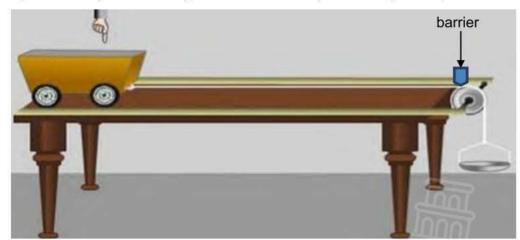
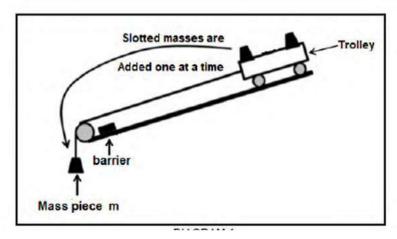
PHYSICAL SCIENCES DISTRICT SE

GRADE 11: FORMAL PRACTICAL 1: INSTRUCTIONS

Time 2 hrs Marks 57


1. To determine the relationship between the resultant/net force acting on an object and acceleration produced on a constant mass


2. APPARATUS/EQUIPMENT

- 1. Dynamics trolley kit
- 2. Inextensible string / fishing gut
- 3. Mass pieces
- 4. Stopwatch
- 5. Runway with a pulley
- 6. Mass hanger
- 7. Ruler or measuring tape if runway is not calibrated

3. METHOD/PROCEDURE

- 1. Measure the mass of the trolley and record it.
- 2. Clean the runway.
- 3. Set up the runway with a trolley, as shown below. (Without any mass pieces on the trolley)

(Need a slight incline)

- Raise the one end of the runway so that the trolley moves at a constant velocity down the runway.
- 5. Measure the length of the runway from the front wheel to the barrier.
- 6. Place five or more mass pieces on top of the trolley.
- 7. Take mass piece **m**₁ from the trolley and put it on the pan/hanger. So that, when the trolley is released, it accelerates.
- 8. Use a stopwatch and measure the time from the moment the trolley is released up to the time it strikes the barrier. Repeat this action at least three times.
- 9. Take another mass m₂ piece from the trolley, add it to the pan/hanger and repeat this action at least three times.
- 10. Take another mass m₃ piece from the trolley and add it to the pan/hanger.

 Record the time for the trolley to accelerate. Repeat this action at least three times.
- 11. Repeat the procedure with another mass m4 and m5

Repeat this until you you get results for five different masses that are on the pan / hanger

4. RESULTS

Exp No.	Distance Δ x (m)	Mass m (kg)	$\Delta \mathbf{t}_1$ (s)	$\Delta \mathbf{t}_2(s)$	∆ t ₃ (s)	∆t avg (s)
1		m ₁				∆t₁ avg
2		m ₂				∆t₂ avg
3		m ₃				∆t₃ avg
4		m ₄				∆t₄ avg
5		m ₅				∆t₅ avg

(3)

5 Calculate the average times for each for each of the experiments

(3)

6 Calculate the acceleration of the trolley for each of the experiments using relevant equations of motion

(10)

ANALYSIS /INTERPRETATION

7 Draw a free body diagram for the trolly and the mass and for the masses on the pan/ hanger. Ignore friction.

Use the diagrams to calculate the net force, F_{net}/ resultant force acting on the trolley due to the massess on the pan/hangder (13)

Troley:

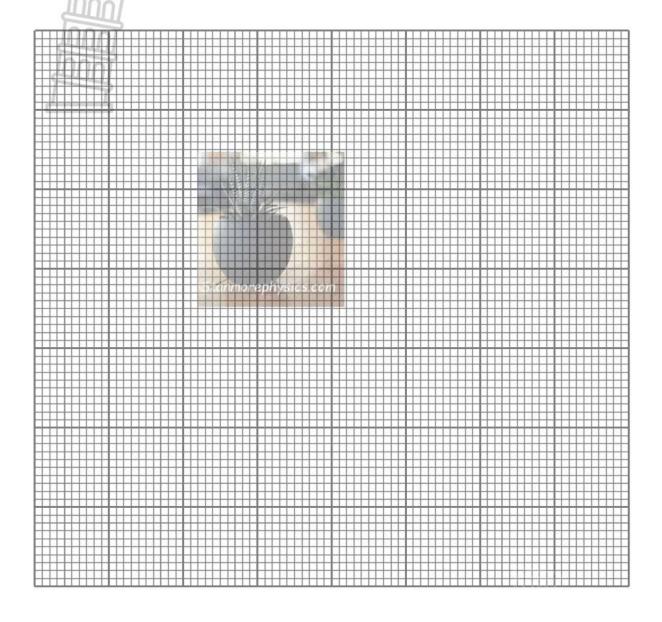
mass on pan/hanger:

