Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

MARKS: 100

TIME: 2 hours

This question paper consists of 9 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Write neatly and legibly.

Amahle recorded the amount of data (in MB) that she had used daily in the past 15 days.

3	10	12	13	15	15	16	18	24	26	34	40	42	43	45

- 1.1 Calculate the range of the data. (2)
- 1.2 Calculate the mean data usage. (2)
- 1.3 Write down the five number summary of the data. (3)
- 1.4 Draw a box and whisker diagram to represent the data. (3)
- 1.5 Determine the interquartile range. (3)

[13]

QUESTION 2

The company HEALTHCRAZY conducted a survey at a gym in KwaZulu – Natal, to find out which age group most frequently uses their health supplements.

AGES	FREQUENCY
20≤ <i>x</i> <30	29
30≤ <i>x</i> <40	28
40≤ <i>x</i> <50	21
50≤ <i>x</i> <60	15
60≤x<70 ⁻ .Com	10
70≤ <i>x</i> <80	2

- 2.1 Identify the modal class for the data. (1)
- 2.2 Determine the interval in which the median lies. (1)
- 2.3 Estimate the mean age of the people that use the health supplements. (4)

[6]

In the cartesian plane below, A(-3;0), B(0;2), C(2;-1) and D(-1;-3) are points on a quadrilateral.

- 3.1 Determine the coordinates of R, the midpoint of AC. (3)
- 3.2 Calculate the gradient of the line AB. (2)
- 3.3 Calculate the length of AC. (3)
- 3.4 If ABCD is a rhombus, calculate the area of ABCD. (5)

[13]

If $4\tan\theta = -3$ and $\cos\theta > 0$, WITHOUT using a calculator, determine the value of:

$$4.1 \qquad \sin\theta \tag{3}$$

$$4.2 10\cos^2\theta (2)$$

$$4.3 \qquad 3\cot\theta + 5\sin\theta \tag{3}$$

[8]

QUESTION 5

In each of the following equations, solve for x where $0^{\circ} < x < 90^{\circ}$. Give your answers correct to TWO decimal places.

$$5.1.1 \qquad \cos x = \frac{2}{3} \tag{2}$$

$$5.1.2 \qquad \frac{4}{\cot x} + 1 = 3 \tag{3}$$

5.2 Simplify fully, WITHOUT the use of a calculator.

$$\frac{\tan 45^{\circ}.\csc 60^{\circ}}{\cot 30^{\circ}.\cos^2 45^{\circ}} \tag{5}$$

5.3 If $x = 56,3^{\circ}$ and $y = 97,5^{\circ}$, evaluate the following correct to TWO decimal places.

$$5.3.1 \qquad \cos(x+y) \tag{2}$$

$$5.3.2 \qquad \frac{2\sin^2 x - 2}{\cos y} \tag{3}$$

[15]

The graphs of $f(x) = p \sin x$ and $g(x) = \cos x + q$ for $x \in [0; 360^{\circ}]$ are sketched below:

- 6.1 Determine the value of p and q. (2)
- 6.2 Write down the amplitude of g. (1)
- 6.3 Write down the range of f. (2)
- For which value(s) of x will f(x) > 0? (2)
- 6.5 The graph of g is reflected about the x-axis and then shifted 2 units upwards to obtain the graph h. Write down the equation of h. (2)

[9]

In the diagram below ABCD is a rectangle, DC = 155cm and DE = 800cm . The angle of elevation from D to E is 22° .

- 7.1 Calculate the length of BE.
 - 7.2 Determine the distance of BC. (3)

QUESTION 8

A metal marble has a diameter of 16 millimetres.

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

- 8.1 Calculate the volume of metal used to make this marble. Give your answer correct to TWO decimal places. (3)
- 8.2 If the radius of the marble is doubled, write down the ratio of the new volume to the original volume. (3)

[6]

(4)

[7]

Copyright Reserved

9.1 In quadrilateral WXYZ, WZ || XY and $\hat{X} = \hat{Z}$.

Prove that WXYZ is a parallelogram.

(5)

9.2 In the sketch below, ABCD is a parallelogram. DC = DE and $\hat{A} = 120^{\circ}$.

9.2.1 Calculate the size of:

a)
$$\hat{B}$$
 (2)

b)
$$\hat{C}_2$$
 (2)

9.2.2 If
$$\hat{D}_2 = 4x$$
. Calculate the value of x . (4)

[13]

 ΔXYZ is right angled at Y. F and G are the midpoints of XZ and YZ respectively. H is the midpoint of XG. E lies on XY such that FHE is a straight line.

