EDUCATION REPUBLIC OF SOUTH AFRICA ## MATHEMATICS ANNUAL TEACHING PLAN GRADE 10 – 2025 | NAME OF SCHOOL: | | |------------------|--| | NAME OF TEACHER: | | | | | | - Inni | TERM 1 | | | | | | |---------------------------|--|-------------------|---|--|------------------------------------|-------|------------------------------|--------------------|----| | NUMBER OF DATE STARTED C | | DATE
COMPLETED | TOPIC | CURRICULUM STATEMENT | ASSESSMENT | F/IF? | DH:
SIGNATURE
AND DATE | % C
PLE
Term | | | 15/01 – 17/01
(3 days) | | | | Understand that real numbers can be rational or irrational. Know the difference as far as the decimal expansions of the numbers are concerned. Establish between which two integers a given simple surd lies. | | | | 8 | 2 | | 20/01 -31/01
(10 days) | | | ALGEBRA
PART 1
(ALGEBRAIC
EXPRESSIONS) | | | | | 33 | 10 | | 03/02 - 04/02
(2 days) | | | | 6. Simplification of algebraic fractions using factorisation. | | | | 38 | 12 | | 05/02 -10/02
(4 days) | | | | 7. Addition and subtraction of algebraic fractions with denominators with denominators of cubes (limited to sum and difference of cubes). | | | | 48 | 15 | | 11/02
(1 day) | | | ALGEBRA
PART 2
(Exponents) | 1. Revise laws of exponents learnt in Grade 9 where $x, y > 0; m, n \in \mathbb{Z}$: • $x^m \times x^n = x^{m+n}$ • $x^m \div x^n = x^{m-n}$ • $(x^m)^n = x^{mn}$ • $x^m \times y^m = (xy)^m$ 2. Also, by definition: $x^{-n} = \frac{1}{x^n}, x \neq 0 \text{and} x^0 = 1, x \neq 0$ | | | | 50 | 16 | | 12/02 -17/02
(4 days) | | | | 3. Use the laws of exponents to simplify expressions and solve equations, accepting that the rules also hold for $m, n \in Q$. | INVESTIGATION
SBA weighting: 15 | | | 60 | 19 | | NUMBER OF
DAYS | DATE
STARTED | DATE
COMPLETED | TOPIC | CURRICULUM STATEMENT | ASSESSMENT | F/IF? | HOD:
SIGNATURE
AND DATE | | | |----------------------------|-----------------|-------------------|--|--|------------------------------------|-------|-------------------------------|-----|----| | 18/02 –20/02
(3 days) | | | | Revise the solution of linear equations. Solve quadratic equations (by factorisation). | | | | 68 | 21 | | 21/02 –27/02
(5 days) | | | ALGEBRA
PART 3
(Equations and
Inequalities) | Solve simultaneous linear equations in two unknowns. Solve word sums involving linear, quadratic or simultaneous linear equations. | | | | 80 | 25 | | 28/02 -04/03
(3 days) | | | | Solve literal equations (changing the subject of a formula). Solve linear inequalities (and show solution graphically). Interval notation must be taught. | | | | 88 | 28 | | 05/03 – 11/03
(5 days) | | | TRIGONO-
METRY
PART 1 | Define the trigonometric ratios sin θ, cos θ, and tan θ using right-angled triangles. Define the reciprocals of the trigonometric ratios cosec θ, sec θ and cot θ using right-angled triangles. (These three reciprocals should be examined in grade 10 only.) Derive values of the trigonometric ratios for the special cases (without using a calculator), θ ∈ {0°; 30°; 45°; 60°; 90°}. | | | | 100 | 31 | | 12/03 – 28/03
(12 days) | , | | REVISION and
MARCH TEST | MARCH TEST to cover all the work done during Term 1. | MARCH TEST
SBA weighting:
14 | F | | | | | NUMBER
OF DAYS | DATE
STARTED | TOPIC | CURRICULUM STATEMENT OPIC | | F/IF? | DH:
SIGNATURE AND | PLE | COM-
ETED | |---------------------------|-----------------|--|---|------------------------------------|-------|----------------------|-----|--------------| | 08/04 -14/04
(5 days) | | TRIGONO-
METRY
PART 1
(continued) | Solve simple trigonometric equations for angles between 0° and 90°. Extend the definitions of sin θ, cos θ, and tan θ for 0° ≤ θ ≤ 360° Use diagrams to determine the numerical values of ratios for angles from 0° to 360° | | | DATE | 13 | Year 35 | | 015/04–12/05
(13 days) | | EUCLIDEAN
GEOMETRY | Revise basic results established in earlier grades regarding lines, angles and triangles, especially the similarity and congruence of triangles. Define the following special quadrilaterals: the kite, parallelogram, rectangle, rhombus, square and trapezium. Investigate and make conjectures about the properties of the sides, angles, diagonals and areas of these quadrilaterals. Prove these conjectures. The following proofs of theorems are examinable: The opposite sides and angles of a parallelogram are equal. If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram. The diagonals of a rectangle are equal. The diagonals of rhombus bisect each other at right angles and bisect the interior angles of the rhombus. | | | | 45 | 46 | | 13/05–15/05
(3 days) | | | Investigate line segments joining the midpoints of two sides of a triangle | | | | 53 | 48 | | 16/05 – 22/05
(5 days) | | ANALYTICAL
GEOMETRY | Represent geometric figures on a Cartesian co-ordinat system. Derive and apply for any two points, (x₁; y₁) and (x₂; y₂), the formulae for calculating the: distance between the two points; gradient of the line segment connecting the two points (and from that identify parallel and perpendicular lines); coordinates of the midpoint of the line segment joining the two points. | ASSIGNMENT
