Stanmorephysics.com

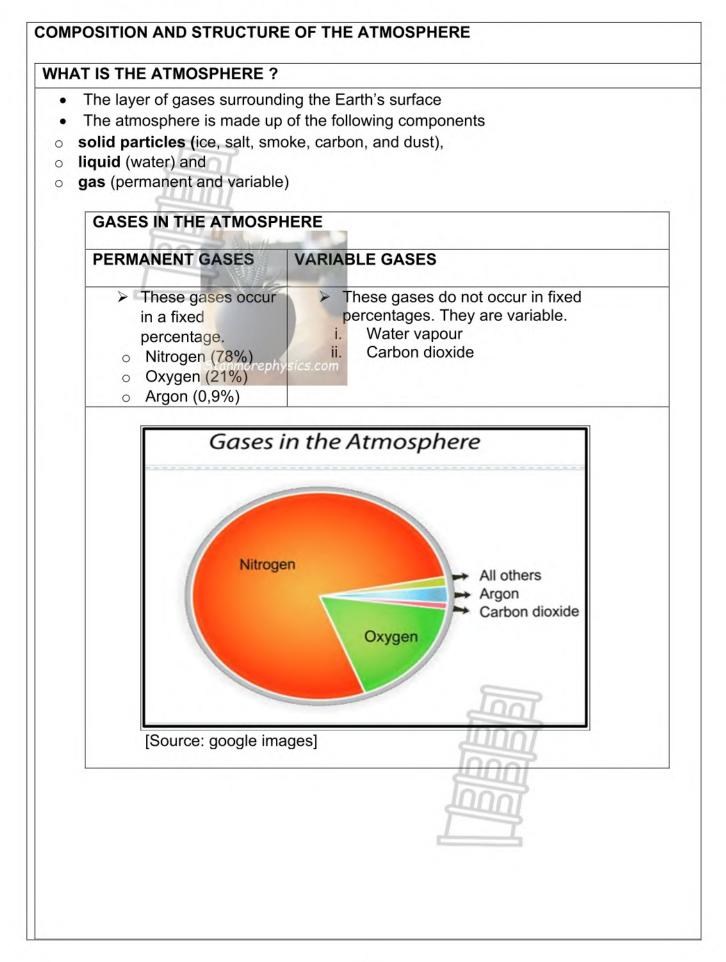
KWAZULU-NATAL PROVINCE

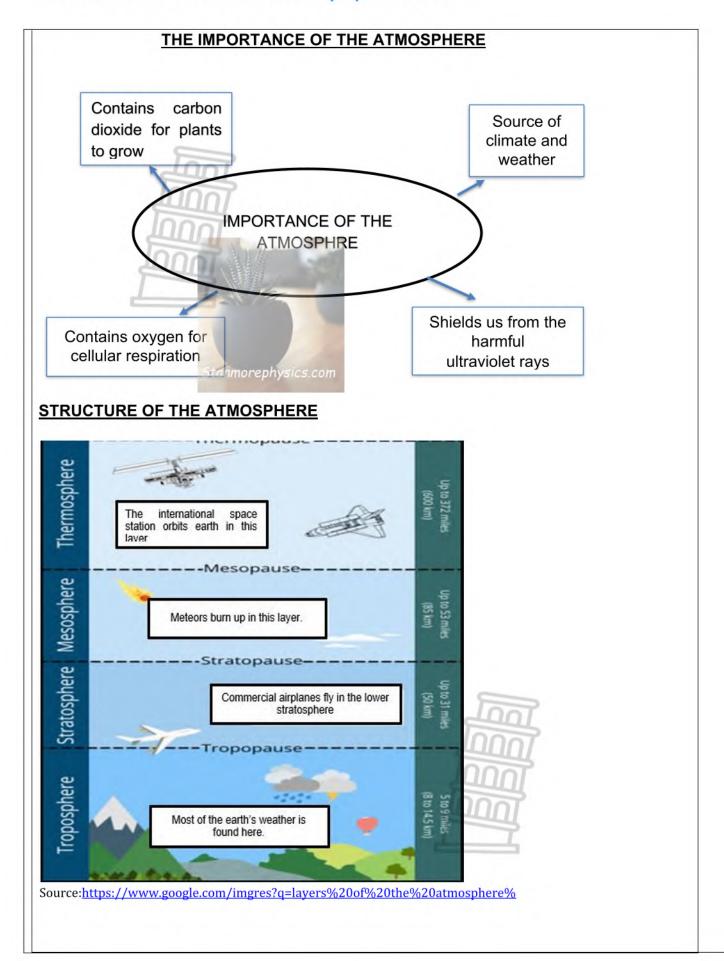
EDUCATION REPUBLIC OF SOUTH AFRICA

CURRICULUM GRADE 10 -12 DIRECTORATE

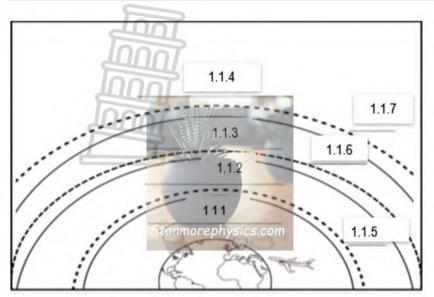
JUST IN TIME LEARNER REVISION DOCUMENT

GEOGRAPHY

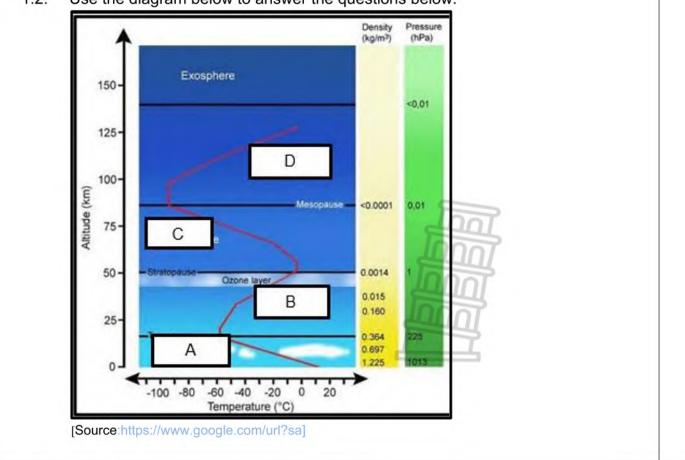

GRADE 10


2025

1	Composition and structure of the atmosphere	3
2	Ozone layer and depletion	7
3	Heating of the atmosphere and transfer of heat	9
4	Global warming	14
5	Moisture in the atmosphere	16
6	Reading and interpreting synoptic weather maps	20
7	Geomorphology	24
8	Structure of the earth	24
9	Classification of rocks	25
10	Folding and faulting	29
11	Earthquakes	36
12	Volcanoes	42
13	Population	46
14	Population distribution and density	48
15	Population structure	48
16	Demographic transition model	51
17	Overpopulation	55
18	Population movements	56
19	Water resources	57
20	Water management in South Africa	66
21	Floods	72



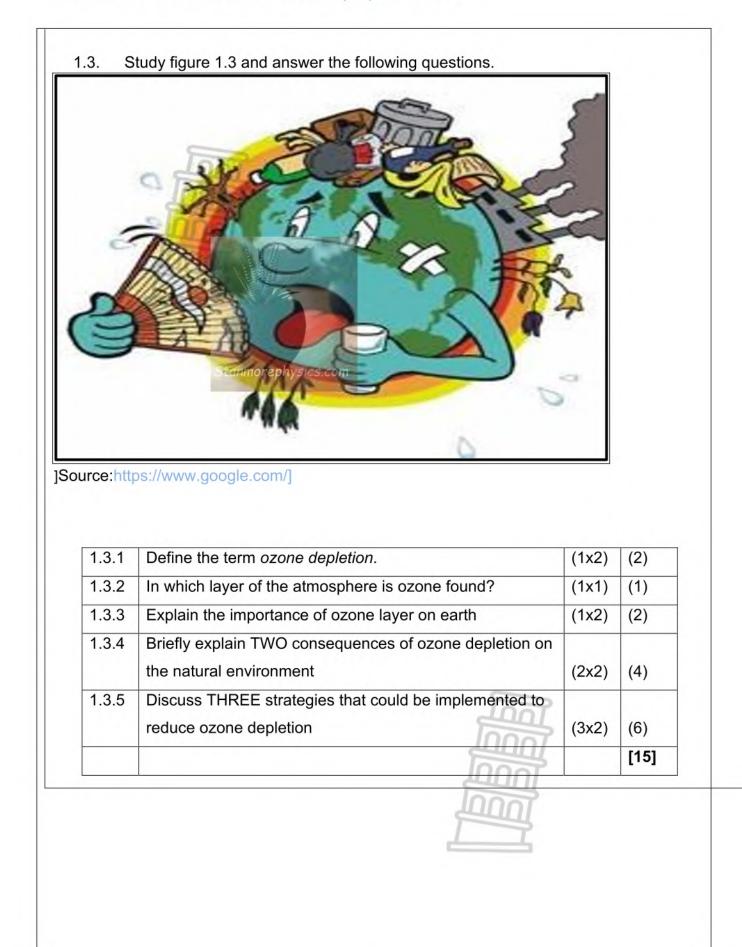
LAYERS OF THE ATMOSPHERE	IMPORTANCE
 Troposphere Closest to the earth's surface Temperature decreases with altitude. Upper limit is the tropopause. 	 Produces weather We breath oxygen from this layer Produces weather
 Stratosphere Located above the tropopause. Contains ozone layer Temperature increases with altitude (negative lapse rate) Mesosphere 50 km to 80 km above the 	 Contains ozone which supplements our oxygen Airplanes are flown in this layer. Airplanes uses winds in This layer to pick-up. Prevents rocks from space entering the lower
 stratosphere. Temperature decreases with altitude. 	temperature.Absorbs high energy
 Outer layer of atmosphere Temperature increases with altitude 	 radiation from the sun Prevents rocks from space entering the lower atmosphere

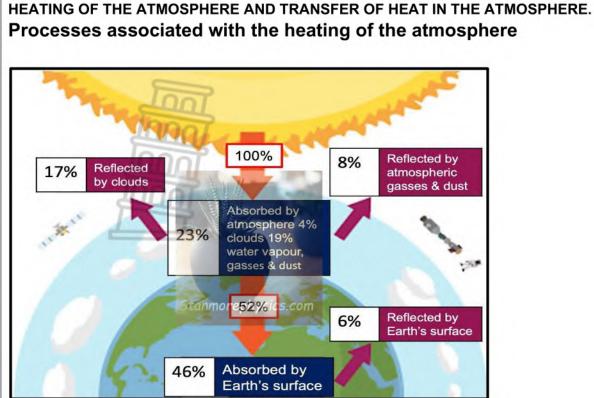


1.1. Choose one term from the following word bank to fill the labels of the following diagram.

Stratosphere, mesosphere, troposphere, stratopause, thermosphere, mesopause, ozone layer, tropopause.

[Source: google images]


1.2. Use the diagram below to answer the questions below.


Explain why layer A is such an important layer. Why is the mesosphere unfriendly for human beings?	(1x2) (2x2) (2x2)	(2) (4) (4)
Innat		
	(1x2)	(2)
Give a reason for your answer to QUESTION 1.2.3.	(1,2)	(2)
temperature with height?	(2x1)	(2)
	(121)	(1)
	(1x1)	(1)
	(4x1)	(4)
	Name the layers A , B , C and D respectively shown in the diagram What gas makes up most of the atmosphere? In which TWO layers do we find an increase in	diagramImage: Constraint of the atmosphere?Image: Constraint of the atmosphere?In which TWO layers do we find an increase in(1x1)

THE OZONE LAYER AND OZONE DEPLETION

CAUSES	EFFECTS	SOLUTIONS
 •CFC in spray cans, refrigerators and air-conditioners. •Nitrogen fertilisers. • Greenhouse gases • chemical compounds from human activities 	 Increase occurrence of skin cancer. Increasing occurrence of eye diseases - cataracts. Weakened immune systems Disruption of marine food chain Declining ocean plankton and other fish populations Reduced photosynthesis. 	 use of ozone friendly products Reduce the production of cfcs Plant more trees to release oxygen Use of wind and solar energy Use of public transport.

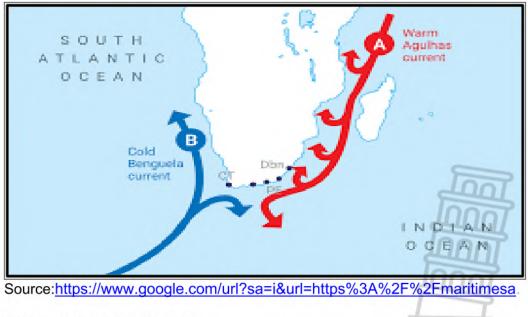
Source:https://www.google.com/url?sa=i&url=https%3A%2F%2Fearthobservatory

Not all insolation (incoming solar radiation) is absorbed by the Earth's surface.