10.1 Prove that E is the midpoint of XY. (3)

10.2 If EH = 3,5cm and the area of Δ HEX = 9,5cm². Calculate the length of XY. (4)

Hence, calculate the area of ΔXYZ . (3)

[10]

TOTAL: 100

Downloaded from Stanmorephysics.com

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 10

MARKS: 100

The marking guidelines consist of 10 pages.

GRADE 10 Marking Guideline

QUESTION 1

OUESTION 2

2.1	$20 \le x < 30$	√A	answer	
				(1)
2.2	$30 \le x < 40$	✓A	answer	
				(1)
2.3	$-(25\times29)+(35\times28)+(45\times21)+(55\times15)+(65\times10)+(75\times2)$	✓A	midpoints	
	$x = \frac{105}{105}$	✓CA	4275	
		✓A	105	
	$=\frac{4275}{105}$ Answer only, full marks	-		
	105 Stanmorephysic	VCA.	answer	
	= 40,71			(4)
	Penalise for Rounding here	(b)		[6]

Copyright Reserved

3.1	$M_{AC}\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$ $R\left(\frac{2+(-3)}{2}; \frac{-1+0}{2}\right)$ $R\left(\frac{-1}{2}; \frac{-1}{2}\right)$ Answer only, full marks	✓A substitution ✓CA x-value ✓CA y-value On condition the coordinates of A and C are used ONLY (3)
3.2	$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$ $m_{AB} = \frac{2 - 0}{0 - (-3)}$ $m_{AB} = \frac{2}{3}$ Answer only, full marks	✓A substitution ✓CA answer (2)
3.3	$AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $AC = \sqrt{(2 - (-3))^2 + (-1 - 0)^2}$ $AC = \sqrt{26}$ An more physics.com	✓A formula ✓A substitution ✓CA answer (3)
3.4	$BR = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $BR = \sqrt{\left(\frac{-1}{2} - 0\right)^2 + \left(\frac{-1}{2} - 2\right)^2}$ $BR = \frac{\sqrt{26}}{2}$ $Area of \ ABCD = 2\left(\frac{1}{2}(AC)(BR)\right)$ $= \left(\sqrt{26}\right)\left(\frac{\sqrt{26}}{2}\right)$ $= 13units^2$	 ✓CA substitution ✓CA distance of BR ✓CA area of Δ×2 ✓CA substitution ✓CA answer

GRADE 10 Marking Guideline

4.2	$10\cos^2\theta$ $=10\left(\frac{4}{5}\right)^2$ $=\frac{32}{5}$		✓CA ✓CA	substitution	
	OR			OR	
	$ \frac{10}{\sec^2 \theta} $ $ = \frac{10}{\left(\frac{5}{4}\right)^2} $		✓CA	substitution	
	$=\frac{32}{5}$		✓CA	answer	(2)
4.3	$3\cot\theta + 5\sin\theta$ $= 3\left(\frac{-4}{3}\right) + 5\left(\frac{-3}{5}\right)$		✓CA	<u>-4</u> 3	(2)
	= -4 - 3 $= -7$	Answer only, max 2/3 See notes on last page	✓CA ✓CA	simplification answer	
	OR		OR		
	$\frac{3}{\tan \theta} + 5\sin \theta$ $= \frac{3}{\left(\frac{-3}{4}\right)} + 5\left(\frac{-3}{5}\right)$		✓CA	$\frac{-3}{4}$	
	= -4 - 3 = -7	Answer only, max 2/3 See notes on last page	✓CA ✓CA	simplification answer	(3)
	J.		1		[8]

5.1.1	$\cos x = \frac{2}{3}$			
	$x = \cos^{-1}\left(\frac{2}{3}\right)$		✓A	simplification using arc cos
	$x = 48,19^{\circ}$	Answer only, full marks	✓A	answer (2)

