GAUTENG PROVINCE MATHEMATICS - ANNUAL TEACHING PLAN -GRADE 11 FINAL GRADE 11 ATP 2025: | DATE | TOPIC | CONTENT | FORMAL
(F) | ASSESSMENT | DATE
COMPLET
ED | COMPLETE
D | | |-----------------------------------|----------------------------|--|---------------|---|-----------------------|---------------|--| | TERM 1 | | 3 4// | 2 TASKS FOR | TERM 1 | | | | | Week 1
15/1 -17/1
(3 days) | Exponents and Surds | 1. Simplify expressions and solve equations using the laws of exponents for rational exponents where, $x^{\frac{p}{q}} = \sqrt[q]{x^p}$; $x > 0$; $q > 0$ 2. Add, subtract, multiply and divide simple surds 3. Solve simple equations involving surds. | | | | 3% | | | Week 2
20/1 – 24/1
(5 Days) | Equations | 1.Complete the square 2.Solve Quadratic equations by factorization using the quadratic formula | F | Investigation / Project Weighti ng: 25% | | 6% | | | Week 3
27/1 – 31/1
(5 Days) | Equations and inequalities | 3.Solve Quadratic inequalities in one unknown (Interpret solutions graphically.) | | | | 9% | | | Week 4
3/2 – 7/2
(5 Days) | Equations and inequalities | NB: It is recommended that the solving of equations in two unknowns is important to be used in other equations like hyperbola-straight line as this is normal in the case of graphs 4. Equations in two unknowns, one of which is linear and the other quadratic. | | | | 12% | | | Week 5
10/2 – 14/2
(5 Days) | Equations and inequalities | Irrational | | | | 15% | | | Week 6
17/2 –21/2
(5 Days) | Trigonometry | 1. Derive and use the identities: $tan\theta = \frac{sin\theta}{cos\theta}, \theta \neq k. 90^{\circ}, k$ an odd integer; and $sin^{2}\theta + cos^{2}\theta = 1.$ | | | | 18% | | ## Downloaded Infinence Stanmore physics.com ### ATP Grade 11 | Trigonometry | 2.Derive and use reduction formulae to simplify the following expressions: 2.1 $sin (90^{\circ} \pm \theta)$; $cos (90^{\circ} \pm \theta)$; 2.2 $sin (180^{\circ} \pm \theta)$; $cos (180^{\circ} \pm \theta)$ and $tan (180^{\circ} \pm \theta)$; 2.3 $sin (360^{\circ} \pm \theta)$; $cos (360^{\circ} \pm \theta)$ and $tan (360^{\circ} \pm \theta)$; 2.3 $sin (-\theta)$; $cos (-\theta)$ and $tan (-\theta)$; | | | 21% | |------------------------|--|--|---|---| | Trigonometry | 3. Determine for which values of a variable an identity holds. 4. Determine the general solutions of trigonometric equations. Also, determine solutions in specific intervals. | | | 24% | | Trigonometry | 4 Determine the general solutions of trigonometric equations. Also, determine solutions in specific intervals. | F | Test SBA marks: Weighting: 75% | 26% | | Analytical
Geometry | Revise, distance between the two points; gradient of the line segment connecting the two points (and from that identify parallel and perpendicular lines); and Coordinates of the mid-point of the line segment joining the two points. | | | 29% | | Analytical
Geometry | 2. Derive and apply, the equation of a line through two given points. the equation of a line through one point and parallel or perpendicular to a given line; and The inclination (θ) of a line, where m = tanθ is the gradient of the line | | | 32% | | | Trigonometry Trigonometry Analytical Geometry | simplify the following expressions: 2.1sin (90° ± θ); cos (90° ± θ); 2.2sin (180° ± θ); cos (180° ± θ) and tan (180° ± θ); 2.3sin (360° ± θ); cos (360° ± θ) and tan (360° ± θ); 2.3sin (-θ); cos (-θ) and tan (-θ); 3. Determine for which values of a variable an identity holds. 4. Determine the general solutions of trigonometric equations. Also, determine solutions in specific intervals. 4 Determine the general solutions of trigonometric equations. Also, determine solutions in specific intervals. Trigonometry 1. Revise, • distance between the two points; • gradient of the line segment connecting the two points (and from that identify parallel and perpendicular lines); and • Coordinates of the mid-point of the line segment joining the two points. 