

GERT SIBANDE DISTRICT

Stanmorephysics.com

GRADE 12

PHYSICAL SCIENCES TOPIC TEST

TOPIC: CHEMICAL EQUILIBRIUM

MAY 2023 Stanmorephysics.com

MARKS: 50

TIME: 1 hour

This question paper consists of 9 pages including the data sheet

INSTRUCTIONS AND INFORMATION

- This question paper consists of FOUR questions. Answer ALL the questions in the ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK.
- Number the answers correctly according to the numbering system used in this
 question paper.
- Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable calculator.
- 6. You are advised to use the attached DATA SHEETS.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your final numerical answers to a minimum of TWO decimal places.
- 9. Write neatly and legibly.

QUESTION 1

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.5) in your answer sheet, eg. 1.6 A.

- 1.1 A certain chemical reaction reaches equilibrium at 25 °C. The equilibrium constant Kc, for this reaction at this temperature is 1,0x10-4. Which of the following statements regarding this reaction at equilibrium is CORRECT?
 - A The concentration of the products is equal to that of reactants.
 - B The concentration of the products is higher than that of reactants.
 - C The concentration of the products is lower than that of reactants.
 - D The rate of the forward reaction is lower than the rate of the reverse reaction. (2)
- 1.2 A catalyst is added to a reaction mixture at equilibrium.

Which one of the following statements about the effect of catalyst is FALSE?

- A The rate of the forward reaction increases.
- B The rate of the reverse reaction increases.
- C The equilibrium position shifts to the right.
- D The equilibrium position remains unchanged. (2)

1.3 A hypothetical reaction reaches equilibrium at 10°C in a closed container according to the following balanced equation:

$$A_{(g)} + B_{(g)} \rightleftharpoons AB_{(g)}$$
 $\Delta H < 0$

The temperature is now increased to 25°C. Which ONE of the following is correct as the reaction approaches a new equilibrium?

	REACTION RATE	YIELD OF PRODUCTS
А	Increases	Remains the same
В	Increases	Decreases
С	Increases	Increases
D	Decreases	Decreases

(2)

Stanmorephysics.com

1.4 The reaction represented by the balanced equation below reaches equilibrium in a closed container.

$$C\ell_{2(g)} + H_2O_{(\ell)} \Rightarrow C\ell^{-}_{(aq)} + C\ell O^{-}_{(aq)} + 2H^{+}_{(aq)}$$

Which ONE of the following reagents will favour the reaction when added?

- A Hydrogen
- B Sodium chloride
- C Hydrogen chloride
- D Sodium hydroxide (2)

1.5 The balanced equation for three reactions at equilibrium in a closed container are given below.

i.
$$C_2H_{4(g)} + H_{2(g)} \rightleftharpoons C_2H_{6(g)}$$

ii.
$$Fe_3O_{4(s)} + 4H_{2(g)} \rightleftharpoons 3Fe_{(s)} + 4H_2O_{(g)}$$

iii.
$$SO_{3(g)} + NO_{(g)} \rightleftharpoons NO_{2(g)} + SO_{2(g)}$$

In which reaction(s) will the equilibrium position shift when the volume of the reaction vessel is decreased at a constant temperature?

- A i only
- B i and ii only
- C i and iii only
- D i and ii and iii (2)

QUESTION 2

A certain amount of nitrogen and hydrogen were reacted in a container to produce ammonia as shown by the chemical equation below.

The reaction was allowed to reach equilibrium.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H < O$$

- 2.1 Define the term chemical equilibrium. (2)
- 2.2 The container was then warmed to a higher temperature.

How did this change influence the following at equilibrium?

Only write down INCREASED, DECREASED or REMAINSED THE SAME.

- 2.2.1 The amount of H_2 . (1)
- 2.2.2 The value of K_C. (1)
- 2.3 Use Le Chatelier's principle to explain the answer to the QUESTION 2.2.2. (3)
- 2.4 Some ammonia (NH₃) was removed from the reaction container.
 How did this change affect the concentration of N₂? Only write down
 INCREASED, DECREASED or REMAINED THE SAME.

 [8]

QUESTION 3

LOO

A heterogeneous reaction below took place in a 1000 cm³ sealed flask.

$$C(s) + O_2(g) \rightleftharpoons CO_2(g)$$

The reaction mixture initially contained 3.8 g of Carbon (C) and unknown mass of oxygen (O₂). When the equilibrium was reached, there were 0,292 mole of carbon.

- 3.1 Give a reason why the above reaction is referred to as heterogeneous reaction. (1)
- 3.2 If the equilibrium constant (K_c) at 400°C was 0.145, calculate the initial mass of oxygen (O₂₎ placed in the flask. (9)
- 3.3 When one of the conditions affecting the equilibrium was increased, the K_c value also increased on
 - 3.3.1 State Le chatelier's principle. (2)
 - 3.3.2 Which condition was changed? (1)
 - 3.3.3 Is the forward reaction exothermic or endothermic?