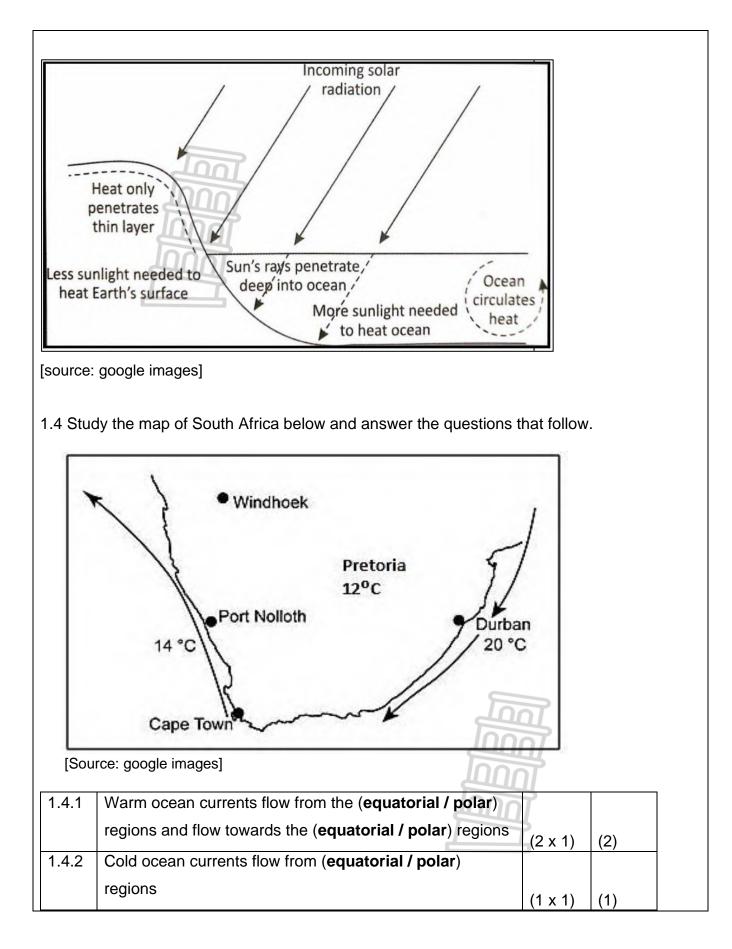
Some of it is:

- Absorbed (taken up)
- Scattered (sent into all directions)
- Reflected (sent back at the same angle)

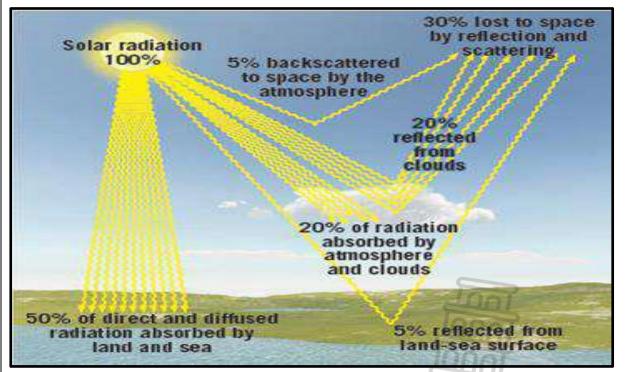
Reflection	Sun's rays strike a surface and are
	redirected by 180° back
Insolation	Incoming solar radiation – Rays entering the atmosphere from the sun
Scattering	Sun's rays are redirected randomly into the atmosphere
Absorption	Heat taken up by gasses and water vapour
Radiation	The Earth radiates heat into the atmosphere


Conduction	Lowest parts of the atmosphere are warmed
	because they are in contact with warm Earth
Convection	Heated air rises. Heat is transferred higher
	into the atmosphere
What are the factors that affec	t temperature?
Latitude	
Definition: Latitude is the measure	urement of distance in degrees north or south of the Equator.
Why is the equator hotter than	the poles?
Sun's rays are more direct and a	are concentrated on a smaller area than the poles.
a	ephysics.com atmosphere
	long
	distance area
sun's rays	distance large area
	Earth
b	
	short le gange sinteres sinter
di	istance 🔰 සි ස
	equator
Source:https://www.google.com/	
Altitude	
Air temperature decreases with	altitude (the higher you go). Therefore, mountains are colde
han low-lying areas.	loosed a

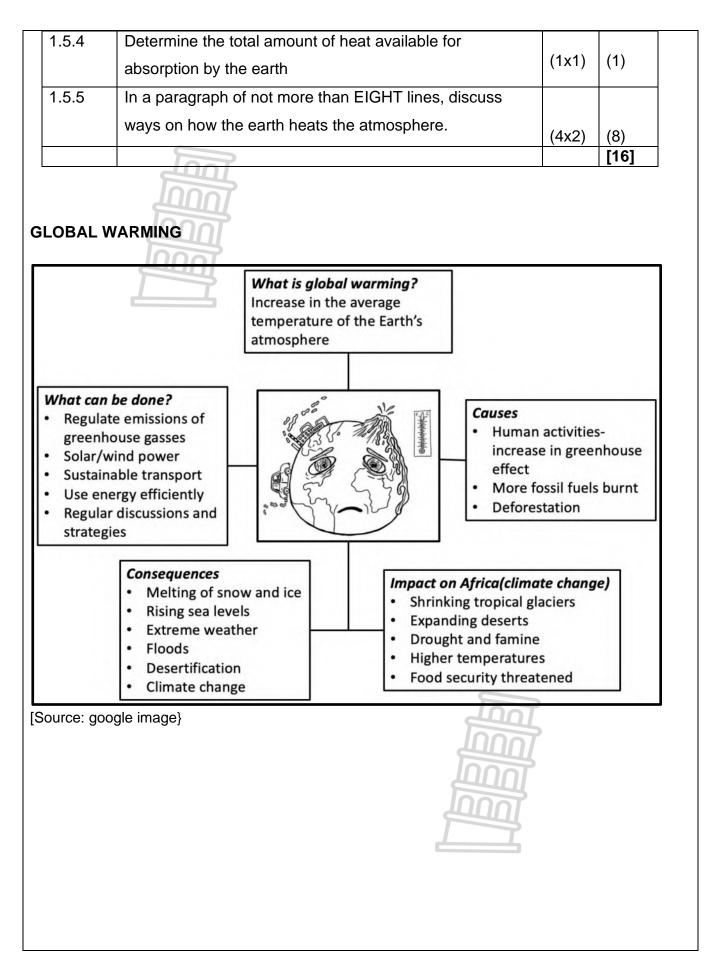
Source:https://www.google.com/imgres?q=altitude%20heating%20of%20the%20atmosphere


Ocean Currents

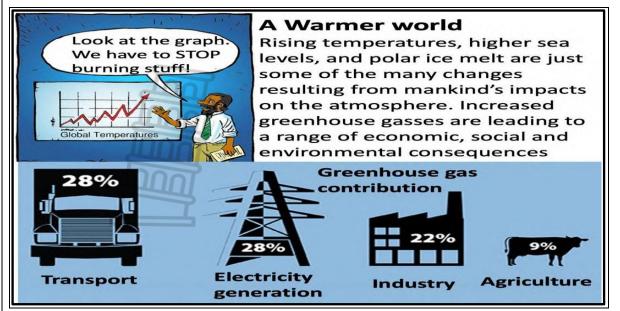
- · Cold ocean currents lower water and air temperatures
- Warm ocean currents raise water and air temperatures
- The east coast has higher temperatures than the west coast in South Africa. Consult key on the map of South Africa.


Distance from the Ocean

- Oceans heat up and cool down more slowly than the land.
- · Coastal areas are cooler than inland areas during the day.
- · Coastal areas are warmer than inland areas during the night


			8
	variation of the coastal temperature.	(1 x 1)	(1)
1.4.7	Ocean currents result in a (small / large) temperature	(4 4)	(4)
	Durban is the (longitude / distance from the ocean)	(1 x 1)	(1)
1.4.6	The difference between the temperature at Pretoria and		
	of the (altitude / latitude)	(1 x 1)	(1)
1.4.5	Pretoria's temperature is lower than Windhoek's because		
	Durban is because of the (altitude / ocean currents)	(1 x 1)	(1)
1.4.4	The difference in temperature between Port Nolloth and		
	coastlines		
1.4.3	Warm ocean current flow along the (east / west)	(1 x 1)	(1)

1.5 Study the figure below and answer the questions that follow.

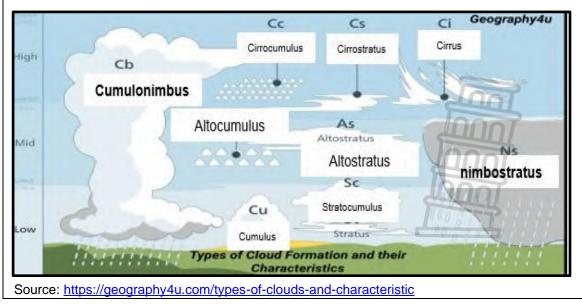


[Source: google image]

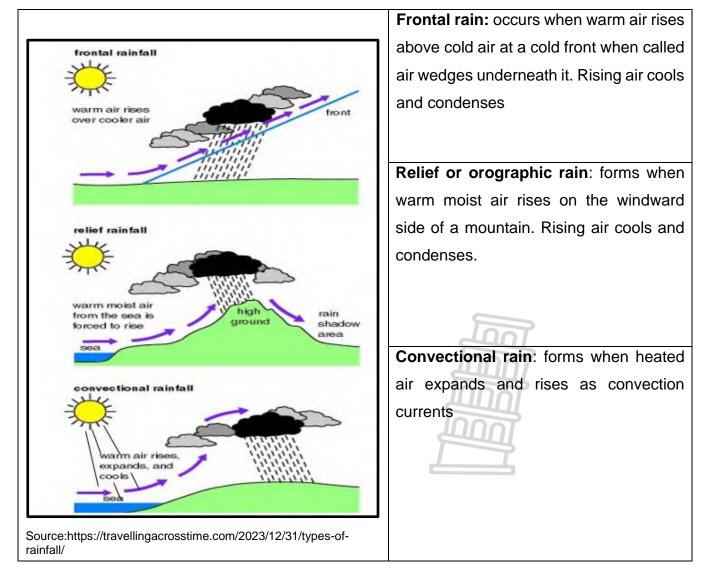
1.5.1	Name the process that prevents approximately 20% of		
	the sun's energy from reaching the surface of the earth?	(1x1)	(1)
1.5.2	What causes the scattering of 5% of the sun's rays?	(2x1)	(2)
1.5.3	Differentiate between insolation and terrestrial radiation	(2x2)	(4)

1.6. Study the infographic below based on global warming and answer the questions that follow

[Source:https://www.google.com/url?]


		<u>Ņ</u>	[17]
	negative impact of global warming on the environment.	(4 x 2)	(8)
1.6.5	In a paragraph of approximately EIGHT lines, discuss the		
1.6.4	Briefly explain TWO causes of global warming.	(2 x 2)	(4)
	causing global warming?	(1 x 1)	(1)
1.6.3	Which greenhouse gas is the highest contributor		
	temperatures? Is this positive on the environment?	(2 x 1)	(2)
1.6.2	Does the graph show a rise or a drop in global		
1.6.1	Define the concept global warming.	(1 x 2)	(2)

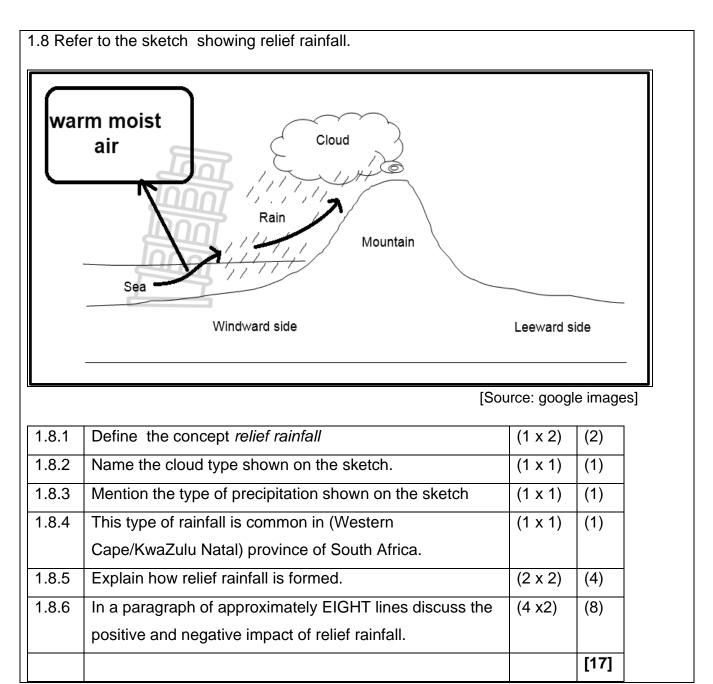
Downloaded from Stanmorephysics.com MOISTURE IN THE ATMOSPHERE


- Water in the atmosphere exists in three forms:
 - **Solid**: in the form of hail and snow.
 - Liquid: in the form of clouds, fog and rain
 - **Gas**: water vapour.
- Processes associated with evaporation, condensation and precipitation.
 - Evaporation: change of state of liquid water to gas (water vapour:
 - **Condensation:** is the process of water vapor changing from gas to liquid.
 - **Precipitation:** occurs when water in liquid or solid-state falls from the atmosphere.
- The concept of dew point, condensation level, humidity, relative humidity.
 - **Dew point**: refers to the temperature at which air is saturated with water vapour.
 - Condensation level: refers to the altitude (height) at which condensation occurs and clouds form.
 - **Humidity:** the amount of water in the air at any time.
 - **Relative humidity:** the amount of water vapour in the air relative to the air's water vapour capacity.
- Factors that affect relative humidity:
 - **Evaporation:** more evaporation there is the more water vapour there is in the atmosphere and the humidity level will be greater.
 - **Temperature:** warm air holds a greater amount of water vapour than cold air.

Types of clouds

Different forms of precipitation

- Different forms of precipitation are:
 - Dew: water which collects on plants and on the ground surface. Dew point is above 0°C.
 - Frost: ice that collects on plants and the ground surface. Water vapour changes directly into ice into ice as dew point is below 0°C.
 - **Hail:** is hard and solid form of precipitation. Occurs when raindrops are carried higher in the cloud where temperatures are below °C.
 - Snow: occurs when water vapour condenses into minute ice crystals which join to form snowflakes as dew point is below 0°C.
 - **Rain:** water which falls from the atmosphere to the earth's surface.



Types of rainfall

 Match the statements in COLUMN A with the options in COLUMN B. Write the letters Y or Z next to the question numbers.