2. Derive and apply, • the equation of a line through two given points. • the equation of a line through one point and parallel or perpendicular to a given line; and • The inclination (θ) of a line, where $m = tan\theta$ is the gradient of the line | simplify the following expressions: 2.1 $sin (90^\circ \pm \theta); cos (90^\circ \pm \theta);$ 2.2 $sin (180 \pm \theta); cos (180^\circ \pm \theta)$ and $tan (180 \pm \theta);$ 2.3 $sin (360^\circ \pm \theta); cos (360^\circ \pm \theta)$ and $tan (360^\circ \pm \theta);$ 2.3 $sin (360^\circ \pm \theta); cos (360^\circ \pm \theta)$ and $tan (-\theta);$ 3. Determine for which values of a variable an identity holds. 4. Determine the general solutions of trigonometric equations. Also, determine solutions in specific intervals. 4 Determine the general solutions of trigonometric equations. Also, determine solutions in specific intervals. Trigonometry 1. Revise, • distance between the two points; • gradient of the line segment connecting the two points (and from that identify parallel and perpendicular lines); and • Coordinates of the mid-point of the line segment joining the two points. 2. Derive and apply, • the equation of a line through two given points. • the equation of a line through one point and parallel or perpendicular to a given line; and • The inclination (θ) of a line, where $m = tan\theta$ is the gradient of the line | simplify the following expressions: $2.1\sin(90^{\circ} \pm \theta)$; $\cos(90^{\circ} \pm \theta)$; $\cos(90^{\circ} \pm \theta)$ and $\tan(180^{\circ} \pm \theta)$; $\cos(360^{\circ} \pm \theta)$ and $\tan(180^{\circ} \pm \theta)$; $2.2\sin(360^{\circ} \pm \theta)$; $\cos(360^{\circ} \pm \theta)$ and $\tan(360^{\circ} \pm \theta)$; $2.3\sin(360^{\circ} \pm \theta)$; $\cos(360^{\circ} \pm \theta)$ and $\tan(-\theta)$; 3. Determine for which values of a variable an identity holds. 4. Determine the general solutions of trigonometric equations. Also, determine solutions in specific intervals. Trigonometry 1. Revise, 6. distance between the two points; 9. gradient of the line segment connecting the two points (and from that identify parallel and perpendicular lines); and Coordinates of the mid-point of the line segment joining the two points. 2. Derive and apply, 6. the equation of a line through two given points. 7. the equation of a line through one point and parallel or perpendicular to a given line; and 8. The inclination (0) of a line, where $m = \tan \theta$ is the gradient of the line 9. The inclination (0) of a line, where $m = \tan \theta$ is the gradient of the line | | DATE | TOPIC | CONTENT | F | ASSESSMENT | DATE
COMPLETED | %
COMPLETED | |--------------------------------------|------------------------------------|--|----------|--|-------------------|----------------| | TERM 2 | | 2 TASKS FOR TERM 2 | | | | | | Week 1
8/4 –
11/4
(4 days) | Euclidean
Geometry | Accept results established in earlier grades as axioms and, also that a tangent to a circle is perpendicular to the radius drawn to the point of contact. | | | | 35% | | Week 2
14/4 –
18/4
(4 days) | Euclidean
Geometry
Euclidean | 2. Then investigate and prove the theorems of the geometry of circles: The line drawn from the centre of a circle perpendicular to a chord bisects the chord. The line drawn from the centre of a circle to the midpoint of a chord is perpendicular to the chord. The perpendicular bisector of a chord passes through the centre of the circle. The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre). Angles subtended by a chord of the | | | | 38% | | Week 3
21/4 – 25/4
(4 days) | Geometry | circle, on the same side of the chord, are equal. The opposite angles of a cyclic quadrilateral are supplementary. An exterior angle of a cyclic quadrilateral is equal to an angle in the alternate segment. | | | | 41% | | Week 4
28/4 – 02/5 | | 29 and 30 Apr
01 N | ril Spec | Day Observed
cial School Holidays
orkers Day
School Holiday | | | | Week 5
5/5 - 9/5
(5 days) | Euclidean
Geometry | Two tangents drawn to a circle from the same point outside the circle are equal in length. The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment. Use the above theorems and their converses, where they exist, to solve riders. | F | ASSIGNMENT Weighting :25% | | 44% | | Week 6
12/5 –
16/5
(5 days) | Functions | Revise the effect of the parameters a and q and investigate the effect of p on the graphs of the functions defined by: y = f(x) = a(x + p) + q y = f(x) = a(x + p)² + q | | | | 47% | ## Downloaded the mannes Stanmore physics.com ATP Grade 11 | Week 7
19/5 –
23/5
