

EDUCATION

CAPRICORN NORTH DISTRICT

MATHEMETICS TEST

Namo:	
ivaille.	***************************************

Class:

Total: 75

Duration: 1H30

Question	1	2	3	4	Total
Marks					
obtained					

INSTRUCTIONS

- 1. The paper consists of 9 pages (including cover page) of 4 questions
- 2. Answer all questions.
- 3. Use the question paper as your answer sheet.
- 4. Write neatly and legibly.
- 5. Show all your calculations unless stated otherwise

Question 1

1.2

Encircle only the letter that correspond with the correct answer

- 1.1 Which one of these properties is **NOT TRUE** for a parallelogram?
 - A. Opposite angles are equal
 - B. Opposite sides are equal and parallel
 - C. Diagonals are equal

D. Interior angles sum up to 360°

(1)

- An equilateral triangle is.....
 - A. A triangle with two sides equal
 - B. A triangle with all sides equal
 - C. A triangle with all sides not equal

D. A triangle with one angle equal to 90°

(1)

1.3 The equation of the straight line drawn below is:

A.
$$y = 2x - 2$$

B.
$$y = x + 2$$

C.
$$y = -2x + 2$$

D. y = -x - 2 (1)

1.4 If p is a point on the line defined by y = x, then the coordinates of p are....

A. (-3; 3)

B. (2; -2)

C. (-2; 2)

D. (-3; -3)

(1)

1.5 Which statement is true about the figure below?

A. $\angle A1 = \angle B1$ Corresponding $\angle s \parallel lines$

B. $\angle A1 = \angle B3$ Exterior alternate $\angle s \parallel lines$

C.
$$\angle A1 = \angle A3$$
 Vertically opp. $\angle s$ (1)

D. $\angle A1 + \angle A2 = 180^{\circ}$ co-interior $\angle s$ of a triangle

Question 2

2.1 State whether the following graphs are increasing, decreasing or constant

2.2 Read the graph below and answer the questions that follow

2.2.1 Determine the co-ordinates of the y-intercept.

.....(1)

[5]

2.2.2 Determine the co-ordinates of the x-intercept (1)

2.2.3 Calculate the gradient of the graph.

2.2.4 Determine the equation of the line in the form y = mx + c

(2)

2.2.5 Determine the value of y if x = 2 (Show the value by marking on the graph as well and label the point **A**.

.....(2)

2.3 Given the formula y = -2x + 1,

2.3.1 Complete the table below using the given formula

x	-1	0	1	1
y			2	
У				

(4)

2.3.2 Plot the points for the table above on the cartesian plane below and draw the graph

(3)

2.4 Complete the table below:

7	Gradient		y- intercepts		Equation: $y = mx + c$
	m = 4		c= -6	2.4.1	y = 4x - 6
	m = -5		C = -8		y =
2.4.2		2.4.3			y=2x

(3)

[22]

Question 3

Consider the parallel lines below. AB and CD are cut by a transversal line GH.

3.1 . Find the sizes of the following angles with reasons

Study the diagram given below and answer the questions that follow: AB // DE and $\angle D_1 = \angle D_2$. Determine the sizes of the following with reasons

3.2.1 ∠D₂

Statement	Reason	
	1	(2)

3.2.2 $\angle C_1$; $\angle C_2$ and $\angle C_3$

Statement	Reason
	8
	7 (1

3.2.3 $\angle B_1$ and $\angle B_2$

Statement	Reason
	1

(4) [19]

Question 4

4.1 Calculate the size of angle a.

4.2 In $\triangle LOV$, OV is produced to E and LV = LO.

4.2.1 Calculate the size of $\angle L$ with reasons.

Statement	Reason	
··		
		(3)

4.2.2 Calculate the value of y with reasons

<u> </u>	Statement
(3	

4.2.3 Classify with reasons ΔLOV (2)

4.3 In the figure below, CS//HN. \angle EAW =70 $^{\circ}$, AE =AW and \angle CAE = x. Determine the value of x.

Statement	Reason	
-		
		(4)

4.4

Statement	Reason	
-		(0)
		(3)

In the diagram below, prove that $\Delta PTQ \equiv \Delta PTR$. Give reasons for your answer.

4.6 In the figure below \triangle ABC III \triangle BDC, AB ② 12 cm, BC ② 5 cm and AC ② 13 cm. Calculate the length of BD rounded off to 1 decimal place.

Statement	Reason
	-
	-8
	8
	-11
	(4)
	[29]

TOTAL: 75