1.7.1	The temperature at which air is saturated, and	Y	Air temperature
	condensation begins.	z	Dew point
1.7.2	Water in its gaseous form.	Y	Snow
		z	Water vapour
1.7.3	The process when water vapour changes into liquid.	Y	Sublimation
		z	Condensation
1.7.4	The amount of water vapour in the air in relation to the	Y	Relative humidity
	water vapour capacity of the air.	z	Evaporation
1.7.5	The actual amount of water vapour in the air.	Y	Relative humidity
		z	Actual humidity
1.7.6	Moisture in liquid state that falls from the atmosphere.	Y	Rain
		z	Snow
1.7.7	The process when liquid changes into water vapour	Y	Evaporation
		z	Melting
			(7 x 1) (7)
	·	·	·

READING AND INTERPRETING SYNOPTIC WEATHER MAPS

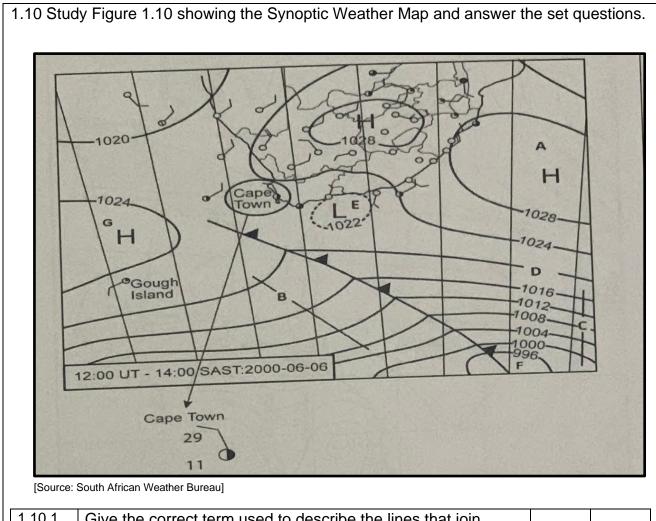
Defining a synoptic weather map

Refers to a summary of **prevailing weather conditions** over a certain area, at a specific time. A synoptic weather map has several aspects and these include, **temperature**, **nature** of **precipitation**, **cloud cover**, **wind direction**, **wind speed**. They are all indicated at weather stations by means of symbols.

Wind speed		15 knots		\rightarrow / λ
Wind direction		NW -		
Air temperature	erature			→ 27
Precipitation		rain —		
Dew point temperatu	ıre	24°C —		→ 24
Cloud cover		overcast		
Cloud cover O clear	Wind spe	eed 5 knots	Prec	ipitation rain
Cloud cover	Winden	bed	Prec	initation
	Wind spe		Prec	rain
	Wind spe	5 knots	•	rain drizzle
	Wind spe		• • ▼	rain
O clear • ³ ⁄ ₄ cloudy		5 knots	•	rain drizzle showers
O clear		5 knots 10 knots	• • ▼	rain drizzle showers snow hail fog
O clear • ³ ⁄ ₄ cloudy		5 knots 10 knots	●	rain drizzle showers snow hail fog mist
O clear • ³ ⁄ ₄ cloudy		5 knots 10 knots 15 knots	●	rain drizzle showers snow hail fog

Typical summer synoptic weather map	Typical winter synoptic weather map
Presence of the tropical cyclone	Cold front comes over the land
Thermal low pressure over the land	 Kalahari high dominates the land
Overcast conditions over the land	 Generally clear skies over the land
High temperatures over the land	 Low temperatures over the land
• South Indian High and South Atlantic	• South Indian High and South Atlantic
High generally occupy a southerly	High generally move closer to the land
position including the mid-latitude	because it is cold.
cyclone	Date (winter months)
Date (summer months)	

Isobars: Closely spaced isobars show a strong winds. When isobars are spaced far from each other show gentle winds.


Identifying the pressure cells on a weather map: Some isobars form circle-like patterns, which indicates cells as either high or low pressure. One determines a **high pressure cell** by looking at the **increase** of air pressure towards the centre of the pressure cell. One determines a **low pressure cell** by looking at the **decrease** of air pressure towards the centre of the pressure towards the centre of the pressure cell.

questions below. ITTE LITE ħ. 1.11 н 3 6 Δ 2 17 1020 SYNOPTIC WEATHER MAP SINOPTIESE WEERKAART 1010 In LE 101.5 28 000 в ×ool. 18 000 12:00 UT - 14:00 SAST:2013-05-29 1020 1010 Jor 1008 Н HOOK 1000 100 000

1.9 Refer to the synoptic weather map below. Use the synoptic weather map to answer the

[Source: South African Weather Services.]

1.9.1	State the isobaric interval of the map.	(1 x 1)	(1)
1.9.2	Name the ocean currents that influence ocean labelled ${f C}$		
	and D on the synoptic weather map.	(2 x 1)	(2)
1.9.3	Name the fronts labelled A and B .	(2 x 1)	(2)
1.9.4	State the season shown by the synoptic weather map.	(1 x 2)	(2)
1.9.5	Give TWO suitable reasons for your answer in QUESTION	(2 x 1)	(2)
	1.9.4.		
1.9.6	Using the enlarged weather station model, describe the		
	weather conditions using the following:		
	a. Air temperature		
	b. Dew-point temperature		
	c. Wind speed		
	d. Wind direction		
	e. Cloud cover	(5 x 1)	(5)
			[15]

			[13]
1.10.7	Compare the temperature differences between Durban and Cape Town according to the influence of ocean currents.	(2 x2)	
1.10.6	Determine the isobaric interval on the synoptic weather used.	(1 x 2)	(2)
1.10.5	The atmospheric pressure at D is hPa.	(1 x 2)	(2)
	the centre at F .		
1.10.4	The atmospheric pressure (increases/decreases) towards	(1 x 1)	(1)
1.10.3	Give a reason for your answer to QUESTION 1.10.2.	(1 x2)	(2)
1.10.2	Is the wind speed greater at B or C ?	(1 x 1)	(1)
	places of equal atmospheric pressure.	(1 x 1)	(1)
1.10.1	Give the correct term used to describe the lines that join		

GEOMORPHOLOGY

THE STRUCTURE OF THE EARTH

RELATED CONCEPTS

Geomorphology- the study of the changing surface of the Earth by both internal as well as external forces and their resultant landforms.

Lithosphere - The uppermost solid part of the mantle and the entire crust

Asthenosphere (in between 80-200km) - is a highly viscous, mechanically weak and ductile, deforming region of the upper mantle which lies just below the lithosphere.

Crust - It is the outermost solid part of the earth, normally about 8-40 kms thick

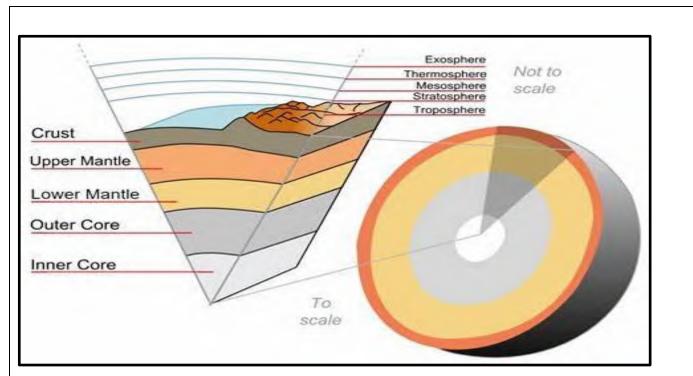
Mantle - The portion of the interior beyond the crust is called the mantle.

Mohorovich Discontinuity or Moho discontinuity - The discontinuity between the crust and mantle.

SIMA - The major constituent elements of the mantle are Silicon and Magnesium.

SIAL- The main rock is granite with dominant minerals silicon and aluminium.

Core - It is the innermost layer surrounding the earth's centre


Igneous rock - form from the solidification of magma or lava

Sedimentary rock - form by the accumulation and cementation of mineral or organic particles on the Earth's surface, often in water bodies.

Metamorphic rock - start out as other rocks that are modified by heat, pressure, and chemical processes.

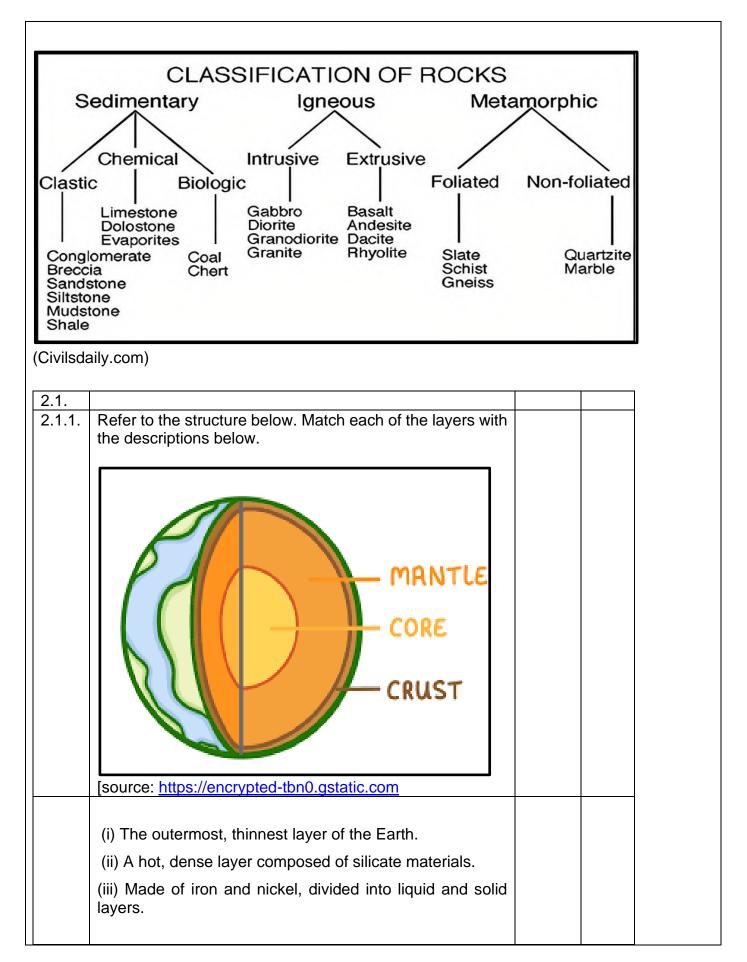
THE INTERNAL STRUCTURE OF THE EARTH

- The internal structure of Earth are the layers of the Earth, excluding its atmosphere and hydrosphere.
- The structure consists of an outer silicate solid crust, a highly viscous asthenosphere, and solid mantle, a liquid <u>outer core</u> whose flow generates the <u>Earth's magnetic field</u>, and a solid <u>inner core</u>.

(source:vulkane.net)

CLASSIFICATION OF ROCKS

Rocks are classified into three main types based on their formation processes:


1. **Igneous Rocks**: Formed from the cooling and solidification of molten magma or lava. They can be further divided into:

Intrusive Igneous Rocks: Form below the Earth's surface (e.g., granite).

Extrusive Igneous Rocks: Form on the Earth's surface after volcanic eruptions (e.g., basalt).

2.**Sedimentary Rocks**: Created by the accumulation, compaction, and cementation of mineral or organic particles. They often form in layers and include:

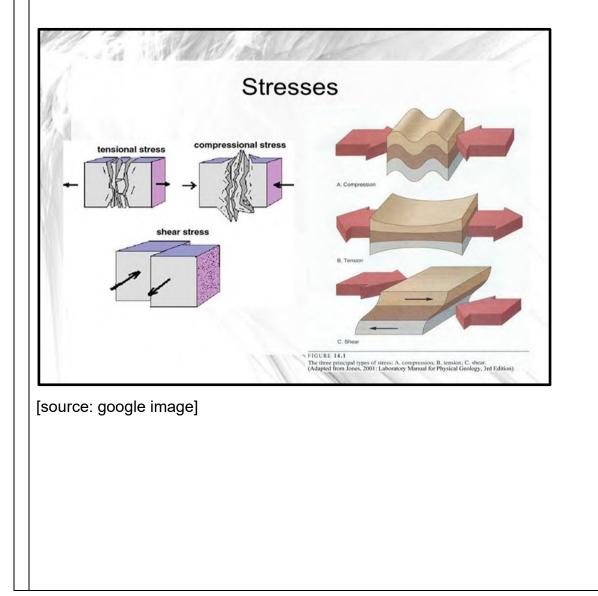
3. **Metamorphic Rocks**: Result from the transformation of existing rocks (igneous or sedimentary) under heat, pressure, or chemical processes without melting. Examples include marble and schist.

		(3 x 1)	(3)
2.1.2	Differentiate between SIMA and SIAL.	(2 x 2)	(4)
2.1.3	In a paragraph of approximately EIGHT lines discuss the		
	differences between the inner core and the outer core.	(4 x 2)	(8)

RELATED CONCEPTS

- **Plate tectonics** refers to the process of plate formation, movement, and destruction.
- **Continental drift** describes the movements of continents over the Earth's surface
- **Sea-floor spreading-** refers to the creation new oceanic plate material and movement away from the mid-ocean ridge.
- **Divergent Boundaries:** Plates move away from each other. This can result in the formation of mid-ocean ridges and rift valleys.
- Convergent Boundaries: Plates move toward each other. When oceanic plates collide with continental plates, subduction zones, and mountain ranges can form. Oceanic-continental convergence can lead to volcanic arcs. Continental-continental convergence can create high mountain ranges.
- **Transform Boundaries:** Plates slide past each other horizontally. This can lead to strike-slip faults and earthquakes.

FOLDING AND FAULTING

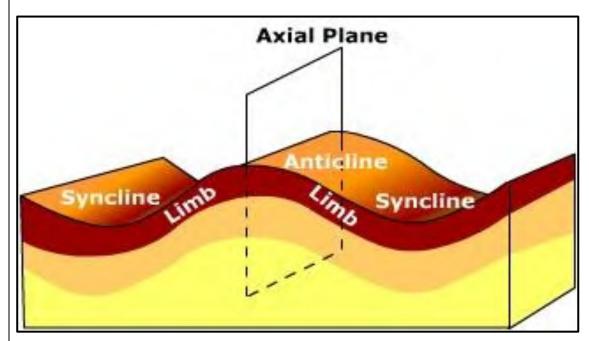

The process of rock folding

Definition

Folding: is a process whereby rock layers bend and warp due to compressional forces along colliding plate boundaries.

In South Africa the Southern Cape fold mountains are good examples. Some of the examples are the Himalayas, Alps, Rockies, Carpathains and Andes which are formed when one crystal plate collide with one another.

Compressive f**orces** are **stresses** that squeeze or push rocks together, leading to folding, faulting, and mountain building, particularly at convergent plate boundaries.

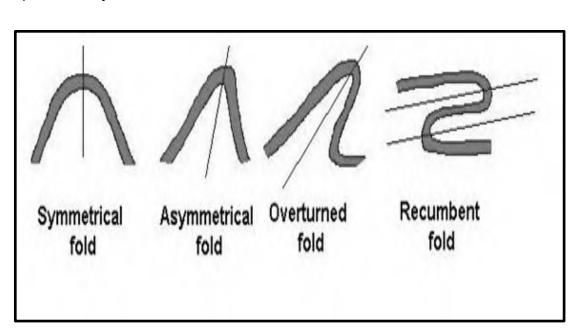


Components of a fold

The resulting geological structures are:

- **Anticlines** The fold curves upwards. These Upfolds (linear ridges/arches) can form mountains.
- **Synclines –** The fold curves downwards. These downfolds (troughs) can form valleys.

