

MOPANI WEST DISTRICT

DATE: SEPTEMBER 2023

This question paper consists of seven(7) pages

Instructions

- 1. This question paper consists of seven(7) pages including cover page.
- 2. Read the questions carefully before answering.
- 3. Answer ALL the questions.
- 4. Show all your calculations.

QUESTION 1

1.1 The equation of the straight line drawn below is:

$$A \qquad y = 2x - 2$$

$$B y = x + 2$$

C
$$y = -2x + 2$$

D
$$y = -x - 2$$

1.2. In ΔPQR, QR is extended to S

The size of $\angle Q$ is:

- A 40°
- B 20°
- C 140°
- D 60°

(2)

(2)

1.3.	One of the properties of a Parallelogram is;	
	All sides are equal	
	A All sides are equal B Diagonals bisect each other	
	B Diagonals bisect each other C Each angle is 90°	(2)
	D Diagonals are equal in length	(-)
- 6	Diagonals are equal in length	
1.4.	In the right – angled triangle below; the value of y is;	
	Stanma epiny-4cm on R	
	A 9cm B 20cm C 3cm	(2)
4 -	D 12cm	127
1.5.	Why is ΔBAC≡ ΔBDC?	
	A S,S,S B 90°,H,S C S,A,S D A,A,S	
		(2)
		[10]

3.4.1	Prove that $\triangle ABD \equiv \triangle ACD$.	(4)
3.4.2	Hence, prove that AD bisects $B\hat{A}C$	(1)
		[19]
Ŕ	QUESTION 4	
1	luui.	-
4.1	In the diagram below, AC \parallel DF, AB \parallel CF, BE = 8 cm, EC = 10 cm and CF = 5 cm.	
	8 cm 1	
4.1.1	Prove that $\Delta DBE \parallel \parallel \Delta FCE$	(4)
4.1.2	Hence, determine the length of DB. Stormorephysics.com	(3)
		[7]

	QUESTION 5	
5.1.	A diagram of a kite, ABCD with $AB = 5$ cm, $BE = 4$ cm, and $DE = 10$ cm, is given below.	
	B 4cm E	
5.1.1	Complete this statement; Diagonals of a kite intersect at an angle of°	(1)
5.1.2	Calculate the length of AE.	(3)
5.1.3	Calculate, with a reason, the length of the diagonal AC.	(2)
	TOTAL TO 2012	[6]
	TOTAL = 50 marks	

MARKS: 50

DATE: SEPTEMBER 2023

This MEMORANDUM consists of five(5) pages

Instructions

1. This MEMORANDUM consists of five(5) pages including cover page.

	QUESTION 1	
1.1.	$A\sqrt{}$	
1.2.	A√√	
1.3.	B√√	
1.4.	C \(\lambda \)	
1.5.	C W	[10]
		Lioi
	QUESTION 2	
2.2.1.	$m = \frac{\Delta y}{\Delta x}$ $= \frac{-4}{2} \sqrt{\frac{2}{2}}$ $= -2 \sqrt{\frac{2}{2}}$ $C = 4 \sqrt{\frac{2}{2}}$	
	$=\frac{\Delta x}{4}$	
	$= -2 \sqrt{}$	(2)
	$c = 4 \sqrt{}$	(3)
2.1.2.	Stanrhorephysics.com ² -1 -1 -1 -1 -1 -1 -1 -1 -1 -	(3)
2.1.3.	The lines are parallel to each other $\sqrt{.}$ The gradients of the two lines are the same. $\sqrt{.}$	(2)
		[8]

	QUESTION 3	
F	1001	
3.1.	x+75° +55° = 180° √	
1	$x + 130^{\circ} = 180^{\circ} \sqrt{}$	
44	$x = 180^{\circ} - 130^{\circ}$	(3)
	x= 50° √	(3)
3.2.	x = 70 ∘ (alternating angles) √ √	
	y= 70 ∘ (angles opposite equal sides) √√	
	z + x+ y =180 ⁰ (sum of angles of a triangle) √	
	$z + 70^{\circ} + 70^{\circ} = 180^{\circ}$	30 Sept. 100 CT
	$z = 40^{\circ}\sqrt{5tanmorephysics.com}$	(6)
3.3.1.	$3x - 20^{\circ} + x + 80^{\circ} = 180^{\circ}$ (co-interior angles) $\sqrt{}$	
	$4x + 60^{\circ} = 180^{\circ}$	
	$x = 30^{\circ} \checkmark$	(3)
3.3.2.	D =3X20∘	
	$\widehat{D} = 3(30^{\circ}) - 20^{\circ} \sqrt{}$	
	$\widehat{D} = 70^{0} \checkmark$	
	$\hat{B} = \hat{D}$ (opposite angles of parallelogram are equal) $\therefore \hat{B} = 70^{\circ} \text{J}$	(3)
	B = 70 V	
3.4.1.	In ΔABD and Δ ACD	
	AB =AC (given) √	
	BD =CD (given)	
	AD=AD (common side) √	(2)
	$\therefore \triangle ABD \equiv \triangle ACD (S,S,S)^{\checkmark}$	(3)
3.4.2.	A ₁ = A ₂ (corresponding angles of congruent triangles) √	(1)
· · · · · ·		(1)
		[19]

c	QUESTION 4	
In		
4.1.1	In ΔDBE and ΔFCE .	
Щ		
	$\widehat{D}_1 = \widehat{F}$ (alternating angles) $\sqrt{\widehat{D}_1} = \widehat{F}$	
	$\hat{E}_1 = \hat{E}_3$ (vertical opposite angles) $\sqrt{\hat{E}_1 = \hat{E}_3}$	
	$\hat{B} = \hat{C}_2$ (alternating angles) $^{\checkmark}$ $\therefore \Delta DBE \parallel \Delta FCE(A,A,A) ^{\checkmark}$	
	$ADBE \parallel \Delta FCE(A,A,A)$	
	DR RF (
4.1.2	$\frac{DB}{FC} = \frac{BE}{CE} \checkmark$	
	DB _ 8 ,/	2000
	$\frac{DB}{5} = \frac{8}{10} \sqrt{}$	(3)
	DB= 4 cm	
	√ DB= 4 Cm	
		[7]
	QUESTION 5	
5.1.1.	900√	
5.1.2.	$AB^2 = BE^2 + AE^2 \checkmark$	
	$5^2 = 4^2 + AE^2 \checkmark$	
	$25 = 16 + AE^2$	
	$AE^2 = 9$	(2)
	AE = 3 cm √	(3)
5.1.3.	AE = EC (one diagonal bisects the other diagonal in a kite)√	
	AC = AE + EC	
	= 3cm+ 3cm	
	= 6 cm√	(2)
		[6]
7	TOTAL = 50	
	10 Me	