(5 days) | Functions | 1.3 Revise the effect of the parameters a and q and investigate the effect of p on the graphs of the functions defined by: $y = f(x) = \frac{a}{x+p} + q$ | | | 50% | |--|---------------------|---|-------|---|-----| | Week 8
26/5 –
30/5
(5 days) | Functions | 1.4 Revise the effect of the parameters a and q and investigate the effect of p on the graphs of the functions defined by: $y = f(x) = a$. $b^{x+p} + q$ where $b > 0$ $b \ne 1$ | | | 53% | | Week 9
2/6 –
6/6
(5 days) | Functions | Investigate numerically the average. gradient between two points on a curve and develop an intuitive understanding of the concept of the gradient of a curve at a point. | | | 56% | | Week 10
9/6 –
13/6
(5 days) | JUNE
EXAMINATION | JUNE EXAMINATION | F | JUNE EXAMINATION Paper1:100 Paper 2:100 Weighting: | | | Week 11
16/6 –
20/6
(4 days) | JUNE
EXAMINATION | JUNE EXAMINATION | | 75% | | | Week
112
23//6 –
27/6
(5 days) | JUNE
EXAMINATION | JUNE EXAMINATION | | | | | | | END OF TERM 2 SCHOOLS CLOSE | ES ON | 27/06/2025 | | | DATE | TOPIC | CONTENT | F | ASSESSMENT | DATE
COMPLETED | %
COMPLETED | |------------------------------------|---------------------------|--|------|--------------------------|-------------------|----------------| | TERM 3 | 1000 | | 2 TA | SKS FOR TERM 3 | | | | Week 1
22/7 –25/7
(4days) | Trigonometry
Functions | Point by point plotting of basic graphs defined by y = sin θ , y = cos θ and y = tan θ for θ ∈ [-360°; 360°]. Investigate the effect of the parameter k on the graphs of the functions defined by, y = sin (kx) , y = cos (kx) and y = tan (kx) | • | | | 59% | | Week 2
28/7 – 1/8
(5 days) | Trigonometry
Functions | 5. Investigate the effect of the parameter p on the graphs of the functions defined by, $y = sin(x + p)$, $y = cos(x + p)$ and $y = tan(x + p)$ | n | | | 62% | | Week 3
4/8 -8/8
(5 days) | Trigonometry
Functions | 6. Draw sketch graphs defined by:
$y = a \sin k(x + p)$,
$y = a \cos k(x + p)$ and
$y = a \tan k(x + p)$
at most two parameters
at a time. | | | | 65% | | Week 4
11/8 – 15/8
(5 days) | Trigonometry (2D) | Prove and apply the sine, cosine and area rules Solve problems in two dimensions using the sine, cosine and area rules. | F | TEST 1
Weighting :50% | | 68% | | Week 5
18/8 - 22/8
(5 days) | Trigonometry (2D) | 2. Solve problems in two dimensions using the sine, cosine and area rules. | | | | 71% | | Week 6
25/8 -29/8
(5 days) | Statistics | Revise measures of central tendency and dispersion in ungrouped and grouped data. Revise Five number summary (maximum, minimum and quartiles) and box and whisker diagram. Histograms Frequency polygons | | | | 74% | | Week 7
1/9 –
5/9
(5 days) | Statistics | Ogives (cumulative frequency curves) Variance and standard deviation of ungrouped data Symmetric and skewed data Identification of outliers. | | | | 76% | | Week 8
8/9 – 12/9
(5 days) | Probability | Revise the use of probability models to compare the relative frequency of events with the theoretical probability. Revise the use of Venn diagrams to solve probability problems, deriving and applying the following for any two events in a sample space S: Addition rule P(A or B) = P(A) + P(B) - P(A and B); A and B are Mutually exclusive if P(A and B) = 0; Addition rule for inutually exclusive events A and B is: P(A or B) = P(A) + P(B) A and B are complementary if they are, | | 79% | |------------------------------------|--------------------|---|---------------------|-----| | Week 9
15/9 – 19/9
(5 days) | Probability | 3. Identify dependent and independent events and the product rule for independent events: P(A and B) = P(A) × P(B) 4. The use of Venn diagrams to solve probability problems, deriving and applying formulae for any three events A, B and C in a sample space S. | TEST Weighting: 50% | 82% | | Week 10
22/9 – 26/9
(4 days) | Probability | 5.Use tree diagrams for the probability of consecutive or simultaneous events which are not necessarily independent. 6.Use contingency tables to solve probability problems for three events in a sample space | | 85% | | Week 11
29/9 – 3/10