The sides of the fold are called the *limbs*. Each fold has an *axial plane*, an imaginary plane that runs down its length and divides the fold in half.



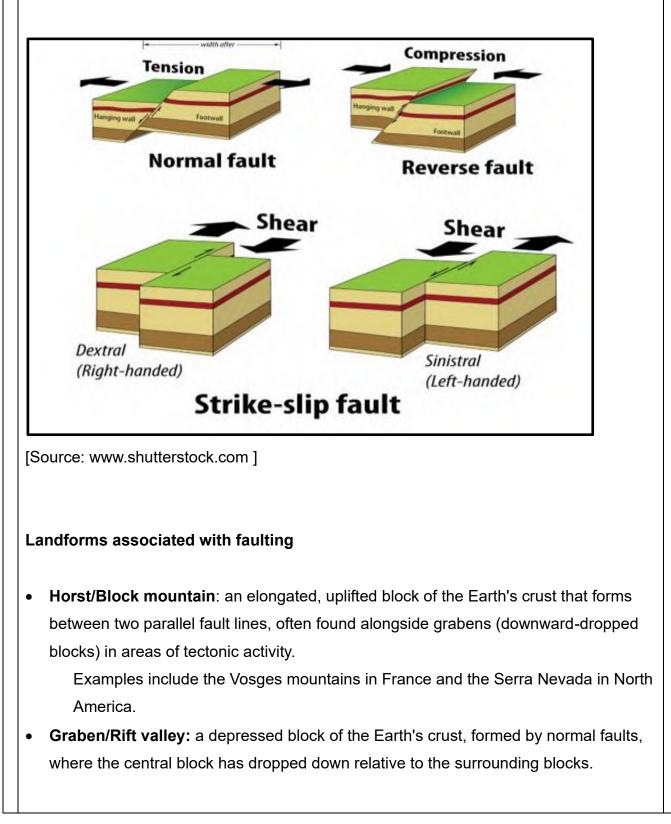
[source: google image]

Types of folds

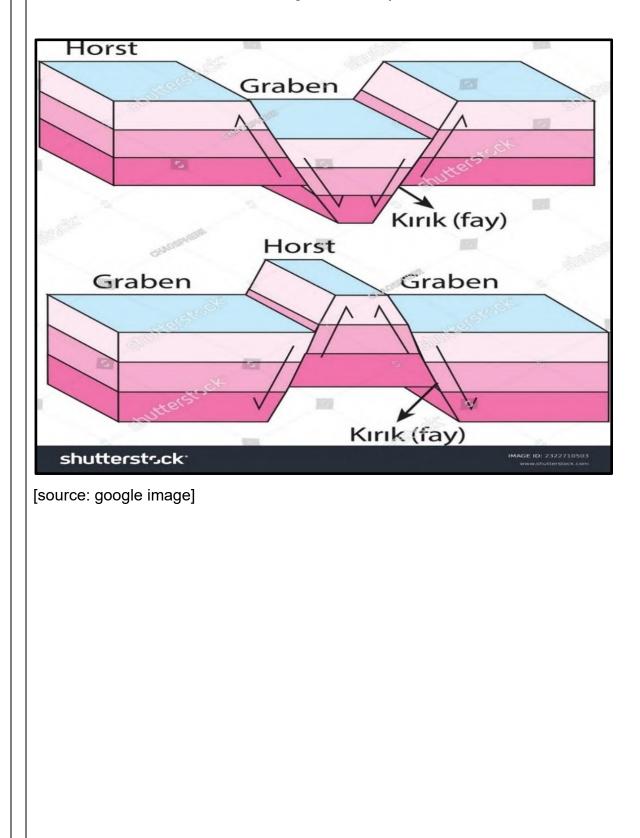
- **Symmetrical Folds**: Axial plane is vertical and beds dip at approximately the same angle, but in opposite directions, on either side of the plane.
- **Asymmetrical Folds**: Axial planes are inclined and one limb of the fold dips more steeply than the opposite limb, but still in opposite directions.
- **Overturned Folds**: Axial plane is inclined and both limbs of the fold dip in the same direction.

• **Recumbent fold**: an extreme directed pressure may lay the fold over with its axial plane nearly horizontal with the surface

The process of faulting


Faults are fractures in the Earth's crust caused by tectonic forces, leading to the displacement of rock blocks (compressional strain) along a fault plane. Compression strain refers to the deformation of Earth's crust caused by forces pushing rocks together (compressional stress), resulting in folding, thickening, and potentially mountain building.

Different types of faults

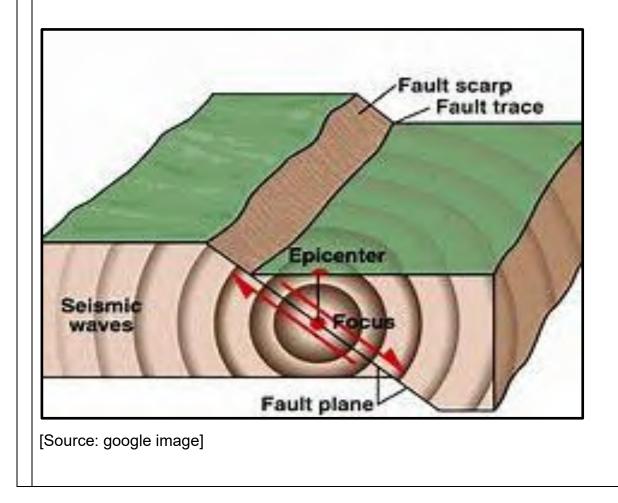

Normal Fault: When the hanging wall (rock above the fault plane) moves down relative to the footwall (rock below) due to tension forces pulling the crust apart.

- **Reverse Fault:** When the hanging wall moves up relative to the footwall due to compressional forces pushing the crust together.
- **Thrust Fault:** A type of reverse fault where the fault plane has a very low angle, causing the hanging wall to be pushed up over the footwall at a shallow angle.

• Strike-Slip Fault: When the rocks on either side of the fault plane slide horizontally past each other, with movement parallel to the fault line. The San Andreas Fault is an example of a right lateral fault.

The example is the East African Rift Valley which forms the boundary between the African Plate and the Arabian Plate. Since the two plates are drifting apart, this is a continental-continental divergent boundary.

Parameter	Folding	Faulting
Appearance	Folds will start appearing on	These are fissures that start appearing
	rocks when compressional	when tensional forces are applied in
	forces act on ductile rocks.	opposite directions to displace the rocks.
Rocks	You can see that folds are	The faulting phenomenon is quite common
	more common on those	on rocks that are present near the top
	which lie deep inside the	layer of the earth's surface. Such rocks do
	earth's crust. Such rocks	not receive heavy force and are too rigid to
	sustain very high pressure	have folds on them. Moreover, we can
	than those lying near upper	also see that these rocks break apart if
	surfaces.	there is presence of tectonic plates on the
		bigger side.
Causes	Some of the most common	One of the major causes of faulting is the
	reasons for folding are	presence of dip-slip faults. Whenever the
	temperature, gradient, or	rocks compress against it each other in a
	slope of the rocks. Apart	vertical manner, there are some rocks that
	from this pore pressure	move downwards due to the compression
	exerted on such rocks also	and eventually developing a crack in it.
	leads to folding.	
ormation	Folding occurs due to the	The fractured surface of a rock is called a
	shortening of the existing	fault. The fault line is the place where this
	layers of rocks. Moreover,	crack or fracture is visible.
	displacement on some non-	
	planner rocks will also lead	
	to folding.	
Structure	There are two segments in	A Fault zone is an area where a group of
	a fold which are the hinge	faults lies parallel to each other.
	and limb. Hinge is the point	
	where limbs converge, and	


		limbs represent flanks of			
		folds.			
Intensi	ty	Major rock folds can be	There is a	particular thickness i	n every
		found in dry and arid areas	. fault. Howe	ever, the intensity of s	such
		On the other hand, minor	thickness o	depends on the type	of rock and
		folds are commonly found i	n its characte	eristics.	
		outcrops.			
Examp	les	Major mountain ranges	Faults lead	I to the development	of block
		such as the Himalayas,	mountains	and river valleys. Na	armada and
		Alps, Andes, and Rockies	Tapi River	Valleys are examples	s of faulting
		have formed due to folding.	. landforms.		
		answer in column B e.g. 2.2.	.11 K	0011000	_
	ques	question number from column A (2.2.1- 2.2.10) and the letter of			
		UMN A			_
2.2.1				A Warping	_
2.2.1		This if formed when the forces acting upon layers are not very strong			
2.2.2	-	a are not very strong			
	layers are more pliable (fold easily)		eater and	B Folding	_
	layei	ned when compression is gr rs are more pliable (fold eas		B Folding	
2.2.3	-		ily)	B Folding C Faulting	-
2.2.3	Осси	rs are more pliable (fold eas	ily)		-
2.2.3	Occu and	rs are more pliable (fold eas urs if the compressional forc	ily) æ is light		-
	Occu and Form	rs are more pliable (fold eas urs if the compressional forc the rocks stable	ily) æ is light	C Faulting	-
	Occu and Form and	rs are more pliable (fold eas urs if the compressional forc the rocks stable ned when compression is m	ily) æ is light ore intense	C Faulting	
2.2.4	Occu and Form and Form	rs are more pliable (fold eas urs if the compressional forc the rocks stable ned when compression is m of no longer duration	ily) ce is light ore intense two faults	C Faulting D Tear Fault	
2.2.4	Occu and Form and Form	rs are more pliable (fold eas urs if the compressional force the rocks stable ned when compression is m of no longer duration ned where a block between sides in relation to the surrou	ily) ce is light ore intense two faults	C Faulting D Tear Fault	
2.2.4	Occu and Form and Form subs area	rs are more pliable (fold eas urs if the compressional force the rocks stable ned when compression is m of no longer duration ned where a block between sides in relation to the surrou	ily) ce is light ore intense two faults unding	C Faulting D Tear Fault	
2.2.4	Occu and Form and Form subs area Form	rs are more pliable (fold eas urs if the compressional force the rocks stable ned when compression is m of no longer duration ned where a block between sides in relation to the surrou	ily) ce is light ore intense two faults unding he earth's	C Faulting D Tear Fault E Reverse Fault	

2.2.7	This landform is produced by	G Graben	
	compressional stress		
2.2.8	Displacement of the rock layers relative to	H Horst	
	one another		
2.2.9	Formed when the land on either side of the	I Anticline	
	Fault is pulled apart by tension.		
2.2.10	Rocks move past each other in horizontal	J Monocline	
	direction		

EARTHQUAKES

HOW DOES IT OCCUR?

A Sudden and violent movement of the Earth's crust because of a sudden release of energy.

FOCUS:

Exact point beneath the Earth's surface where the plates shift

EPICENTER:

Point directly above the focus on the Earth's surface.

FAULT SCARP:

The steep exposed rock face.

FAULT:

Crack in the Earth's crust resulting from the movement of rock.

WAVE FRONTS:

Seismic waves releasing energy through the crust.

SEISMIC WAVES:

A wave of energy generated by an earthquake.

How is it measured?

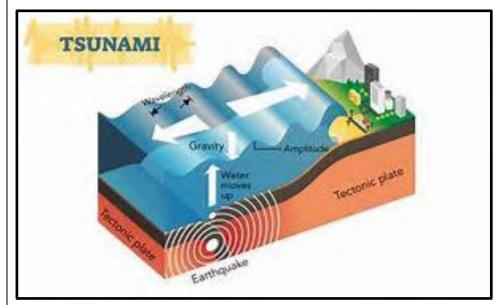
- **RICHTER SCALE:** Method to allocate a magnitude number to qualify the energy released by an earthquake.
- **SEISMOGRAPH:** Instrument used to measure and record an earthquake.
- **SEISMOGRAM:** A graph output from a seismograph.

The impact of Earthquakes

PEOPLE/SOCIAL:

- Injuries and/or death of people and animals
- Destruction of infrastructure e.g. roads, houses
- Transport and communication disrupted
- Landslides flatten and destroy buildings
- Burst water pipes reduce availability of fresh water
- Contaminated water cause health issues e.g. cholera
- Gas pipe leaks cause fires

ENVIRONMENT/ PHYSICAL/NATURAL:


- Disruption of habitat
- Destruction of vegetation
- Landslides, mudslides
- Soil liquefaction
- Contamination of natural resources e.g. water, soil

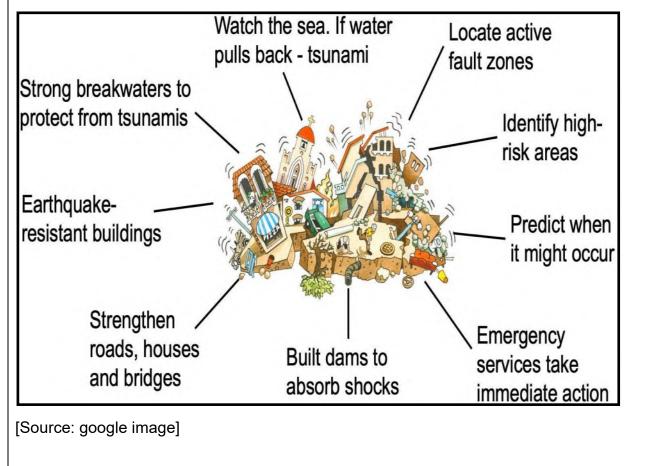
ECONOMIC:

- Businesses destroyed
- Reduce employment
- Expenses to rebuild/fix damages to infrastructure
- Developing countries are more affected because of lower economic growth

A **TSUNAM**I can develop. A large wave produced by an Earthquake under the ocean

IMPACTS OF A TSUNAMI

[Source: google image]


PEOPLE/SOCIAL:

- Results in flooding
- Injuries to people
- Destroys infrastructure
- Contaminates food and water
- Waterborne diseases develop

ENVIRONMENT/ PHYSICAL/ NATURAL:

- Salinisation of rivers, lakes and groundwater
- Flooding causes sewerage contamination of fresh water resources
- Pollute wetlands, coastal areas, agricultural fields and forests
- Deposition of sediments lead to changes in habitats and species

What strategies can be implemented to reduce the impact of Earthquakes and Tsunamis'?