	T = -
EXP 1	Exp 2
Stanmorephysics.com FNet 1 =	F _{Net 2} =
EXP 3	EXP 4
LAI	
F _{Net 3} =	F _{Net 4} =
EXP 5	
F _{Net 5} =	

8 Complete the table for F_{net} and accelerationon the trolley for ythe different masses

	mass 1	mass 2	mass 3	mass 4	mass 5
F _{Net} (N)			9		
a in (m.s ⁻²)					

9. Draw a graph of acceleration against F _{net} on graph paper provided	(5)
10 Draw a conclusion for the experiment.	(2)
11 For this experiment, identify the following variables:	
11.1 Independent	(1)
11.2 Dependent	(1)
11.2 Controlled	(1)
12 Why was the runway raised?	(1)
13 Why was the runway cleaned?	(1)
14 Give one reason why the mass pieces were transferred from the trolley to the pan/ hanger	(1)
15 How will the acceleration of the trolley be affected when the friction on the wheels increase	s?
Write down only INCREASE, DECREASE or REMAINS THE SAME.	(1)
Motivate the answer.	(1)
16.1Calculate the gradient of the graph	(4)
16.2 What does the gradient of the graph represent?	(1)
16.3 Calculate the mass	(1)


PRACTICAL SKILLS

CRITERIA	MARKS
Correct setting up of apparatus	1
Cleaning the runway	1
Raising the runway so that the trolley moves with a constant velocity	1
Measuring:	
The length of the runway accurately	1
The mass of the trolley accurately	1
Stopwatch used correctly	1
Following a sequence of instructions logically	1

(7)

GRADE 11 D ATE

NAME:

PHYSICAL SCIENCES DISTRICT SEDIBENG EAST

GRADE 11 FORMAL PRACTICAL 1 MEMO Total 57

4. RESULTS

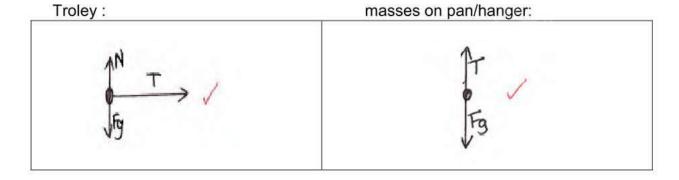
Exp No.	Distance Δ x (m)	Mass m (kg)	$\Delta \mathbf{t}_1$ (s)	$\Delta \mathbf{t}_2(s)$	Δt ₃ (s)	Δt avg (s)
1	1	m ₁ 0,02	2,27	2,07	2,22	$\Delta t_1 \text{ avg} = 2,19$
2	1	m ₂ 0,04	1,52	1,78	1,76	$\Delta t_2 \text{ avg} = 1.69$
3	1	m ₃ 0,06	1,41	1,39	1,51	Δt ₃ avg = 1,44
4	1	m ₄ 0,07	1,57	1,32	1,41	∆t₄ avg = 1,43
5		m ₅				Δt ₅ avg
	whole column <	whole column		3 column	/	

5 average times last column in table

(10)

(3)

A Delivery of the Control of the Con


6 acceleration
$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark \checkmark$$

Exp 2:
1 = 0(1,69) + ½ . a (1,69) ² ✓
a = 0,7 m.s ⁻² ✓
Exp 4:
$1 = 0(1,43) + \frac{1}{2} \cdot a (1,43)^2 \checkmark$
a = 0,98 m.s ⁻² ✓
10.00

7 ANALYSIS /INTERPRETATION

(13)

1

Troley
$$F_{net} = T$$
 \checkmark masses on pan/hanger $F_{net} = W - T = ma$ $T = W - ma$