 Use Le Chatelier's principle to explain the answer.

 (4)

 [17]

QUESTION 4

A sample of N_2O_4 gas is sealed in a container and heated. The N_2O_4 gas decomposes to NO_2 gas and the reaction reaches equilibrium according to the following balanced equation:

$$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)} \qquad \Delta H > 0$$

The graph below shows how the concentration of the two gases change as a result of the changes made to the reaction conditions.

4.1 How does the rate of the forward reaction compare to that of reverse reaction at the following times? Only write HIGHER THAN, LOWER THAN or EQUALTO.

$$4.1.1 t_1$$
 (1)

$$4.1.2 t_2$$
 (1)

- 4.2 What change is made to one of the reaction conditions at time t₃?In this instance, the equilibrium constant for the reaction does not change. (1)
- 4.3 Use Le chatelier's principle to explain the effect of the change in QUESTION 4.2 until a new equilibrium is established. (3)
- 4.4 Calculate the equilibrium constant (K_c) when the reaction reached the equilibrium for the FIRST time. (3)

4.5 A catalyst is added to the equilibrium system in the above reaction. How is this change influence the following at equilibrium? Only write down INCREASES, DECREASES or REMAINES THE SAME.

4.5.1 The amount of
$${}_{2}O_{4}(g)$$
? (1)

- 4.5.2 The time taken to set up equilibrium? (1)
- 4.6 The plunger is then pushed into the container and the volume of the container decreases, causing an increase in the pressure of the system.
 - 4.6.1 How does this change influence the amount of NO₂ at equilibrium?

 Only write down INCREASES, DECREASES or REMAINES THE SAME.

 (1)
 - 4.6.2 Use Le Chatelier's principle to explain the answer in QUESTION
 (3)
 [15]

TOTAL: 50

TABLE OF FORMULAE

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$n = \frac{V}{V_m}$	$c = \frac{n}{V}$ OR $C = \frac{m}{MV}$

Full Consequence Consequ		18 VIII)	4 He	2	S Se	18	Ar	40	8	₹;	84	25	×e	131	98	R			_	=	75	103	_						
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		TUUUT											5 (3)			13 A		i E											
Steure Atomic number Ato				E 2				35			∞ ∞		 5'2	12	8			ý k	20	Ž	173	102	2						
SLEUTEL Atomic number SLEUTEL Atomic number SLEUTEL Atomic number	LU	THE STATE OF THE S		11				32			5	25		128	84				69	E	169	101	Md						
Steur Steur Strate Steur Ste	IENT	10.5						<u>= 5</u>			£	=		22	3		80					-							
SLEUTEL Attomic number SLEUTEL Attomic number SLEUTEL Attomic number Approximate relative attomic mass Attomic number Attomi	ELEN	2.5						.,				47		-	8		7		99	ш	16	19	正						
6 7 8 9 10 11 12 13 SLEUTEL Atomic number Atomic number SLEUTEL Atomic number Simbool Si	VANE	45	Au//					28			2	20		119	82		707		19	운	165	66	Es						
SLEUTEL Atomic number At	TABEL	₽E		R (B 11	13	Ag	77	5	g	0)	49	=	115	8.1	16	204		99	2	163	86	ರ						
SLEUTEL Atomic number SLEUTEL Atomic number SLEUTEL Atomic number SLEUTEL Atomic number Sumbol Symbol Symbo	DIEKE	12			5 (91	00		100	69	48	3	112	80		201		65	2	159	16	ž						
6 7 8 9 10 SLEUTEL Atomic number SLEUTEL Atomic number Atomic number Atomic number Atomic number 29 10 29 10 ctronegativity Tonegativity Tonegativity Tonegativity Approximate relative atomic mass Benaderde relative atomic mass Approximate relative atomic mass Benaderde relative atomic mass Approximate relative atomic mass Benaderde relative atomic mass Benaderde relative atomic mass Approximate relative atomic mass Benaderde relative atomic mass Approximate relative atomic mass Benaderde relative atomic mass Benaderde relative atomic mass Approximate relative atomic mass Benaderde relative atomic mass Ben	PERIO	Star	morephysi	cs.cor	n						63,5	47		108	61	Au	197			8			22-10						
CTABLE OF ELEMENTS/TABEL Comparing the compact of the compact	TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE	0	Atomic number Atoomgetal								so es	es es		(6°L		-	6'1			-	95						27	
ODIC TABLE OF ELEMENTS/TA		-				lodn	nboo		mas	mass	1	8°L	3,69		2'2						9	ш	=	6	A				
ODIC TABLE OF ELEMEN 6		6		Syl	S	ī	atomic	atoom			99			103	11	<u>-</u>	192		62	SE	150	94	2						
ODIC TABLE OF E ODIC TABLE		8		Atomic nu Atoomg			4	elative	элеме			26		N'S R	101	91	S	130	ę.	61	E		93	N	Ľ				
SLEUTEL SLEUTEL SLEUTEL Ctronegativit tronegativit trone		7							Atc	.1	.	imate r	rde rel	9	E	22	SURE PROD	ည		75	æ	186		09	Z	144	92	_	238
SLEU IODIC Ctron trong trong 132 15 15 15 15 15 15 15 15 15 15 15 15 15		9	TEL	egativit	gatiwit		Approx	Senade	57	င်း	25		S	96	14	3	184		59	<u>L</u>	141	91	Ра						
子		2	YISLEU	lectron	ektrone			-	57	> :	5.			35	73	-a	181		28	ප	140	06	£	232					
五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五		4	KE	ш	E			6	77	=	84			91	72		179	Ē				1							
65 4'L 9'L																-	6			776									
3 17 ABLE 3 24 SC 1		6.5						3			4			38	5	ٽ	13	88	Ă										
22 88 87 87	1992							24	2	ب ج	9	38	S	88	26		137			77									
9'1 Z'1 0'1 0'1 6'0 6'0					- L										10		5			- 1									
12 0.1 6.0 8.0 8.0 7.0 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		- 8						7			ř			86	5.		13												