2.3.	Match the statement in Column A with the options in				
	Column B.W rite the X or Y next the qu	estion number.			
	COLUMN A	COLUMN B			
2.3.1	A crack in the Earth's crust	X. Fault			
		Y. Focus			
2.3.2	Instrument that allocates a magnitude	X. Seismic wave			
	number to quantify the energy released by an earthquake	Y. Richter scale			
2.3.3	A wave of energy that generates an	X. Seismic wave			
	earthquake	Y. Seismogram			
0.0.4		X Osiana man			
2.3.4	A graph output from the magnitude of an earthquake.	X. Seismogram Y. Seismic wave			
2.3.5	An instrument used to measure and	X. Seismogram			
	record details of earthquakes	Y. Seismic wave			
2.3.6		X. focus			
	A large wave caused by an	Y. Tsunami			
	earthquake under the ocean				
2.3.7	The location where the plates move	X. Focus			
	under the earth	Y. Fault			

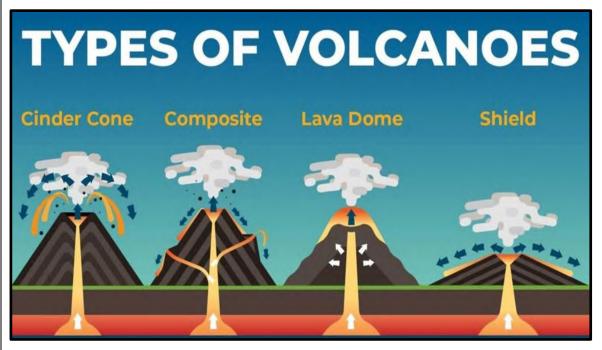
Refer to the case study below on earthquakes. EARTHQUAKES

NEW DELHI: A mild earthquake measuring 3.5 on the Richter Scale hit Delhi and neighbouring areas around 5.45pm on Sunday.

The tremors lasted for 25 to 30 seconds. Officials from the Department of Disaster Management Authority in Delhi said there were no immediate reports of any damage. The earthquake, which occurred at a depth of 8km, was categorized in the " yellow slight " level, as according to Ajay Kumar, officer on duty at the national centre of Seismology (NCS). The earthquake was unexpected, there were no signs of it coming" said Kumar, adding he cannot say if it will be followed by another set of tremors. We will be closely monitoring the situation over the next 12 hours to assess the situation" Kumar said

The epicentre of the earthquake was reported near Sonia Viharn in north-east Delhi about 16km from the NCS head office at Lodhi Road, said Mr M Rajeevan, secretary of the earth sciences.

https://economictimes.indiatimes.com//news/politics-and-nation/earthquake-ofmagnitude-3-5-strikes-delhi-neighbouring-


2.3			
2.3.1.	Define the following term epicenter	(1 x 2)	(2)
2.3.2	According to the article, where has this earthquake		
	occurred?	(1 x 1)	(1)
2.3.3	What could be an explanation to the statement 'no		
	immediate reports of any damage'?	(1 x 2)	(2)
2.3.4	Where was the epicenter of the earthquake?	(1 x 1)	(1)
2.3.5	On which continent is New Delhi located?	(1 x 1)	(1)
2.3.6	Why are they worried about the possibility of		
	tremors?	(1 x 2)	(2)
2.3.7	Discuss why the earthquake was unexpected and		
	why it is difficult to predict.	(2 x 2)	(4)

VOLCANOES

Formation of volcanoes

Volcanoes are formed when magma (i.e. molten material) rises through to the surface of the earth through vents and fissures. Magma forms deep within the earth when some rocks melt and become magma. When the magma reaches the earth surface, it solidifies and becomes lava.

Types of volcanoes

[Source: https://www.google.com]

Cinder Cone

Cinder cone are cylindrical in shape. Cinder cone volcano is formed when eruptions shoot great quantities of ash and particles of lava into the air. The eruption of magma is explosive.

Composite volcano

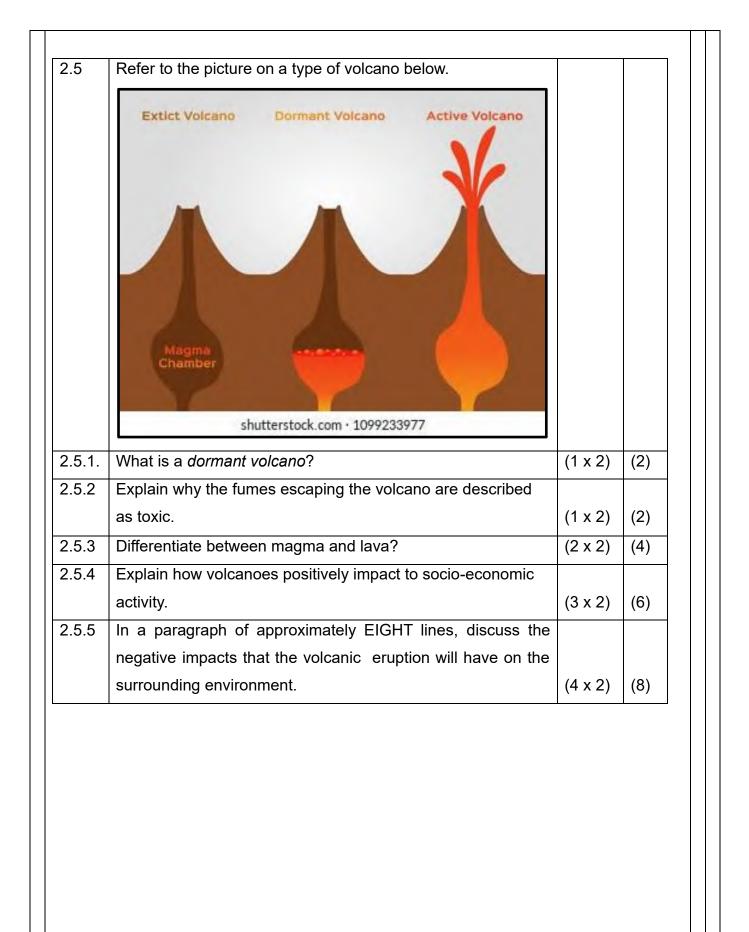
A composite volcano is a volcanic landform composed of thick lava flows alternated with layers of ash, cinders, and rocks. These layers form a symmetrical cone with steep concave sides that curve inward. The composite volcano is characterized by a steep-sided conical peak.

Lava dome

A lava dome volcano is volcano that forms a mound-shaped structure from viscous lava, Lava domes are often circular and steep sided. Lava domes are formed when highly viscous lava is slowly extruded from a volcano. The lava is too thick to spread out a lava flow.

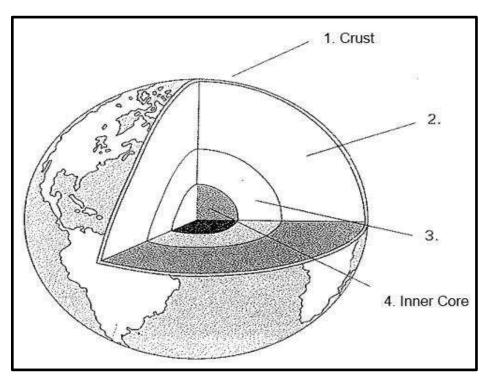
Shield volcano

Shield volcanoes are formed when lava flows out of a central vent. This result to gentle slopes of enormous breadth. Bases are dozens of kilometres wide. The eruption is not explosive.

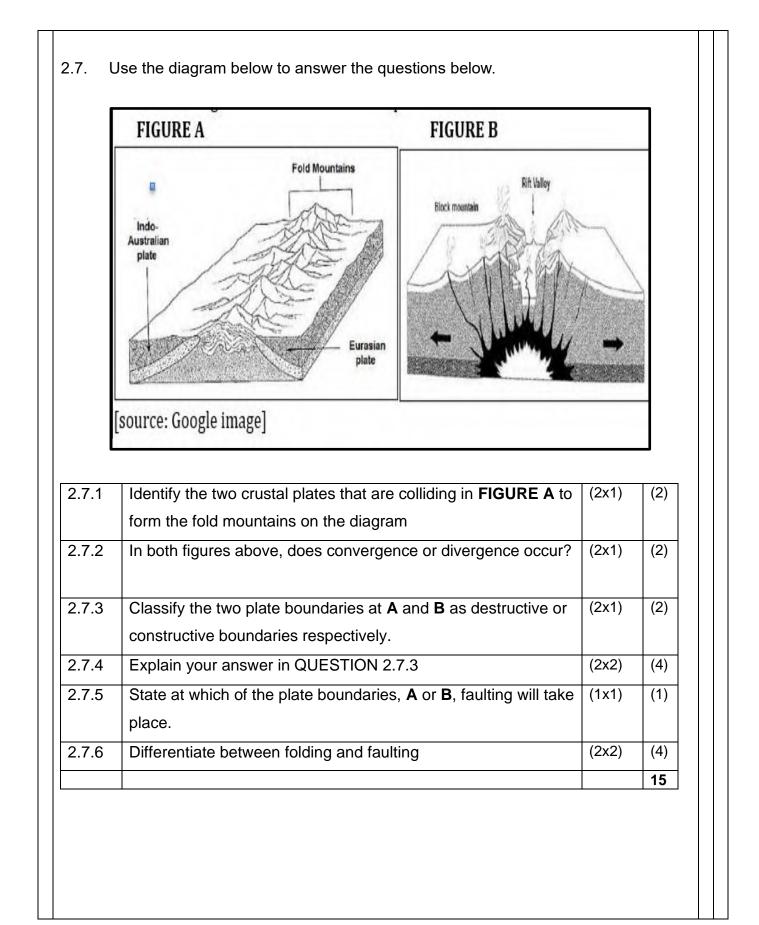

The impacts or effects of volcanoes on people

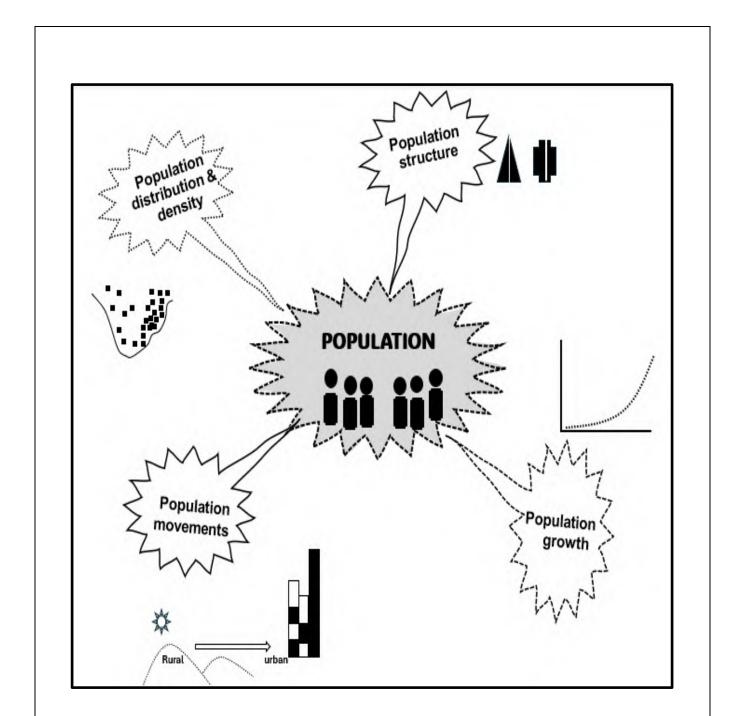
- When volcanoes erupt, they frequently have immediate and dramatic effects on people's lives.
- > Lava flows and destroy everything in their path.
- > Thousands of lives can be lost though volcanic eruptions.
- Volcanoes can collapse buildings, roads, and cause lung disease in humans, and animals in some cases.
- Economic activity in affected areas can suffer severely as it is hard for businesses to operate and recover after and eruption.
- People are frequently forced to abandon their land and homes when large eruptions occur.

The negative impacts or effects of volcanoes on environment


- Natural habitats are destroyed through volcanic eruptions and this result to the disruption of biosphere.
- The plants and animals can be severely affected resulting into disruption in food chain.
- Acid rain is formed when sulfurous gases emitted by volcanoes combine with water vapor in the atmosphere. Acid rain had a significant impact on the vegetation, lakes and streams.
- The organisms that lived in affected areas are forced to leave or die as the vegetation would have been destroyed.
- > Volcanic ash in the atmosphere presents a considerable hazard to airplanes.