Mathematewnloaded from Stanmorephysics.com GRADE 10

November 2024

Marking Guideline

5.1.2	$\frac{4}{\cot x} = 2$ $\cot x = 2$ $\frac{1}{\tan x} = 2$ $\tan x = \frac{1}{2}$ $x = 26,57^{\circ}$		✓A ✓A ✓CA	$\cot x = 2$ $\frac{1}{\tan x} = 2$ answer	(3)
5.2	$\frac{\tan 45^{\circ}.\cos ec 60^{\circ}}{\cot 30^{\circ}.\cos^{2} 45^{\circ}}$ $= \frac{(1)\left(\frac{2}{\sqrt{3}}\right)}{\left(\sqrt{3}\right)\left(\frac{\sqrt{2}}{2}\right)^{2}}$ $= \frac{\sqrt{3}}{2\sqrt{3}}$ $= \frac{4}{3}$	See notes on last page	✓A ✓A ✓A ✓CA	$\frac{2}{\sqrt{3}}$ $\sqrt{3}$ $\left(\frac{\sqrt{2}}{2}\right)^{2}$ simplification answer	
	$\frac{\tan 45^{\circ} \tan 30^{\circ}}{\sin 60^{\circ} \cos^2 45^{\circ}}$ $= \frac{(1)\left(\frac{1}{\sqrt{3}}\right)}{\frac{\sqrt{3}}{2}\left(\frac{\sqrt{2}}{2}\right)^2}$ $= \frac{\frac{1}{\sqrt{3}}}{\frac{2\sqrt{3}}{8}}$	See notes on last page	✓A ✓A ✓CA	OR $ \frac{1}{\sqrt{3}} $ $ \frac{\sqrt{3}}{2} \checkmark A \left(\frac{\sqrt{2}}{2}\right)^{2} $ simplification	
	$=\frac{4}{3}$		✓CA	answer	(5)

Mathemaswnloaded from Stanmorephysics.com GRADE 10

November 2024

Marking Guideline

5.3.1	$\cos(x+y)$	
	$=\cos(56,3^{\circ}+97,5^{\circ})$	✓ A substitution
	$=\cos(153,6^\circ)$	
	=-0,90	✓CA answer
5.3.2	$2\sin^2 x - 2$	(2)
3.3.2	$\frac{2\sin x}{\cos y}$	
	$2(\sin 56,3^{\circ})^{2}-2$	✓ A substitution in numerator
	$=\frac{7}{\cos 97,5^{\circ}}$	✓ A substitution in denominator
	= 4,72	✓CA answer
		(3)
		[15]

6.1	p=2		✓A	
	q=1	- And	✓A	0200
	100000000000000000000000000000000000000			(2)
6.2	amplitude = 1		✓A	(1)
6.3	$-2 \le y \le 2$	7/13/3	✓A interval	
			✓A notation	
	OR			
	OK	Stanmorephysics.co	OR	
	$y \in [-2,2]$			
	, , ,		✓A interval ✓A notation	
			• A notation	
				(2)
6.4	$0^{\circ} < x < 180^{\circ}$		✓A interval	
			✓A notation	
	OR			
	OK		OR	
	$x \in (0^{\circ}; 180^{\circ})$			
	(0 , 100)		✓A interval	
			✓A notation	
			(2)	
6.5	$h(x) = -\cos x + 1$		\checkmark A $-\cos x$	
-2317			✓CA +1	************
-	31			(2)
				100000000000
				[9]

				[7]
5				(3)
	BC = 741,75 BC = 741,75cm	, CA	answei	
	AD + (299,09) = (800) AD=741,75	✓ CA	AD=741,75 answer	
	$AD^{2} + AE^{2} = ED^{2}$ $AD^{2} + (299,69)^{2} = (800)^{2}$	✓CA ✓CA	substitution	
	\mathbf{OR} $AD^2 + AE^2 = ED^2$	/CA	OR	
	BC = 741,75 cm	0.1		
	$\therefore AD = BC (opposite sides of a rectangle)$	√CA	answer	
	AD = 741,75	✓CA	AD= 741,75	
	$AD = 800\cos 22^{\circ}$			
7.2	$\frac{AD}{ED} = \cos 22^{\circ}$	✓A	correct trig ratio	
	BE = 454,69cm		unswei	(4)
	BE = 299,69 + 155	✓ CA ✓CA	299,69 + 155 answer	
	AE = 299,69cm	✓A	AE=299,69	
	$AE = 800.\sin 22^{\circ}$		A.E. 200 (0	
7.1	$\frac{AE}{ED} = \sin 22^{\circ}$	✓A	correct trig ratio	

