

CAPRICORN SOUTH DISTRICT

Stanmorephysics.com

GRADE 12

MATHEMATICS tanmorephest tom

MARKS: 100

TIME: 2 Hours

DATE: 12/03/2024

This question paper consists of 6 pages

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 Questions.
- 2. Answer ALL the questions.
- Clearly show ALL calculations, diagrams and graphs that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- Number your answers correctly according to the numbering system used in this
 question paper.
- 9. It is in your own interest to write legibly and to present your work neatly.

QUESTION 1

1.1 Solve for x:

$$1.1.1 \quad 2 - 3x = x - 6 \tag{2}$$

$$1.1.2 \quad 6x^2 - x - 15 = 0 \tag{3}$$

1.1.3
$$3x^2 + x - 5 = 0$$
 (round off your answer to TWO decimal places) (4)

$$1.1.4 \quad (x-1)^2 > 9 \tag{4}$$

$$1.1.5 \quad \sqrt{2 - 7x} = 2 - x \tag{4}$$

1.2 Solve for x and y if they satisfy the following equations simultaneously:

$$x - 2y = 1$$

$$x^2 - 2xy + y^2 = 9 more physics.com (6)$$

1.3 Given: $12^{x+1} = 36(6^x)$

1.3.1 Show that the equation can be written in the form:
$$2^x = 3$$
 (3)

1.3.2 Solve for
$$x$$
, correct to two decimal places (2)

[28]

QUESTION 2

Consider the following number pattern: 6; 13; 22; 33; x; y;

- 2.1 Show that it is a quadratic number pattern (2)
- 2.2 Write down the values of x and y (2)
- 2.3 Hence determine the nth term as well as the 160th term (5)
- 2.4 Determine which term equals 397 (4)

[13]

QUESTION 3

3.1 Given the arithmetic series: 5+9+13+...+401

Calculate:

- 3.1.1 The number of terms in the series (4)
- 3.1.2 The sum of the terms in the series (3)

3.2 Given the sequence: 2; x; 18;

Calculate x if this sequence is:

- 3.2.1 An arithmetic sequence (3)
- 3.2.2 A geometric sequence (4)
- 3.3 Given: $\sum_{k=1}^{10} 3(2)_{i,anmore physics.com}^{1+k}$
 - 3.3.1 Write down the first three terms of the series (3)
 - 3.3.2 Determine the sum of the series (3)

[20]

QUESTION 4

Given: $f(x) = \frac{-4}{x-2} - 1$

- 4.1 Calculate the coordinates of the intercepts of the graph of f with the axes (5)
- 4.2 Sketch the graph of f, showing the asymptotes and the intercepts with the axes (3)
- 4.3 If the graph of f is shifted five units to the left and two units down, write down the equation of the new function obtained by this transformation. Use the form

$$y = \dots (2)$$

4.4 What is the domain and the range of f(x) (2)

[12]

QUESTION 5

In the diagram below, A(2; 5) is the turning point of the parabola f that cuts the y axis at B(0; 1). The straight line g passes through A and B.

Determine:

5.1 The equation of g in the form
$$y = mx + c$$
 (4)

5.2 The equation of f in the form
$$y = ax^2 + bx + c$$
 (4)

5.4 The values of x for which
$$f(x) \ge g(x)$$
 (2)

[13]

QUESTION 6

The sketch below represents the graph of $f(x) = a^x$. The point B(-1; 3) lies on the graph and A is the y intercept of f.