The positive impacts of volcanoes				
Volcanic ash often contains minerals that are beneficial to plants therefore				
volcanoes provide nutrients to the surrounding soil.				
Volcanic slopes are often inaccessible, especially if they are steep, thus they can				
provide refuge for rare plants and animals from th	e ravages of humans and			
livestock.				
Volcanoes serve as tourist attractions attraction, bringing in money for the local				
economy.				
Geothermal energy can be generated in places w	nere the crust is thinner, and so			
volcanic areas can be used to harness renewable	energy.			
2.4. Match a concept from column B with a correspondi	ng description in column A.			
Write only the letter \boldsymbol{X} or \boldsymbol{Y} next to the question number				
COLUMN A	COLUMN B			
2.4.1 When magma from the mantle does not reach the	X Extrusive			
earth's surface and solidifies in deep layers.	Y Intrusive			
2.4.2 A volcano that consists of soft liquid lava, which	X Cinder cone			
rapidly flows outwards	Y Composite			
2.4.3 A volcano that has not erupted in recent years	X Dormant			
	Y Active			
2.4.4 Molten minerals underneath the earth's surface				
	X Magma			
	X Magma Y Lava			
2.4.5 A volcanic cone built up by ash, leading to concave	Y Lava			
2.4.5 A volcanic cone built up by ash, leading to concave slopes forms volcano	Y Lava			
	Y Lava X Shield			
slopes forms volcano	Y Lava X Shield Y Lava dome			
slopes forms volcano	Y Lava X Shield Y Lava dome X Laccolith			
slopes forms volcano 2.4.6 The largest volcanic intrusion	Y Lava X Shield Y Lava dome X Laccolith Y Batholith			
slopes forms volcano 2.4.6 The largest volcanic intrusion	Y Lava X Shield Y Lava dome X Laccolith Y Batholith X generation of geothermal			
slopes forms volcano 2.4.6 The largest volcanic intrusion	Y Lava X Shield Y Lava dome X Laccolith Y Batholith X generation of geothermal energy Y Provides refuge			

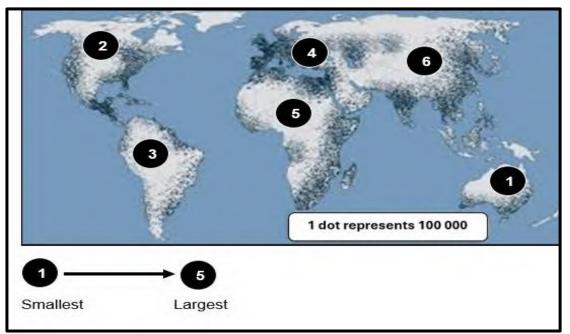

ADDITIONAL ACTIVITIES


2.6. Study the illustration FIGURE 1.3 of the internal structure of the earth below and answer the questions below.

[Source: google image]

			[7]
2.6.7	Identify the boundary that separates layer 1 and 2.	(1x1)	(1)
2.6.6	Name the layer that we live on.	(1x1)	(1)
	highest pressure?		
2.6.5	Which layer experiences the hottest temperature and	(1x1)	(1)
2.6.4	Identify the layer of earth that is in a semi-molten state.	(1x1)	(1)
	SIAL.		
2.6.3	Name the layer of the earth that consists of SIMA and	(1x1)	(1)
2.6.2	Give the name of the layer at 3 .	(1x1)	(1)
2.6.1	Give the name of the layer at 2 .	(1x1)	(1)

POPULATION DISTRIBUTION AND DENSITY


KEY CONCEPTS	DEFINITION
Population	The total number of people living in a particular area.
Population distribution	How people are spread across a region.
Population density	The number of people per unit area.

Population indicators	Different measurements which provide information	
	about a country's population characteristics.	
Population pyramid	Kind of a graph that shows population structure of a	
	particular country.	

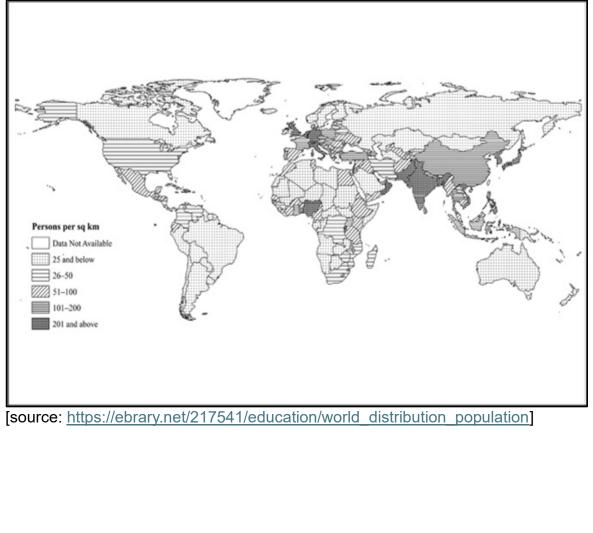
Population distribution

- Refers to how people are spread across a region.
- The population of people is unevenly distributed across the world.

MAP SHOWING POPULATION DISTRIBUTION

[Adapted: https://www.jkgeography.com/physical-and-human-factors]

- The world map above is an evidence that the population of the world's continents is not the same.
- Australia (1) has the least distributed population.
- Asia (6) has the largest distributed population.

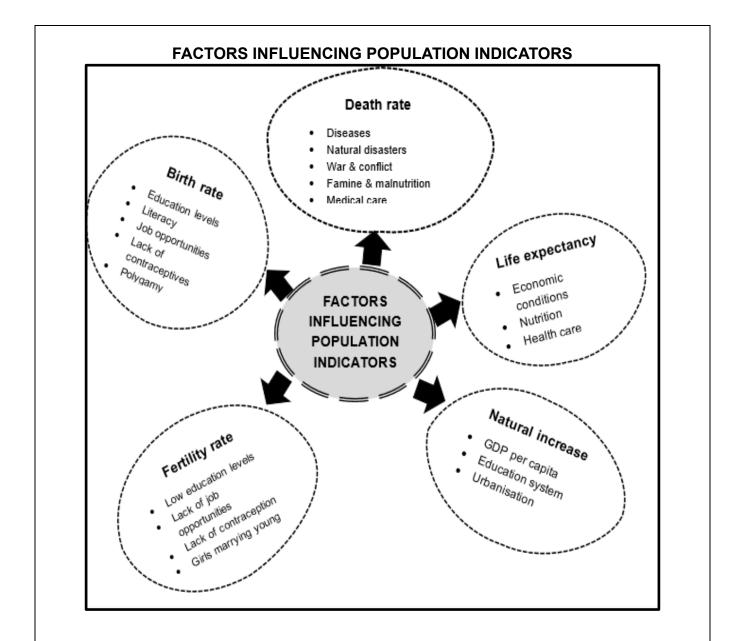

Population density

- Refers to the total number of people per unit area
- It is determined by dividing the total population by the area of land in km²

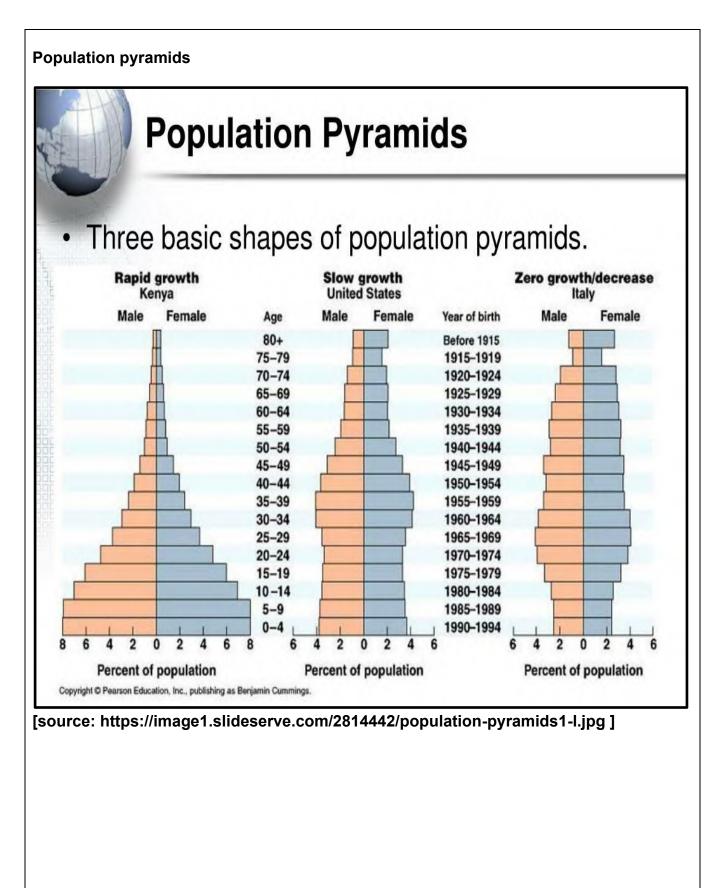
• The world map below represents population density

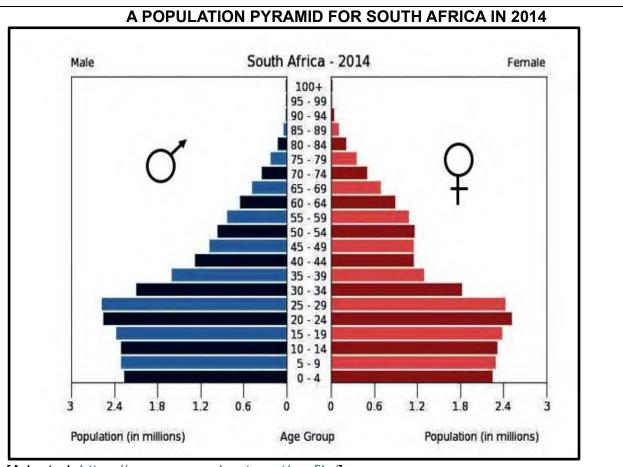
- Asia is leading with above 201 people occupying a square kilometre (201 per km²).
- Australia is dominated by 25 and above people occupying a square kilometre (25 per km²).
- Example: In late 2024, China had a population of **1,419,321,278** within **9,562,910** km².
- The population density is therefore approximately 148 people per km² (148 per km²)
- Population distribution and population density are influenced by physical, social and economic factors.
- Some areas around the world are densely populated while others are sparsely populated.

MAP SHOWING POPULATION DENSITY


	Physical	Social	Economic
FACTORS THAT AFFECT POPULATION DISTRIBUTION AND DENSITY	 Water supply Soils Climate Topography Natural resources 	 Infrastructure Politics Culture Religion Education Health care 	 Job opportunities Trade Industries infrastructure

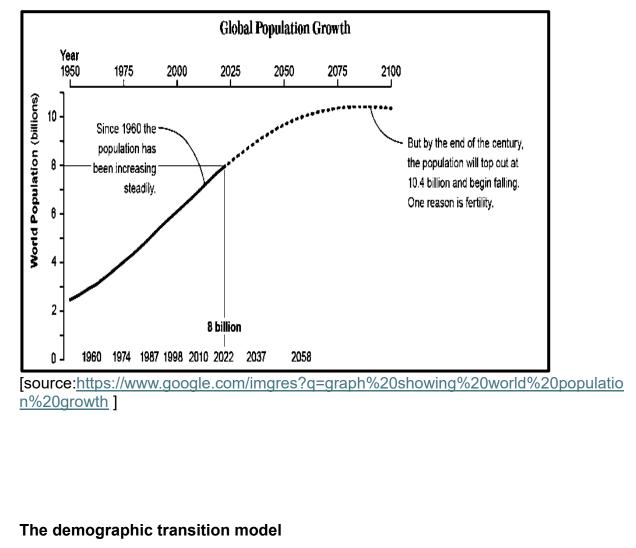
POPULATION STRUCTURE


Population indicators

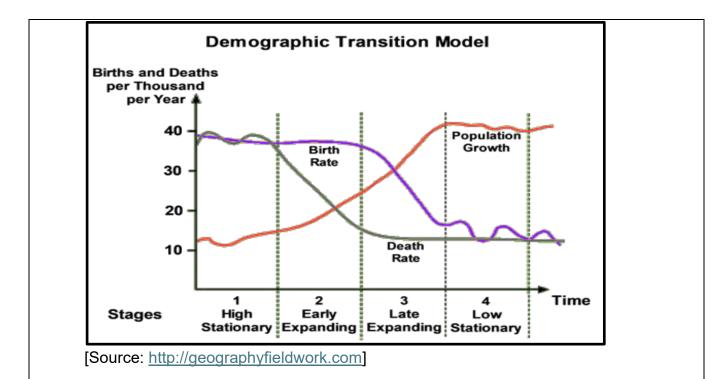

• Population indicators give us information about a country's population characteristics.

POPULATION INDICATOR	EXPLANATION
Birth rate (BR)	The number of live babies born in a year per
	1000 people.
Death rate (DR)	Number of deaths in a year per 1000 people
Life expectancy (LE)	The number of years a person is expected to live
Infant mortality rate (IMR)	The number of deaths of infants less than 1
	Year old per 1000 live births in a given year.
Natural increase (NI)	The rate at which the country's population is
	growing (birth rate minus death rate).
Fertility rate (FR)	The number of children born to each woman in
	her childbearing years.
Literacy rate (LR)	The percentage of the population who can read
	and write.
GDP per capita	The gross domestic product per person.

- Population structure informs us how many people there are in a certain age group and what gender they are.
- > It shows how men and women are distributed across age groups of a population.
- > This is demonstrated on what is referred to a population pyramid.
- > A population pyramid is a graph that shows population structure of a particular country.
- The population pyramid below is typically of a developing country i.e. South Africa
- It is triangular in shape
- > It shows a wide base (high births).
- > Narrow top (low life expectancy and high death rates).


[Adapted: https://www.researchgate.net/profile/]

POPULATION GROWTH


KEY CONCEPTS	DEFINITION
Population growth	Absolute increase in the number of people.
Exponential growth	Ever more rapid growth over a short period of time.
Demographic	Model explaining how a country's population changes
transition model	over time.
Overpopulation	The rapid increase in the world's population.
Carrying capacity	Number of people an area can support on a
	sustainable basis.
Contraception	A technique of using contraceptives to prevent
	woman from becoming pregnant.
Contraceptive	A pill or device that is used to prevent unwanted
	pregnancy.
Sterilisation	An act of making a person to be unable to produce or
	bear children.

World population growth

- The world's population is changing over time.
- Recently, the world's population is growing faster.
- Estimates are that by 2045, the world population will reach 9 billion.

- It explains how a country's population changes over time.
- It has four stages/ phases.

Overpopulation

• It is the rapid increase in the world's population.

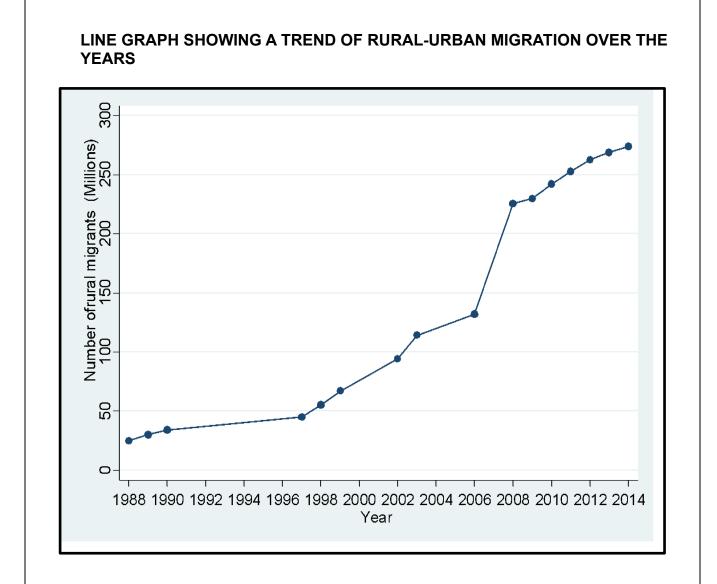
Malthusian theory on population	Managing population growth
growth	
'An essay on the principle of	There are different methods of
population'	managing population growth.
Developed by Thomas Malthus in	 Commonly used methods are
1978	contraceptives. They include;
He argued that in a growing	
population, the population	-pills,
numbers and resources must	-injection
reach an equilibrium	-loop
He suggested that the quantity of	-condom
available resources inevitably	-femidom
limits population.	Sterilisation
Population usually increase with	Vasectomy
an increase in available resources	Abortion
	One child policy

The factors that control the growth	Family planning	
of populations and keep it in	Infanticide	
balance are birth control, war,		
poverty, diseases and famine.		

