= 0 \checkmark + (1,5)(11,5) \checkmark$	
	$= 17,25 \ m \cdot s^{-1} \checkmark$	(4)
3.3	$\Delta x = v_i \Delta t + \frac{\gamma_2}{a} a \Delta t^2 \checkmark$	
	$= 0 \checkmark + \frac{1}{2} (1,5)(11,5)^2 \checkmark$	
	$= 99,19 \ m \checkmark$	(4)
3.4	$\Delta x = v_i \Delta t + \gamma_2 a \Delta t^2 \checkmark$	
	$40 = (37,5)(4) \checkmark + \frac{1}{2} (a)(4)^2 \checkmark$	
	$a = -13,75 \ m \cdot s^{-2} \checkmark$	(4)

(4) [**14**]

Downloaded from S	tanmorephysics.com	PHYSICAL SCIENCE	S
	MARKING GUIDELINES	(PAPER 1) G	RADE 10

4.1 The rate of change in velocity. $\checkmark \checkmark$

OR

	The ch	nange in velocity per unit time. ✓✓	(2)
4.2	4.2.1	 The car starts from rest and velocity increases to 10 m⋅s⁻¹ in 20 seconds. ✓ Constant positive acceleration or uniformly accelerated motion. ✓ 	(2)
	4.2.2	 Velocity is constant (uniform). ✓ Acceleration is zero. ✓ 	(2)
	4.2.3	Car has stopped. ✓ Acceleration is zero. ✓	(2)
4.3	a = m	$=\frac{y_2-y_1}{x_2-x_1} \checkmark$	
		$=\frac{0-40}{60-50}$ \checkmark	
		$=$ - 4 \checkmark	
		$4 - \frac{2}{2}$ in the end of the dimension end of the element of the element is a second to	

= 4 $m \cdot s^{-2}$, in the opposite direction or west (deceleration in opposite direction) \checkmark

OR

$$v_{f} = v_{i} + a.\Delta t \checkmark$$

$$\underline{0 = 40} \checkmark + a \times 10 \checkmark$$

$$\therefore a = -4$$

$$= 4 \ m \cdot s^{-2}, \text{ in the opposite direction or west (deceleration)} \checkmark \qquad (4)$$

(2) [**14**]

4.4 BC \checkmark , Steeper slope. \checkmark

Downloaded from S	TANMOREPHYSICS.COM	PHYSICAL SCIENC	ES
	MARKING GUIDELINES	(PAPER 1)	GRADE 10

- 5.1 Energy of an object as a result of its position/height above the surface of the Earth. $\checkmark\checkmark$
- 5.2 EM_A = mgh + $mv^2 \checkmark$ = $(2 \times 9.8 \times 30)$ + $\frac{1}{2} \times 2 \times 0^2 \checkmark$ = 588 + 0= $588 J \checkmark$ (3)
- 5.3 Total mechanical energy is conserved in an isolated system. \checkmark

OR

Mechanical energy at the top equals mechanical energy at the bottom in the absence of friction. $\checkmark\checkmark$ (2)

5.4 **POSITIVE MARKING FROM QUESTION 5.2**

$$EM_{A} = EM_{B} \checkmark$$

$$588 \checkmark = mgh + \frac{1}{2} + mv^{2}$$

$$588 = 2 \times 9,8 \times 10 + \frac{1}{2} \times 2 v^{2} \checkmark$$

$$588 - 196 = v^{2}$$

$$\therefore v = \sqrt{392}$$

$$= 19,80 \text{ m} \cdot \text{s}^{-1} \checkmark$$
 (4)

5.5 EQUAL TO \checkmark . Mechanical energy is conserved. \checkmark

(2)

(2) [**13**]

Downloaded from S	anmorephysics.com	PHYSICAL SCIENC	CES
	WARKING GUIDELINES	(PAPER 1)	GRADE 10

6.1	A wave where the movement of particles of the medium is perpendicular to the direction of propagation of the wave. $\checkmark\checkmark$	(2)
6.2	A – Trough ✓	
	A – Trough \checkmark B – Wavelength	
	$C-Crest \checkmark$	(3)
6.3	$T = \frac{1}{f}$	
	$T = \frac{1}{30} \checkmark$	
	= 0,03s ✓	(2)

- No, ✓ two points in phase are separated by a complete number of wavelengths. or They are not separated by wavelength. ✓ (2)
- 6.5 $v = f \times \lambda \checkmark$
 - $v = 30 \times 4$ ✓

$$= 120 \text{ m} \cdot \text{s}^{-1} \checkmark$$

(3) [**12**]

Downloaded from	Stanmorephysics.com	PHYSICAL SCIENCES (PAPER 1) GRADE 10
	MARKING GUIDELINES	(PAPER 1) GRADE 10

7.1	Neutral charge – an atom that has equal number of electrons and protons. $\checkmark\checkmark$	(2)
7.2	The net charge of an isolated system remains constant during any physical process. $\checkmark\checkmark$	(2)
7.3	Due to polarisation, a negative charge is developed on the side of sphere B near sphere A and a positive charge is developed on the side of sphere B that is away from sphere $\mathbf{A} \checkmark$. Sphere B moves towards sphere A (attraction) as opposite charges attract.	(2)

7.4 $Q = n.e \checkmark$

$$Q=20\times(-1,6\times10^{-19})\checkmark$$

$$Q = -3.2 \times 10^{-18} \,\mathrm{C} \,\checkmark$$
(3)

7.5 $Qnet = \frac{Q1 + Q2}{2} \checkmark$

$$Qnet = \frac{(2 \times 10^{-9}) + (-3.2 \times 10^{-18})}{2} \checkmark$$

$$Qnet = 9,99 \times 10^{-10} \text{ C} \checkmark$$

(3)	
[12]	

Downloaded from S	Stanmorephysics.com	PHYSICAL SCIENCES (PAPER 1) GRADE 10
	WARKING GUIDELINES	(PAPER 1) GRADE 10

8.1 7.5 v
$$\checkmark$$
 (1)
8.2 8.2.1 $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
 $\frac{1}{R_p} = \frac{1}{6} - \frac{1}{4} + \frac{1}{3} \checkmark$
 $R_p = 1,3 \Omega$
 $R_r = R_r + R_p$
 $R_T = 2.67 + 1.3 \checkmark$
 $R_T = 3.97 \Omega$ (3)
8.2.2 $I = \frac{V}{R}$
 $I = \frac{7.5}{3.97} \checkmark$
 $I = 1.88 A \checkmark$ (2)
8.2.3 $I = \frac{V}{R}$
 $1.88 = \frac{V}{2.67} \checkmark$
 $V = 5.01 V \checkmark$ (2)
8.3 $I = \frac{Q}{t}$
 $1.88 = \frac{Q}{360} \checkmark$

 $Q = 676,8 C \checkmark$

(3) [11]

TOTAL: 100