SBA weighting:
15 | | | 65 | 52 | | NUMBER OF
DAYS | DATE
STARTED | DATE
COMPLETED | TOPIC | CURRICULUM STATEMENT | ASSESSMENT | F/IF? | DH:
SIGNATURE AND
DATE | % C
PLE
Term | | |---------------------------|-----------------|-------------------|------------------------------|---|-----------------------------------|-------|------------------------------|--------------------|----| | 23/05
(1 day) | | | | The concept of a function, where a certain quantity (output value) uniquely depends on another quantity (input value). Work with relationships between variables using tables, graphs, words and formulae. Convert flexibly between these representations. Note that the graph defined by y = x should be known from Grade 9. | | | | 68 | 53 | | 26/05–11/06
(13 days) | | | FUNCTIONS
AND GRAPHS | Point by point plotting of basic graphs defined by y = x², y = 1/x, and y = b², b>0 and b≠1 to discover shape, domain (input values), range (output values), asymptotes, axes of symmetry, turning points and intercepts on the axes (where applicable). Investigate the effect of a and q on the graphs defined by y = a.f(x)+q, where f(x)=x f(x)=x², f(x)=1/x, and f(x)=b², b>0 and b≠1. Sketch graphs, find the equations of given graphs and interpret graphs. Note: Sketching of the graphs must be based on the observation of number 3 above. | | | | 100 | 63 | | 17/06 – 27/06
(9 days) | | | REVISION
and JUNE
EXAM | JUNE EXAMINATION to cover the work done during Term 1 and Term 2. | JUNE EXAM
SBA weighting:
14 | F | | | | | NUMBER OF
DAYS | DATE
STARTED | DATE
COMPLETED | ТОРІС | CURRICULUM STATEMENT | ASSESSMENT | F/IF? | DH:
SIGNATURE
AND DATE | | OM-
TED
Year | |---------------------------|-----------------|-------------------|-------------------------------------|---|------------|-------|------------------------------|----|--------------------| | 22/07 – 29/07
(6 days) | | | PART 2
(FUNCTIONS
AND GRAPHS) | Point by point plotting of basic graphs defined by y = sin θ, y = cos θ and y = tan θ for θ ∈ [0°; 360°]. Study the effect of a and q on the graphs defined by y = a sin θ + q; y = a cos θ + q and y = a tan θ + q, for θ ∈ [0°; 360°]. Sketch graphs, find the equations of given graphs and interpret graphs. Note: Sketching of the graphs must be based on the observation of number 2 above. | | | ANDDATE | 14 | 68 | | 30/07 – 05/08
(5 days) | | | TRIGONO-
METRY
PART 3 | Solve two-dimensional problems involving right-
angled triangles. | | | | 26 | 72 | | 06/08 - 08/08
(3 days) | | | STATISTICS
(From Grade 9) | Draw a variety of graphs to display and interpret data including: • bar graphs and double bar graphs • histograms with given and own intervals • pie charts • broken line graphs | | | | 33 | 74 | | 11/08 – 13/08
(3 days) | | | STATISTICS | Revise measures of central tendency in ungrouped data. Measures of central tendency in grouped data: Calculation of mean estimate of grouped data and identification of modal interval and interval in which the median lies. Revision of range as a measure of dispersion and extension to include percentiles, quartiles, interquartile and semi- interquartile range. | | | | 40 | 76 | | 14/08 – 19/08
(4 days) | | | STATISTICS | Five number summary (maximum, minimum and quartiles) and box and whisker diagram. Use the statistical summaries (measures of central tendency and dispersion), and graphs to analyse and make meaningful comments on the context associated with the given data. | | | | 50 | 80 | | NUMBER OF
DAYS | DATE
STARTED | DATE
COMPLETED | TOPIC | CURRICULUM STATEMENT | ASSESSMENT | F/IF? | DH:
SIGNATURE
AND DATE | % C
PLE
Term | OM-
TED
Year | |----------------------------|-----------------|-------------------|-----------------------------------|--|---|-------|------------------------------|--------------------|--------------------| | 20/08 – 29/08
(8 days) | | | PROBABILITY | The use of probability models to compare the relative frequency of events with the theoretical probability. The use of Venn diagrams to solve probability problems, deriving and applying the following for any two events A and B in a sample space S: P(A or B)=P(A)+P(B)-P(A and B); A and B are mutually exclusive if P(A and B)=0; A and B are complementary if they are mutually exclusive and P(A)+P(B)=1; Then: P(B)=P(not A)=1-P(A). | | | | 69 | 86 | | 01/09 – 10/09
(8 days) | | | FINANCE AND
GROWTH | Use the simple and compound growth formulae [A = P(1+in) and A = P(1+i)ⁿ] to solve problems, including annual interest, hire purchase, inflation, population growth and other real-life problems. Understand the implication of fluctuating foreign exchange rates (e.g. on the petrol price, imports, exports, overseas travel). | TERM 3 TEST
SBA weighting:
14 | F | | 88 | 92 | | 11/09 – 17/09
(5 days) | | | NUMBER
PATTERNS | Investigate number patterns leading to those where there is a constant difference between consecutive terms, and the general term is therefore linear. | | | | 100 | 96 | | 18/09 – 03/10
(11 days) | | | REVISION and
SEPTEMBER
TEST | Do not use the formula $T_n = a + (n-1)d$.