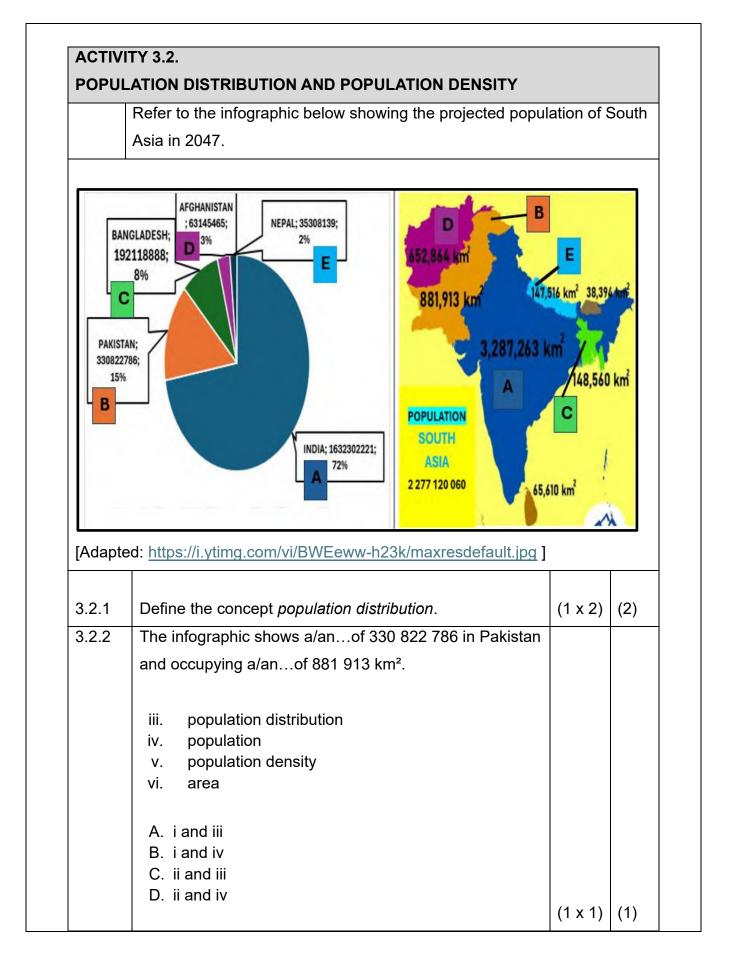
POPULATION MOVEMENTS

KEY CONCEPTS	DEFINITION
Migration	Movement of people from one place to another.
International	Movement of people across a country's borders.
migration	
Emigration	Movement of people out of their own country to
	another country.
Immigration	Movement of people into a new country of residence.
Regional migration	Movement of people within a region.
Rural-urban	Movement of people from rural areas to urban areas.
migration	
Urbanisation	Process whereby an increased percentage of people
	live in urban areas.
Counter-urbanisation	Process by which people move out of cities to the
	countryside.
Population	A decline in the number of people living in rural areas.
depopulation	
Migrant worker	A person who migrates specifically to find work.
Refugee	Political migrant who is forced to migrate to another
	country.
Genocide	The deliberate killing of people from a certain ethnic
	group or nation.
Xenophobia	A strong an unreasonable dislike or fear of people from
	other countries.
	1

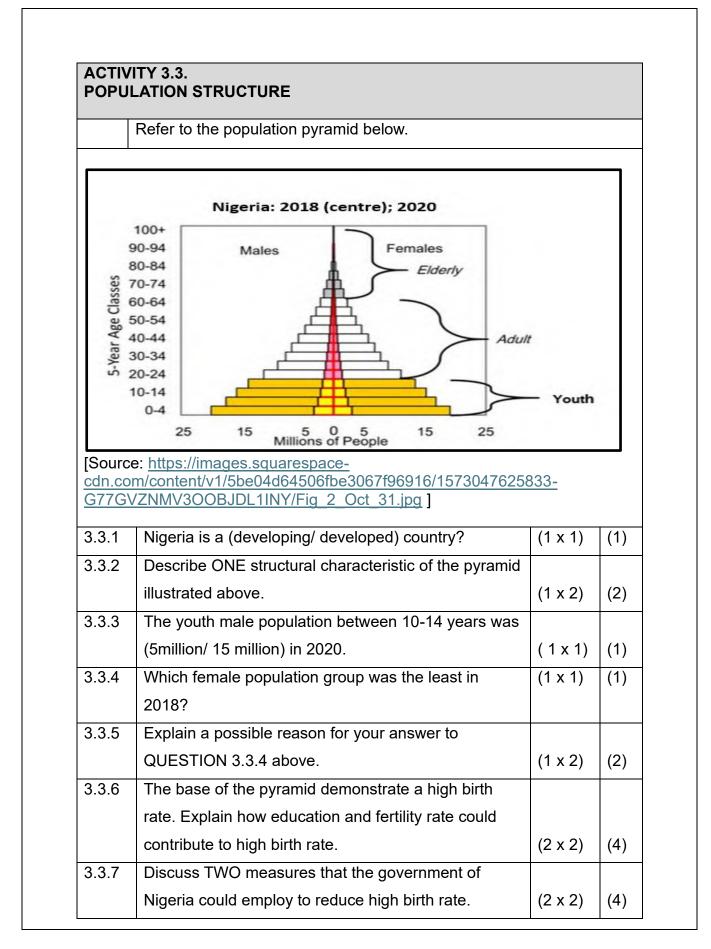
Rural-urban migration

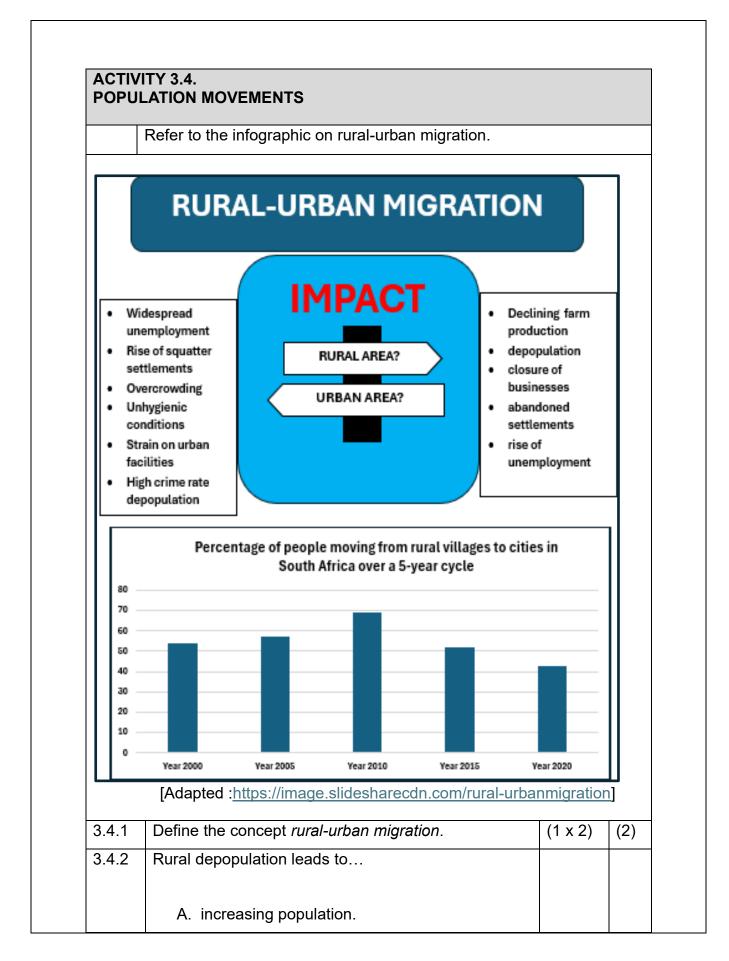

- It is the movement of people from rural areas to urban areas
- The decline in the number of people living in rural areas is termed rural depopulation.

[Adapted: https://www.bing.com]


CAUSES/REASONS	CONSEQUENCES	STRATEGIES
Push factors force	Consequences may	Provision of basic
people to leave	be social, economic	services such as
rural areas.	& environmental.	housing, water,
Pull factors draw		sanitation
(attract) people to		Supporting small
urban areas.		scale farmers
Push factors	In rural areas	Provision of jobs
Poverty	➢ Ghost	Improving salaries
Unemployment	settlements	and wages
Poor roads	Closure of	
	businesses	

	Natural	\succ	Lower	۶	Attracting
	disasters		productivity		secondary sector
\succ	Low wages	\succ	Old people left		such as industries
\succ	Farm killings		behind	≻	Improving transport
		≻	Abandoned		facilities and roads
			farms		
		≻	Further		
			unemployment		
Pull f	actors	In urb	oan areas		
\checkmark	Availability of	≻	High competition		
	jobs		for basic		
\succ	Better health		services		
	care	\succ	Influx of informal		
\succ	Transport		settlements		
	accessibility	\succ	High crime rates		
\succ	Entertainment	\succ	Unhygienic		
\succ	Food security		conditions		
\succ	Improved				
		1		1	



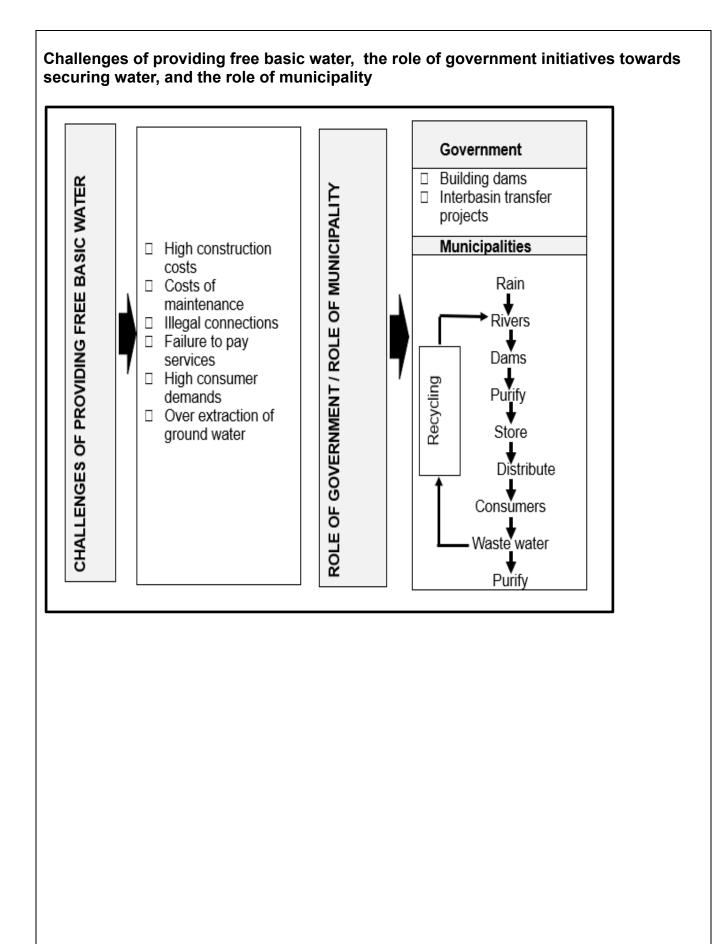


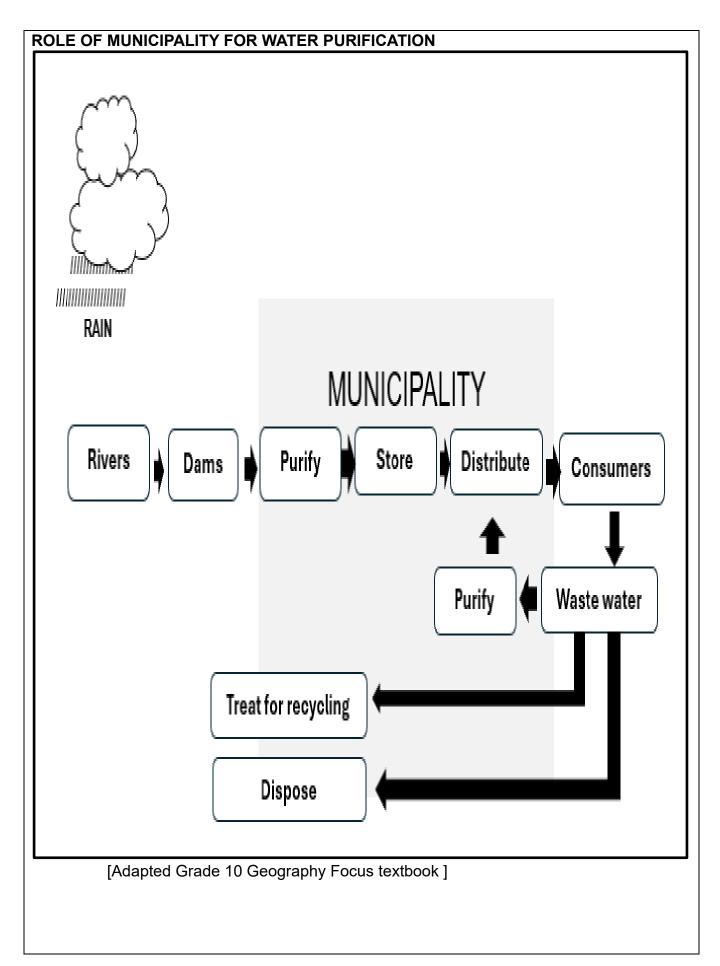
3.1.1	Define the term urbanisation.	(1 x2)	(2)
3.1.2	Name the province with the smallest population.	(1x1)	(1)
3.1.3	Based on the data from the graph, what is the total of South Africa?	(1x2)	(2)
3.1.4	Which is the most populated province in South Africa?	(1x1)	(1)
3.1.5	Provide TWO reasons for the high population in the province named in QUESTION 3.1.4.	(2x2)	(4)
			[10]