8.1	d = 2r $16 = 2r$ $r = 8$	✓A
	$V = \frac{4}{3}\pi r^{3}$ $V = \frac{4}{3}\pi (8)^{3}$ $V = 2144,66 \text{ mm}^{3}$	✓A substitution
8.2	$r = 2 \times 8 mm$ $= 16 mm$	✓CA answer (3)
	$V_{new} = \frac{4}{3}\pi (16)^3$ =17157,28467	\checkmark A substitution with new r
nmore	$ratio = \frac{V_{new}}{V_{old}}$ $ratio = \frac{17157,28467}{2144,66}$	✓CA division of volumes
	$ratio = \frac{8}{1}$ $\therefore V_{new} : V_{old} = 8 : 1$	✓CA answer
	OR	OR
	$\begin{vmatrix} \frac{4}{3}\pi(16)^3 : \frac{4}{3}\pi(8)^3 \\ (16)^3 : (8)^3 \end{vmatrix}$	$\checkmark A \qquad \frac{4}{3}\pi (16)^3$
	$16^3:8^3$	
	4096 : 512 8 : 1	✓CA simplification ✓CA answer (3)
		[6]

QUESTION 9

9.1	In ΔWXY and ΔYZW			
	1) WY is common	✓A	S	
	2) $\hat{\mathbf{Y}}_1 = \hat{\mathbf{W}}_2$ (Alternate angles WZ // XY)	✓A	S/R	
c	3) $\hat{X} = \hat{Z}$ (Given)			
	$\therefore \Delta WXY \equiv \Delta YZW (\angle, \angle, S)$	✓A	R	
	$XY = WZ$ $(\Delta WXY \equiv \Delta YZW)$	✓A	S/R	
	:. WXYZ is a parallelogram (one pair of sides equal and //)	✓A	R	
	00 1000 1000 1000 1000 1000 1000 1000			(5)
9.2.1(a)	$\hat{B} = 180^{\circ} - 120^{\circ}$ (co-interior angles AD // BC)	✓A	S/R	
	$\hat{B} = 60^{\circ}$ Penalise for parallel lines	✓A	answer	
	here			(2)
9.2.1(b)	$\hat{A} = \hat{C}$ opposite sides of a parm	✓A	S/R	
	$\hat{C}_1 = 120^{\circ}$			
	$\hat{C}_2 = 60^{\circ}$ angles on a str. line	✓A	S	
	OR		OR	
	$\hat{C}_2 = 180^\circ - 120^\circ$ (corr. angles AB//DC)			
	$\hat{C}_2 = 60^{\circ}$	✓A	S/R	
		√A	answer	***
	<u> </u>			(2)
9.2.2	$\hat{E} = \hat{C}_2$ angles opposite equal sides	✓A	S/R	
	$\hat{E} + \hat{C}_2 + \hat{D}_2 = 180^{\circ} \text{sum of } \Delta$	✓A	R	
	$4x = 180^{\circ} - 120^{\circ}$	✓A	substitution	
	$4x = 60^{\circ}$			
	$x = 15^{\circ}$	√A	answer	8.5
				(4)
				[13]

GRADE 10 Marking Guideline

QUESTION 10

10.1	In ΔXGZ F and H are midpoints (Given)		
10.1	: HF//GZ (midpoint theorem) FE//YZ (same straight line) In ΔΧΥG H is the midpoint	✓A ✓A	S/R S
	EH//YG (Proved) ∴ E is the midpoint (line through midpt // to second side)	✓A	R (2)
10.2	$X\hat{E}H = 90^{\circ}$ (corr. angles EF//YZ)	✓A	(3)
USANNING	Area = $\frac{1}{2}$ (EH)(XE)		~
	$9.5 = \frac{1}{2} \times 3.5 \times XE$	✓A Sul	b Corr formula
	$XE = \frac{38}{7} = 5,43$	✓A	$\frac{38}{7} = 5,43$ $\frac{76}{7} = 10,86$
	$\therefore XY = \frac{76}{7} = 10,86cm$	√CA	$\frac{76}{7}$ = 10,86
	VC 7 (cilette		(4)
10.3	YG = 7 (midpt theorem)	83.5700	
	$YZ = 14 \qquad (YG = GZ)$	✓A	S
	$Area = \frac{1}{2} \times 14 \times \frac{76}{7}$	✓A ✓CA	sub
	$Area = 76cm^2$	✓CA a	
<u> </u>			(3)
	[10]		

TOTAL: 100

NOTES:

QUESTION 4.3

Learners must show the **simplification** step to be awarded full marks.

QUESTION 5.2

Learners must show the **simplification** step to be awarded full marks.