SEPTEMBER TEST to cover the work done during Term 3. | SEPTEMBER
TEST
SBA weighting:
14 | F | | | | ## Downloaded from Stanmorephysics.com | | | | Inni | TERM 4 | | | | | |----------------------------|-----------------|-------------------|------------------------------------|---|-------------------------------------|-------|------------------------------|------------------| | NUMBER OF
DAYS | DATE
STARTED | DATE
COMPLETED | TOPIC | CURRICULUM STATEMENT | ASSESSMENT | F/IF? | DH:
SIGNATURE
AND DATE | % COM-
PLETED | | 13/10 – 21/10
(7 days) | | | MEASURE-
MENT | Revise the volume and surface areas of right-prisms and cylinders. Study the effect on volume and surface area when multiplying any dimension by a constant factor k. Calculate the volume and surface areas of spheres, right pyramids and right cones. In case of pyramids, bases must either be an equilateral triangle or a square. Problem types must include composite figures. | TERM 4 TEST
SBA weighting:
14 | F | 100 | 100 | | 22/10 – 28/10
(5 days) | | | | REVISION OF PAPER 1 TOPICS | | | | | | 29/10 – 04/11
(5 days) | | | | REVISION OF PAPER 2 TOPICS | _ | | | | | 05/11 - 10/12
(26 days) | | | FURTHER REVISION and NOVEMBER EXAM | NOVEMBER EXAMINATION to cover all the work done during Terms 1, 2, 3 and 4. | NOVEMBER
EXAMINATION | F | | | | - Downloaded from | Stanmorephys
GR. 10 MAT | THEMATICS 2025 T | EST and EXAMINAT | TON SCOPE | | | | |---|---|---------------------------|--|-------------------|--|-----------------|--| | TERM 1 | 100 | TERM 2 | TER | М 3 | TERM 4 | · S | | | | JUNE E | XAMINATION | | | NOVEMBER EXAMINATION | | | | MARCH TEST | jann P | PAPER: 1 | | ER TEST | PAPER 1: | | | | DURATION: 1½ hours | DURATION: | 1 hour | DURATION: | 1½ hour | DURATION: | 2 hours | | | TOTAL MARKS: 75 | TOTAL MARKS: | 50 | TOTAL MARKS: | 75 | TOTAL MARKS: | 100 | | | This test will consist of the following sections: | This examination v following sections: | | This test will consist of sections: | the following | This examination paper the following sections: | will consist of | | | Algebra Part 1 (Algebraic Expressions) | Algebra | 25±3 marks | Number patterns | 15±3 marks | Algebraic expressions, | | | | Algebra Part 3 (Equations and Inequalities) | marks Functions and Grap | hs 25±3 marks | Finance and growth | 10±3 marks | equations (and inequalities and exponents. | 30±3 marks | | | Algebra Part 2 (Exponents) 18± | marks | | Probability | 15±3 marks | Number patterns | 15±3 marks | | | Trigonometry Part 1 (no. 1 – 3) | marks | | Statistics | 15±3 marks | Functions and graphs | 30±3 marks | | | | | | Trigonometry Part 2
(Trigonometric Function
Graphs) | ns and 10±3 marks | Finance and growth | 10±3 marks | | | | | | Trigonometry Part 3
(2D problems involving
angled triangles) | right- 10±3 marks | Probability | 15±3 marks | | | | P | PAPER 2: | | | PAPER 2 | : | | | | DURATION: | 1 hour | | | DURATION: | 2 hours | | | | TOTAL MARKS: | 50 | | | TOTAL MARKS: | 100 | | | | This examination problems following sections: | paper will consist of the | | | This examination paper the following sections: | will consist of | | | | Euclidean Geometry | y 25±3 marks | | | Statistics | 15±3 marks | | | | Analytical Geometr | y 13±3 marks | | | Analytical Geometry | 15±3 marks | | | | Trigonometry Part | 1 12±3 marks | | | Trigonometry | 40±3 mark | | | | | | | | Euclidean Geometry and
Measurement | 30±3 marks | |