- 6.1 Determine the value of a (3)
- (2) 6.2 Determine the coordinates of A
- Determine the equation of f^{-1} the inverse of f, in the form $f^{-1}(x) = \dots$ 6.3 (2)
- Sketch the graph of f^{-1} 6.4 (3)
- Determine the domain of f^{-1} 6.5 (2)
- For which value(s) of x will $f^{-1}(x) \ge -1$ 6.6 (2)

[14]

CAPRICORN SOUTH DISTRICT

Stanmorephysics.com

GRADE 12

MATHEMATICS
TEST 1
MEMORANDUM
Stormorephysics com

MARKS: 100

1.1			
1.1.2	$2-3x = x - 6$ $-4x = -8$ $x = 4$ $6x^{2} - x - 15 = 0$ $(3x - 5)(2x + 3) = 0$ $x = \frac{5}{3} \text{ or } x = -\frac{3}{2}$	✓ simplification ✓ answer ✓ factors ✓ $x = \frac{5}{3}$ ✓ $x = -\frac{3}{2}$	on
1.1.3	$3x^{2} + x - 5 = 0$ $x = \frac{-(1) \pm \sqrt{(1)^{2} - 4(3)(-5)}}{5tanmore2(3)ics.com}$ $= \frac{-1 \pm \sqrt{61}}{6}$	✓ substitution \checkmark simplification \checkmark $x = 1.14$	on
1.1.4	$x^{2} - 2x - 8 > 0$ $(x - 4)(x + 2) > 0$ $CV: x = 4 \text{ or } x = -2$	✓ $x = -1.47$ ✓ standard f ✓ critical va ✓ $x < -2$ ✓ $x > 4$	Orm
1.1.5	$x < -2 \text{ or } x > 4$ $\sqrt{2 - 7x} = 2 - x$ $2 - 7x = 4 - 4x + x^{2}$ $x^{2} + 3x + 2 = 0$ $(x + 1)(x + 2) = 0$ $x = -1 \text{ or } x = -2$	✓ $x > 4$ ✓ squaring ✓ standard for ✓ $x = -1$ ✓ $x = -2$	rm

$x = 2y$ $(2y + 1)$ $4y^{2} + 2y$ $(y + 4)$ $y = -4$ $x = 2($	$xy + y^2 = 9$	✓ ✓ ✓	x = 2y + 1 substitution simplification standard form y = -4 or y = 2 x = -7 or x = 5
1.3.1	$12^{x+1} = 36(6^{x})$ $12^{x} \cdot 12 = 36(6^{x})$ $\frac{12^{x}}{6^{x}} = \frac{36}{12}$ $\frac{2^{x} \cdot 6^{x}}{6^{x}} = 3$ $2^{x} = 3$ $2^{x} = 3$ $x = \log_{2} 3$ $x = 1.58$	✓ ✓	$12^{x}. 12$ $\frac{12^{x}}{6^{x}} = \frac{36}{12}$ $2^{x}. 6^{x}$ $x = \log_{2} 3$ answer

2.1	6 1	13 22	33	46	61		
	7	9	11	13 15	;	✓	first difference
	2	2 2	2	2		~	second difference
2.2	x = 46					V	x = 46
	y = 61					✓	y = 61
2.3	2a = 2 $a = 1$					~	a = 1
	$\begin{vmatrix} 3a + b = b \\ b = 4 \end{vmatrix}$	= 7				1	b = 4

	$a + b + c = 6$ $1 + 4 + c = 6$ $c = 1$ $T_n = n^2 + 4n + 1$ $T_{160} = 160^2 + 4(160) + 1$	✓ ✓	c = 1 substitution answer
2.4	$T_{160} = 26241$ $n^2 + 4n + 1 = 397$ $n^2 + 4n - 396 = 0$	✓	equating
	(n + 20)(n - 18) = 0 n = -20 or n = 18 n = 18	✓ ✓ ✓	standard form $n = -20 \text{ or } n = 18$ $n = 18$

