

MARKS: 100

DURATION: 2 hrs

This question paper consists of 6 pages and a information sheet

MATHEMATICS

ANE/MARCH/2023

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- This question paper consists of SIX questions. Answer ALL the questions.
- 2 Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answer.
- 3 You may us an approved scientific calculator, unless stated otherwise.
- 4 Answer only will not necessarily be awarded full marks.
- 5 If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6 Diagrams are NOT necessarily drawn to scale.
- Number the answers correctly according to the numbering system used in this question paper.
- 8 Write neatly and legibly.

ANE/MARCH/2023 MATHEMATICS

QUESTION 1

1.1 Solve for x:

$$1.1.1 \quad x^2 - 2x - 24 = 0 \tag{3}$$

1.1.2
$$2x^2 - 3x - 3 = 0$$
 (correct to TWO decimal places) (3)

$$1.1.3 \quad x^2 + 5x \le -4 \tag{4}$$

$$1.1.4 \quad 2.3^x = 81 - 3^x \tag{4}$$

1.2 Solve simultaneously for x and y:

$$x - 4y = 5 \text{ and } x^2 - 5xy + y^2 = 7$$
[20]

QUESTION 2

2.1 Given the quadratic sequence: 5; 18; 37; 62; 93;....; 557

2.1.1 Determine the general term of the sequence in the form
$$T_n = an^2 + bn + c$$
(4)

2.2 Given that:

$$\sum_{k=1}^{6} (x - 3k) = \sum_{k=1}^{9} (x - 3k), \text{ prove that } \sum_{k=1}^{15} (x - 3k) = 0$$
 (5)

[13]

[6]

QUESTION 3

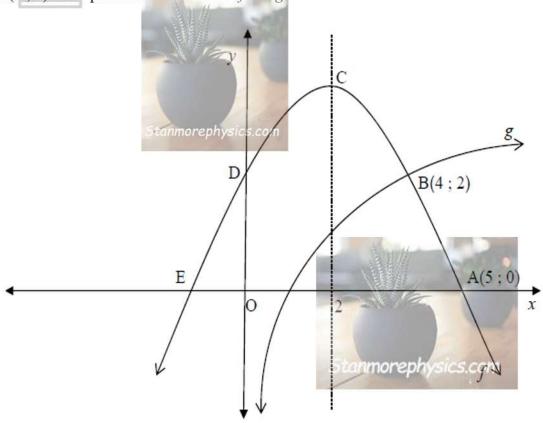
and the second second second

The following geometric series is given: 10 + 5 + 2.5 + 1.25 + ...

Stanmorephysics.com

3.2 Determine
$$S_{\infty} - S_n$$
 in the form ab^n , where S_n is the sum of the first n (4) terms of the series.

ANE/MARCH/2023


MATHEMATICS

QUESTION 4

In the sketch, the graphs of the functions given by $f(x) = ax^2 + bx + c$ and $g(x) = \log_m x$ are represented.

A(5; 0) is an x-intercept of f and x = 2 is the axis of symmetry of f.

B(4; 2) is the point of intersection of f and g.

- 4.1 Determine the value of m. (2)
- 4.2 Write down the domain of g. (1)
- 4.3 Determine the equation of g^{-1} , in the form $y = \cdots$ (2)
- 4.4 Write down the equation of h if h is obtained by shifting $g^{-1}(x)$ 2 units (1) to the left.
- 4.5 Determine the equation of the parabola f and hence show that: $a = -\frac{2}{5}$; $b = \frac{8}{5}$ and c = 2
- 4.6 Use the sketch to determine the values of x for which f(x). g(x) > 0 [12]

ANE/MARCH/2023

MATHEMATICS

QUESTION 5

5.1 The following function is given: $f(x) = 2x^2$

5.1.1 Determine the equation of
$$f^{-1}(x)$$
, in the form $y = \cdots$ (2)

- 5.1.2 Is f^{-1} a function? Give a reason for your answer. (2)
- 5.1.3 How can the domain be restricted in order for f^{-1} to be a function? (2)
- Consider: $f(x) = \frac{3}{x-2} + 1$ Stanmore physics.com
 - 5.2.1 Write down the equations of the asymptotes of f. (2)
 - 5.2.2 Determine the following:

(a)
$$y$$
 –intercept of f . (1)

- (b) x –intercept of f. (2)
- 5.2.3 Sketch the graph of f, showing clearly all intercepts and asymptotes. (3)
- 5.2.4 Determine the equation of the axis of symmetry of f with a positive y-intercept. (2)
- 5.2.5 If R(1; -3) is a point on f, determine the image of R if when it is reflected about the axis of symmetry in 5.2.4. (3)

[19]

ANE/MARCH/2023 MATHEMATICS

QUESTION 6

6.1 If $\sin 42^\circ = k$, determine the following in terms of k.

6.1.1
$$\tan 42^{\circ}$$
 (2)

$$6.1.2 \sin 84^{\circ}$$
 (3)

$$6.1.3 \sin 3^{\circ}$$
 (4)

6.2 Simplify the following expression to ONE trigonometric term:

$$\frac{\sin x}{\cos x \cdot \tan x} + \sin(180^\circ + x)\cos(90^\circ - x) \tag{4}$$

Consider the identity: $\frac{\cos 2\beta}{(\cos \beta + \sin \beta)^3} = \frac{\cos \beta - \sin \beta}{1 + \sin 2\beta}$

6.3.1 Prove the identity:
$$\frac{\cos 2\beta}{(\cos \beta + \sin \beta)^3} = \frac{\cos \beta - \sin \beta}{1 + \sin 2\beta}$$
 (4)

- 6.4 If $\cos \theta = 2p$ and $\cos 2\theta = 7p$, determine the possible value(s) of p. (5)
- 6.5 Complete the following:

$$\cos(A+B) = \tag{1}$$

6.6 Consider:
$$f(x) = \sin(x + 25^\circ) \cos 15^\circ - \cos(x + 25^\circ) \sin 15^\circ$$

Determine the general solution of $f(x) = \tan 165^\circ$

[30]

TOTAL: [100]

MATHEMATICS ANE/MARCH/2023

INFORMATION SHEET: MATHEMATICS

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1 - ni)$$
 $A = P(1 - i)^n$ $A = P(1 + i)^n$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$T_n = a + (n-1)d_{more}S_n = \frac{n}{2}(2a + (n-1)d)$$

$$T_n = ar^{n-1}$$

$$T_n = ar^{n-1}$$
 $S_n = \frac{a(r^{n}-1)}{r-1} \; ; r \neq 1 \; \text{or} \; S_n = \frac{a(1-r^n)}{1-r} \; ; r \neq 1$

$$S_{\infty} = \frac{a}{1-r}$$
: $-1 < r < 1$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$are\Delta ABC = \frac{1}{2}ab\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
$$= 1 - 2\sin^2 \alpha$$

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

$$= 2\cos^2\alpha - 1$$