EXP1	Exp 2
$F_{\text{net}} = m(9.8 - a)$ = 0.02 (9.8 - 0.42) \checkmark	$F_{\text{net}} = m(9,8-a)$ = 0,04 (9,8 - 0,7) \checkmark
F _{Net 1} = 0,19 N ✓	F _{Net 2} = 0,36 N ✓
EXP 3	EXP 4
$F_{\text{net}} = m(9,8-a)$ = 0,06 (9,8 - 0,96)	$F_{\text{net}} = m(9,8-a)$ = 0,07 (9,8 - 0,98) \checkmark
F _{Net 2} = 0,53 N ✓	F _{Net 2} = 0,61 N ✓
EXP 5 Stanmorephysics.com	
F _{Net 5} =	

8

	mass 1	mass 2	mass 3	mass 4	mass 5
F _{Net} (N)	0,19 N	0,36	0.53	0,61	
a in (m.s ⁻²)	0,42	0,7	0,96	0.98	

9. Draw a graph of acceleration against F_{net} on graph paper provided (set A)

Axes labelled correctly; a on y-axis and Fnet on x-axis with units. Asse korrek benoem; T op y-as en t op x-as met eenhede.	✓
Suitable divisions on axes. Geskikte indelings op asse.	1
Any two points plotted correctly. Enige twee punte korrek geplot.	~
Any three other points plotted correctly. Enige drie ander punte korrek geplot.	~
Correct shape for graph Korrekte vorm vir grafiek	~

(5)

10 The <u>acceleration is directly proportional to the Net/ resultant force acting on a body, if the mass is constant</u> ✓✓ (2)

11.1 Independent Net/ resultant force		(1)
11.2 Dependent acceleration		(1)
11.3 Controlled mass (accept angle of i	nclination/ surface/ length of runway)	(1)
12 To compensate for friction between the tr	ack and the wheels of the trolley	(1)
13 To ensure it is smooth/ free of dirt. To mini	imise (the effect of) friction	(1)
14 To keep the mass of the system (mass of	trolley and mass pieces) constant	
To change the net force applied to the tro	lley	(1)
15 DECREASE		(1)
The net force decrease causing the accele	eration to decrease	(1)
16.1 Calculate the gradient of the graph		
Gradient = $\Delta a / \Delta F_{net} \checkmark$		
$= \frac{0.96 - 0}{0.53 - 0}$	om	
= 1,81 kg ⁻¹ ✓		(4)
		N 32
16.2 Reciprocal of mass /1/mass / inverse of r	mass 🗸	(1)
16.3 mass = 1/ gradient = 1/ 1.81		
= 0,55 kg ✓		(1)
	[50]	
PRACCTICAL SKILLS		(7)
	[57]	

MORE RESULTS SECOND SET

.4 RESULTS

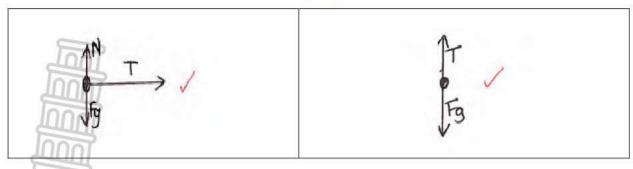
SET B

RECORDING OF RESULS

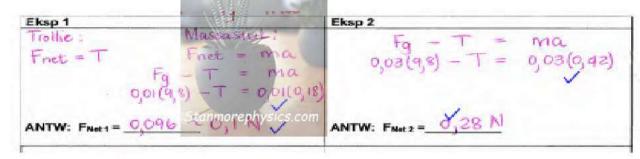
Exp No.	Distance Δ x (m)	Mass m (kg)	$\Delta \mathbf{t}_1$ (s)	$\Delta \mathbf{t_2}(s)$	∆ t ₃ (s)	∆t avg (s)
1	1	m ₁ 0,01	3,41	3,3	3.41	$\Delta t_1 \text{ avg} = 3,37$
2	1	m ₂ 0,03	2,.18	2,11	2,25	$\Delta t_2 \text{ avg} = 2,18$
3	1	m ₃ 0,05	1,6	1,67	1,62	$\Delta t_3 \text{ avg} = 1,62$
4	1	m ₄ 0,07	1,45	1,35	1,52	$\Delta t_4 \text{ avg} = 1,44$
5		m ₅				∆t₅ avg
	whole column 🗸	whole column		3 column		
						(3