QUESTION 3

tanmorephysics.com

		Stanmorephysics.com		
3.1	3.1.1	a = 5 $d = 4$	✓	values of a and d
		5 + (n-1)4 = 401	✓	substitution
		4n = 400	✓	simplification
		n = 100	✓	answer
	3.1.2	$S_n = \frac{100}{2}(5 + 401)$	√	substitution
		() 	✓	simplification
		= 50(406)	✓	answer
		=20 300		Material Material Control
3.2	3.2.1	x - 2 = 18 - x	✓	equating
		2x = 20	✓	simplification
		x = 10	✓	answer
	3.2.2	$\frac{x}{x} = \frac{18}{x}$	1	equating
		$\overline{2} = \frac{1}{x}$	✓	$x^2 = 36$
		$x^2 = 36$	~	$x = \pm 6$
		$x = \pm 6$	1	x = 6
		x = 6		1 190 () (005)
3.3				
	3.3.1	12; 24; 48	✓	12
			✓	24
	24		✓	48

09			
4.1	$y - \text{intercepts}$ $y = \frac{-4}{0 - 2} - 1$ $y = 1$ $x - \text{intercepts}$ Stanmore physics.com	✓	Substitute $(x = 0)$ y = 1
	$\frac{-4}{x-2} - 1 = 0$	✓	equating to Zero
	$\frac{-4}{x-2} = 1$	✓	simplification
	$ \begin{aligned} x - 2 &= -4 \\ x &= -2 \end{aligned} $	~	x = -2
4.2	$ \uparrow \qquad x = 2 $	~	shape
		~	intercepts
	y = -1 $5 tanmorephysics com$	√	asymptotes
4.3	$y = \frac{-4}{x - 2 + 5} - 1 - 2$	√	substitution
8	$y = \frac{-4}{x+3} - 3$	✓	answer

4.4 Domain: $x \in R$; $x \neq 2$	$\checkmark x \in R; x \neq 2$
Range: $y \in R; y \neq -1$	$\checkmark y \in R; y \neq -1$

	7		
5.1	y = mx + c		
	y = mx + 1	1	y = mx + 1
	Passing through $A(2;5)$		**************************************
	5 = m(2) + 1	✓	5 = m(2) + 1
	2m=4	./	m = 2
	m=2		
	y = 2x + 1 Stanmorephysics.com	✓	y = 2x + 1
5.2	$y = a(x+p)^2 + q$		
	$y = a(x+2)^2 + 5$	1	$y = a(x+2)^2 + 5$
	Passing through $B(0;1)$		
	$1 = a(0+2)^2 + 5$	1	substitution $B(0; 1)$
	4a = -4	1	a = -1
	a = -1		
	$y = -(x+2)^2 + 5$		
	$y = -x^2 - 4x - 4 + 5$	1	$y = -x^2 - 4x + 1$
	$y = -x^2 - 4x + 1$		
5.3	$AB^2 = 2^2 + 4^2$	✓	$AB^2 = 2^2 + 4^2$
	= 4 + 16		
	= 20	✓	= 20
	$AB = 2\sqrt{5}$	✓	$AB = 2\sqrt{5}$
5.4	$0 \le x \le 2$	11	$0 \le x \le 2$

CLIL			
6.1	$y = a^x$ $3 = a^{-1}$	1	substitution
	$\frac{1}{a} = 3$		simplification
	$a = \frac{1}{3}$	✓	$a=\frac{1}{3}$
6.2	$y = \left(\frac{1}{3}\right)^{x}$ $y = \left(\frac{1}{3}\right)^{0}$		
	$y = \left(\frac{1}{3}\right)^0$		substitution ($x = 0$)
	y = 1 Stanmore physics. com $A(0; 1)$	•	y = 1
6.3			
	$y = \left(\frac{1}{3}\right)^{x}$ $x = \left(\frac{1}{3}\right)^{y}$ $f^{-1}(x) = \log_{\frac{1}{3}} x$	✓	interchange x and y
	$f^{-1}(x) = \log_{\frac{1}{3}} x$	✓	$y = \log_{\frac{1}{3}} x$
6.4	A'(1; 0) x B'(3; -1)	√ √ √	shape coordinates of B' coordinates of A'
6.5	$x \in R; x > 0$	11	$x \in R; x > 0$
6.6	0 < x < -1	V	0 < x < -1