3.2.3	The country with the largest population is	(1 x 1)	(1)
3.2.4	Mention THREE possible factors that contribute to a high birth rate in the country named in QUESTION 3.2.3 above.	(3 x 1)	(3)
3.2.5	Calculate the population density of Bangladesh.	(2 x 1)	(2)
3.2.6	Explain THREE physical (natural) factors that influence population density.	(3x2)	(6)

	B. stagnant population.		
	C. declining population.		
	D. overpopulation.	(1 x 1)	(1)
3.4.3	According to the graph, which year recorded the		
	highest increase in population in South African cities ?	(1 x 1)	(1)
3.4.4	Account for the possible increasing trend revealed in		
	QUESTION 3.4.3.	(1 x 2)	(2)
3.4.5	Identify ONE economic impact of rural-urban		
	migration in cities.	(1 x 1)	(1)
3.4.6	Write a paragraph of approximately EIGHT lines in		
	which you suggest sustainable strategies to reduce		
	dwindling (decreasing) population in rural areas.	(4 x 2)	(8)

WATER RESOURCES

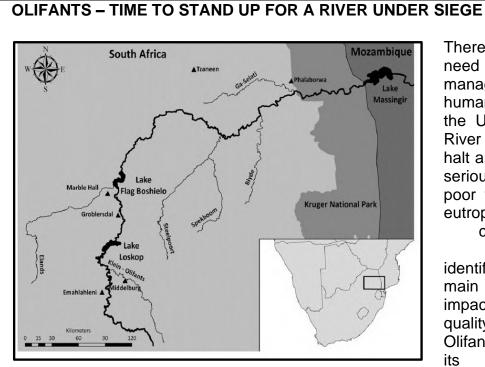

WATER MANAGEMENT IN SOUTH AFRICA


KEY CONCEPTS	DEFINITION
Water resources	are natural and artificial resources of water
	which can be used by humans for various
	purposes.
Tributary	Smaller river joining the main.
River basin/ drainage	Total area drained by the main river and its
basin	tributaries.
Grey water	used water which is still quite clean
Flood	sudden overflow of water which covers land
	that is usually dry.
Hydrographs	a graph showing a river's discharge over time
Discharge	the amount of water across the width of a
	river flowing past a given point.

	Lakes	Dams
A long natural flow of water	A large body of water	A built structure across a
across the land into sea, lake or	That is surrounded by	river to block the flow and
another river.	land.	retain water.
Tugela River Fugela River State Adapted: https://southafrica.co.za/images/3	Lake St Lucia Image: Constrained strained stra	Inanda Dam

Factors influencing the availability of water in South Africa

Human (social) factors	Physical (environmental) factors
 Population growth 	o Rainfall
\circ Increased demand for food	 Alien vegetation
o Urbanisation	 Climate change
 Mining and factories 	 Evaporation rate
 Pollution of water sources 	
 Agricultural activities 	


POLLUTION OF THE VAAL RIVER SYSTEM

The Vaal River is one of South flowing strongest Africa's rivers. It is home to the Vaal Dam, which supplies water to the Gauteng Province, South Africa's economic hub. Over failing the vears. the wastewater treatment system in the catchment area has led to continued pollution of the river, compromising this critical resource and the economy of the region. In 2018, following a public outcry, the South African Human Rights Commission instituted an inquiry into the state of affairs of the region's water and sanitation management issues as well as the level and extent of the

pollution problem. The Commission discovered raw sewerage in a stream flowing through the Emfuleni Golf Course, burst sewer pipes on the banks of the Rietspruit, dysfunctional components in the Rietspruit Wastewater Treatment Works, blocked manholes, and children from a nearby school swimming in and consuming polluted water. Raw sewage was found to be discharging from dysfunctional wastewater treatment plants into the receiving Vaal River.

Source:<u>http://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/257/38294</u>

There is an acute need for the management of human activities in the Upper Olifants River catchment to halt an increasingly serious situation of poor water quality, eutrophication and contamination. Researchers identified three main sources of impacts on the quality of the Upper Olifants River and its tributaries.

These are acidic water, metals and sulphates from mining and industrial activity; excessively high nutrient input from poorly operating municipal wastewater treatment works as well as some agricultural activities; and extremely high microbial input from untreated or poorly treated sewage. Some of the adverse effects of these pollutants include widespread eutrophication of the river, toxic water quality in places, and an increase in the potential for bioaccumulation of pollutants, such as metals, in organisms through the food chain.

Source:http://www.wrc.org.za/wp-content/uploads/mdocs/WWMay2013olifants.pdf

FLOODS		//ts2.mm.bing.net]
Physical causes of flooding	The effects of river floods (negative)	Managing flooding (rural, urban & informal settlements)
 The type and amount of rainfall Type of soil and underlying rock structure Vegetation cover Relief Human causes of flooding Deforestation Urbanisation Poor management of drainage facilities 	 Destroy crops People and livestock drown Erosion of top soil Damage to homes and other buildings Destruction of infrastructure Financial strain Waterborne diseases Disruption of food chains Interruption of 	 Afforestation Sandbagging Building embarkments Buffering rivers Building dams Restore natural wetlands Awareness campaigns Sustainable methods of farming Banning building along rivers
	tourism activities ➤ Food insecurity	 Storm water drains/ maintenance

POSITIVE	warning systems
Increase water	on media
levels in dams	flood walls built
Contribute to soil	around dense
fertility	settlements
Balance health of	
river system	
Purify swamps	

CASE STUDY ON RECENT FLOODS IN DURBAN

State of disaster declared in KZN following devastating floods

At least 22 lives were lost; with widespread destruction, resulting in an estimated R3.1 billion in damages.

The province experienced severe rainfall and flooding in February. At least 22 lives were lost. Widespread destruction resulted in an estimated R3.1 billion in damages.

The state of disaster declaration, made by the National Disaster Management Centre (NDMC), allows for the mobilisation of all state organs to support affected communities and implement contingency protocols. A multisectoral relief and rehabilitation plan has been put in place to ensure that these communities receive the necessary assistance for recovery.

[Source: https://www.bing.com]

Cooperative Governance and Traditional Affairs (COGTA) spokesperson, Senzelwe Mzila said MEC Thulasizwe Buthelezi has welcomed the declaration.

"The devastating incident caused an estimated R3.1 billion in damages. The MEC for COGTA has assured the people of KZN that the department will work diligently with the NDMC, municipalities and all pertinent stakeholders to ensure the efficient coordination of response and recovery efforts. Residents across the province are strongly advised to remain vigilant and adhere to 4.1. Refer to the case study on a drainage basin and water management.

DURBAN CONTAMINATED DRAINAGE BASIN; WE ARE SWIMMING IN WASTE WHILE DODGING E. coli.

Rivers polluted by sewers are nothing new to Durbanites in the province of KwaZulu-Natal . The riverside residential community was fed up with the unpleasant stench of raw sewage in the air. It was no longer safe to walk along the Umgeni river or enjoy the surroundings and wildlife of the river. Informal communities that settled along riverbanks to earn a living or provide an income for their families were unable even to use the river for

their daily water consumption. Industrial discharges from factories and raw sewage seeping into the rivers had become a daily occurrence. A few weeks after large numbers of fish were killed in the Isipingo River and estuary due to high levels of E.coli, another large number of fish was killed in the Umgeni River. Stringent measures such as river management was a proposed solution to the problem.

Source: <u>http://www.greenpeace.org/africa/en/blogs/52684/ethekwini-contaminated-</u>water-we-are-swimming-in-faeces-while-dodging-e-coli

4.1.1	Define the concept drainage basin.	(1 x 2)	(2)
4.1.2	In which province is Durban located?	(1 x 1)	(1)
4.1.3	Identify the bacteria that occurred as a result of the polluted Umgeni River.	(1 x 2)	(2)
4.1.4	Mention TWO sources of pollution for the Umgeni River,		
445	according to the article.	(2 x 1)	(2)
4.1.5	In a paragraph of approximately EIGHT lines discuss how pollution impact on the health system of the Umgeni River.	(4 x 2)	(8)

ACTIVITY 4.2. WATER MANAGEMENT

Refer to the extract on water management in South Africa.

Water resource management in South Africa: A review

In South Africa, there are many challenges regarding water management. Inadequate rainfall may contribute to mismanagement, hence political breakdowns also contribute to the problem. To list some of the major challenges for effective management are limited physical resources, a long cycle of inadequate rainfall, a rapid growing population, and stagnant economies. Water resource management is crucial for human security. In South Africa, almost everyone is affected by mismanagement of water resource, hence those living in poor area are the most affected as they do not have access to potable water and proper sanitation. Many policy-makers, researchers, government, municipalities and water managers advocate that water must be managed at the level of river basins, based on the argument that river basins are a "natural" unit and thus the logical unit for water management.

[Source: www.ajol.info/index.php/ajest/article/view/74212]

is water resource management? fy ONE physical factor and ONE human factor the extract) that contribute to mismanagement ter resources.	(1 x 2) (2 x 1)	(2)
the extract) that contribute to mismanagement	(2 x 1)	(2)
,	(2 x 1)	(2)
ter resources.		
, according to the article worsen the living		
tions of the poor in rural areas?	(2 x 1)	(2)
ONE stakeholder mentioned from the extract		
lays a role in water management in South	(1 x 1)	(1)
l.		
	tions of the poor in rural areas? • ONE stakeholder mentioned from the extract lays a role in water management in South	tions of the poor in rural areas? (2 x 1) e ONE stakeholder mentioned from the extract lays a role in water management in South (1 x 1)

4.2.5	Explain how agriculture and population growth		
	contribute to water shortages in South Africa.	(2 x 2)	(4)
4.2.6	Suggest TWO methods that municipalities could use		
	to ensure sustainable management of river basins.	(2 x 2)	(4)

	Refer to the article on floods in KwaZulu-Natal, South A	frica.	
	FLOODING IN KWAZULU NATAL		
wa wa	n Tuesday, 25 February 2025, the weather service issued arning for severe thunderstorms along the South Coast of arning the public of expected heavy downpours, localised maging winds, excessive lightning and hail damage.	f KZN,	
mı aff sh	rrounding eThekwini, with flooding causing structural col udslides and fallen trees. About 280 families in Lamontvil fected by last night's heavy rains and will be relocated to elters as mop-up operations continue. "Our priority is the ellbeing of our residents," said KZN's cooperative governa	le were temporan safety an	· .
tra re: to the en	aditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorit e public to stay informed via official channels and report nergencies to 031 361 0000 .	suring I the clock	
tra re: to the en [Sc	ditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorit e public to stay informed via official channels and report nergencies to 031 361 0000.	suring I the clock	(2)
tra res to the en [Sc 4.3.1	ditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorit e public to stay informed via official channels and report nergencies to 031 361 0000 . purce: <u>www.dailymaverick.co.za/article/2025-02-26</u>]	suring the clock ies urge	
tra to the en [Sc 4.3.1	ditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorit e public to stay informed via official channels and report nergencies to 031 361 0000 . purce: <u>www.dailymaverick.co.za/article/2025-02-26</u>] Define the concept <i>flood</i> .	suring the clock ies urge (1 x 2)	(2)
tra to the [Sc 4.3.1 4.3.2	Aditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorit e public to stay informed via official channels and report nergencies to 031 361 0000 . purce: <u>www.dailymaverick.co.za/article/2025-02-26</u>] Define the concept <i>flood</i> . Mention TWO weather conditions that accompanied	suring the clock ies urge	
tra to the [Sc 4.3.1 4.3.2	 Iditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorite public to stay informed via official channels and report mergencies to 031 361 0000. Durce: www.dailymaverick.co.za/article/2025-02-26] Define the concept <i>flood</i>. Mention TWO weather conditions that accompanied heavy downpours in eThekwini. 	suring the clock ies urge (1 x 2) (2 x 1) (2 x 1)	(2) (2) (2)
tra to the [Sc 4.3.1 4.3.2	Iditional affairs MEC, Reverend Thulasizwe Buthelezi, assidents that disaster response teams are working aroundrescue residents who are trapped by the floods. Authorite public to stay informed via official channels and reportnergencies to 031 361 0000.purce: www.dailymaverick.co.za/article/2025-02-26]Define the concept flood.Mention TWO weather conditions that accompaniedheavy downpours in eThekwini.State TWO physical impact of the KZN floods.	suring the clock ies urge (1 x 2) (2 x 1)	(2)
tra res to the en	 aditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorite public to stay informed via official channels and report nergencies to 031 361 0000. burce: www.dailymaverick.co.za/article/2025-02-26] Define the concept <i>flood</i>. Mention TWO weather conditions that accompanied heavy downpours in eThekwini. State TWO physical impact of the KZN floods. The advantage of flooding to farmers is (soil 	suring the clock ies urge (1 x 2) (2 x 1) (2 x 1)	(2) (2) (2)
tra to the en [Sc 4.3.1 4.3.2 4.3.3 4.3.4	 ditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorite public to stay informed via official channels and report nergencies to 031 361 0000. Durce: www.dailymaverick.co.za/article/2025-02-26] Define the concept <i>flood</i>. Mention TWO weather conditions that accompanied heavy downpours in eThekwini. State TWO physical impact of the KZN floods. The advantage of flooding to farmers is (soil degradation/ soil fertility)? 	suring the clock ies urge (1 x 2) (2 x 1) (2 x 1)	(2) (2) (2)
tra to the en [Sc 4.3.1 4.3.2 4.3.3 4.3.4	 ditional affairs MEC, Reverend Thulasizwe Buthelezi, as sidents that disaster response teams are working around rescue residents who are trapped by the floods. Authorit e public to stay informed via official channels and report nergencies to 031 361 0000. Durce: www.dailymaverick.co.za/article/2025-02-26] Define the concept <i>flood</i>. Mention TWO weather conditions that accompanied heavy downpours in eThekwini. State TWO physical impact of the KZN floods. The advantage of flooding to farmers is (soil degradation/ soil fertility)? In a paragraph of approximately EIGHT lines, discuss 	suring the clock ies urge (1 x 2) (2 x 1) (2 x 1)	(2) (2) (2)