(4 days) | Finance and growth | Revise the use of the simple and compound growth formulae [A = P(1 + in) and A = P(1 + i)ⁿ] to solve problems, including interest, hire purchase, inflation, population growth and other reallife problems. Understand the implication of fluctuating foreign exchange rates (e.g., on the petrol price, imports, exports, overseas travel). | | 88% | | DATE | торіс | CONTENT | F | ASSESSMENT | DATE
COMPLETED | %
Completed | |-------------------------------------|--------------------------------|--|--------|--------------|-------------------|-----------------| | TERM 4 | Inni | | 1 TASI | K FOR TERM 4 | | | | Week 1
13/10 – 17/10
(5 days) | Stanmor Finance and growth | 3. Use simple and compound decay formulae: A = P(1 - in) and A = P(1 - i)ⁿ To solve problems (including straight line depreciation and depreciation on a reducing balance). 4. The effect of different periods of compound growth and decay, including nominal and effective interest rates | | | | 91% | | Week 2
20/10 – 24/10
(5 days) | Number
Patterns | Revise linear number patterns.(2 days) Investigate number patterns leading to those where there is a constant second difference between consecutive terms, and the general term is therefore quadratic | F | TEST | | 94% | | Week 3
27/10 – 31/10
(5 days) | Number
Patterns | Investigate number patterns leading to those where there is a constant second difference between consecutive terms, and the general term is therefore quadratic | | | | 97% | | Week 4
3/11– 7/11
(5 days) | Revision
Measurement | Revise the volume and surface areas of right-prisms and cylinders. Study the effect on volume and surface areas when multiplying any dimension by a constant factor k. Calculate volume and surface areas of spheres, right prisms, right cones and combination of those objects (figures). | | | | 100% | | Week 5
10/10 - 14/11
(5 days) | Revision Euclidean
Geometry | | | | | | | Week 6
17/11 – 21/11
(5 days) | FINAL
EXAMINATION | | | | | Exam
ing 75% | | Week 7
24/11 – 28/11
(5 days) | FINAL
EXAMINATIONS | | | | | | | Week 8
1/12 - 5/12
(5 days) | FINAL
EXAMINATIONS | | | | | | ## Downloaded of the march stands of the ATP Grade 11 | Week 9
8/12 – 10/12
(5 days) | REPROTING | | | | | | |------------------------------------|------------|---------------------------|------|------------|-----|--| | | END OF TEL | RM 4 SCHOOLS CLOSES 10/12 | 2025 | : END OF Y | EAR | | #### note: - Modelling as a process should be included in all papers, thus contextual questions can be set on any topic. - Questions will not necessarily be compartmentalised in sections, as this table indicates. Various topics can be integrated in the same question. | Mark distribution for Mathematics NCS end-of-year pape | rs: Grades 10-12 | | | | |--|----------------------|------------|----------|-----------| | Paper 1: Grades 12: bookwork: maximum 6 marks | | | | | | description | | Grade 10 | Grade 11 | Grade. 12 | | Algebra and equations (and inequalities) | | 30 ± 3 | 45 ± 3 | 25 ± 3 | | Patterns and sequences | | 15 ± 3 | 25 ± 3 | 25 ± 3 | | Finance and growth | | 10 ± 3 | | | | Finance, growth and decay | | | 15 ± 3 | 15 ± 3 | | Functions and graphs | | 30 ± 3 | 45 ± 3 | 35 ± 3 | | Differential Calculus | | 15 | - | 35 ± 3 | | Probability | | 15 ± 3 | 20 ± 3 | 15 ± 3 | | Total | Stanm | 199 ephys | c150com | 150 | | Paper 2: Grades 11 and 12: theorems and/or trigonome | tric proofs; maximun | n 12 marks | | ' | | description | | Grade 10 | Grade 11 | Grade 12 | | Statistics | | 15 ± 3 | 20 ± 3 | 20 ± 3 | | Analytical Geometry | | 15 ± 3 | 30 ± 3 | 40 ± 3 | | Trigonometry | | 40 ± 3 | 50 ± 3 | 50 ± 3 | | Euclidean Geometry and Measurement | | 30 ± 3 | 50 ± 3 | 40 ± 3 | | Total | 1 | 100 | 150 | 150 | ## NB: # 7 SBA TASKS TO BE COMPLETED IN 2025 YEAR END | John | T | MA | THEMATICS | S GRADE 11 | | | | | |--|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|--| | Task
Number
(SBA) | | | | 7 (Seven) | | | | | | Term | Term1 | | Term 2 | | Term 3 | | Term 4 | | | Task
Name | Project/
Investigation | Test | Assignment | June
Exam | Test | Test | Test | | | Mark
allocation
indicate if
fixed or
suggested | Suggested
Minimum
Marks 50 | Suggested
Minimum
Marks 50 | Suggested
Minimum
Marks 50 | Suggested
Minimum
Marks
200 | Suggested
Minimum
Marks 50 | Suggested
Minimum
Marks 50 | Suggested
Minimum
Marks 50 | | | Weighting | 15% | 14% | 15% | 14% | 14% | 14% | 14% | | anmorephysics.com