- 5 Calculate the average times for each for each of the experiments last column in table (3)
- 6 Calculate the acceleration of the trolley for each of the experiments using relevant equations of motion (10)

$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark \checkmark$$


Exp 1:	Exp 2:
$1 = 0(3,37) + \frac{1}{2} a(3,37)^{2}$	$1 = O(2,18) + 1/2, a, (2,18)^2$
a = 0,18 mis-2 /	a= 0,42 m.5-2
Exp 3:	Exp 4:
$1 = 0(1,59) + \frac{1}{2}a(1,62)^{2}$	1 = 0(1,AA) + = 10. (1,4A)2
a = 0,76 mis-2	a = 0,46 m.s-2
Exp 5:	

7 Draw a free body diagram for the trolly and the mass and for the masses on the pan/ hanger. Ignore friction.


Use the diagrams to calculate the net force, F_{net} / resultant force acting on the trolley due to the massess on the pan/hangder (13)

Troley:

masses on pan/hanger:

Troley $F_{net} = T$ \checkmark masses on pan/hanger $F_{net} = W - T = ma$ T = W - ma $F_{net} = W - ma$ = mg - ma = m(g-a) = m(9.8 - a)

Eksp 3:
$$F_{9} - T = ma$$
 $0,05(9,8) - T = 0,05(0,76)$

Eksp 4: $F_{9} - T = ma$
 $0,07(9,8) - T = 0,07(0,96)$

ANTW: $F_{Not} = 0,45 \text{ N}$

ANTW: $F_{Not} = 0,62 \text{ N}$

 massa 1
 massa 2
 massa 3
 massa 4
 massa 5

 F_{Net} in N
 0,1
 0,28
 0,45
 0,52

 versnelling (a) in m.s⁻²
 0,18
 0,42
 0,79
 0,95

9 Graph B (5)

Axes labelled correctly; a on y-axis and F _{net} on x-axis with units. Asse korrek benoem; T op y-as en t op x-as met eenhede.	✓
Suitable divisions on axes. Geskikte indelings op asse.	~
Any two points plotted correctly. Enige twee punte korrek geplot.	✓
Any three other points plotted correctly. Enige drie ander punte korrek geplot.	~
Correct shape for graph Korrekte vorm vir grafiek	V

16.1

Gradient = ∆a / ∆F_{net} ✓

$$= 0.86 - 0$$
 \checkmark $0.50 - 0$ \checkmark

$$= 1.72 \text{ kg}^{-1} \checkmark$$
 (4)

16.2 Reciprocal of mass /1/mass / inverse of mass ✓ (1)

16.3 mass = 1/ gradient

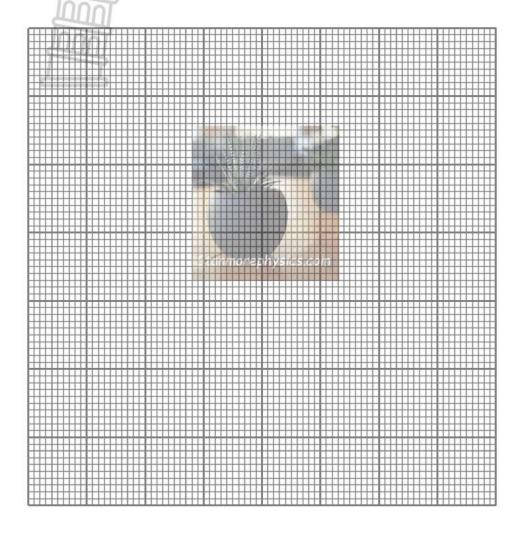
$$= 1/1,72$$

=0,58 kg ✓ (1)

PHYSICAL SCIENCES DISTRICT SE

GRADE 11 PHYSICAL SCIENCE	
FORMAL ASSESSMENT: TASK 1	Date:
Name of Learner:	Grade 11

PRACTICAL SKILLS


CRITERIA	MARKS
Correct setting up of apparatus	1
Cleaning the runway	1
Raising the runway so that the trolley moves with a constant velocity	1
Measuring:	
The length of the runway accurately	1
The mass of the trolley accurately	1
Stopwatch used correctly	1
Following a sequence of instructions logically	1

(7)

Name Grade 11 Date

Scale: x axis 2 cm rep

y axis 2 cm rep