GERT SIBANDE DISTRICT

GRADE 12

PHYSICAL SCIENCES TOPIC TEST TOPIC: CHEMICAL EQUILIBRIUM MAY 2023

MARKING GUIDELINES

MARKS: 50

Stanmorephysics.com

This question paper consists of 5 pages

QUES	TION 1	
1.1	C✓✓	(2)
1.2	C✓✓	(2)
1,3	B✓✓	(2)
1.4	D✓✓	(2)
1.5	A✓✓	(2) [10]
QUES	TION 2	
2.1	Is the dynamic equilibrium when the rate of the forward reaction equals the rate of the reverse reaction. [2 or 0 MARK]	(2)
2.2.1	INCREASED✓	(1)
2.2.2	DECREASEDVsics.com	(1)
2.3	The system re-instates a new equilibrium by favouring a reaction that decreases temperature.	
	The reverse reaction is favoured ✓ because it is endothermic that decreases temperature. ✓	(3)
2.4	DECREASED✓	(1) [8]

QUESTION 3

- 3.1 All reactants and products are not in the same phase. ✓ OR: C is in solid state while O₂ and CO₂ are in gaseous state.
- (1)

3.2 OPTION 1: USING (THE TABLE OF) NUMBER OF MOLES

$$n(C) \text{ initial} = \frac{m}{M} = \frac{3.8}{12} = 0.317 \text{ mol}$$

Reaction	С	O2 ≓	CO ₂
Initial mole	0,317	Х	0
Change in mole	-0,025	-0,025	+0,025✓
Equilibrium mole	0,292	X – 0,025	0,025✓
Equilibrium concentration (Mol.dm.3)	0,292 ÷ 1 = 0,292	X – 0,025 ÷1 = X – 0,025	0,025 ÷ 1 = 0,025 √

$$K_c = \frac{[CO2]}{[O2]}$$
 $K_c = \frac{[CO2]}{[O2]}$
 $K_c = \frac{[CO2]}{[O2]}$

Stanmorephysics.com

OPTION 2: USING (THE TABLE OF) CONCENTRATION

$$C_{(C)}$$
 initial = = $\frac{m}{MV}$ = $\frac{3.8}{12X1}$ = 0.317 moldm⁻³

$$C_{(C)}$$
 equim $=\frac{n}{V} = \frac{0,292}{1} = 0,292 \text{ moldm}^{-3}$

Reaction	С	O2 <i>⇌</i>	CO ₂
C(C) initial	0,317	Х	0
Change in concentration	-0,025	-0,025	+0,025✓
Equilibrium concentration (Mol.dm ⁻³)	0,292	X – 0,025	0,025✓

$$K_c = [CO_2] \checkmark$$
 $St[O_2]$ rephysics.com

$$0,145 = \frac{(0,025)}{(x-0,025)} \checkmark$$

$$X = 0,197 \text{ moldm}^{-3}$$

$$C_{(O_2)} = \frac{m}{MV}$$

$$0,197 = \frac{m}{32 \text{ X}1}$$

$$m(O_2) = 6,304 g$$

3.3.1 when equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring a reaction that will oppose/cancel the disturbance. ✓✓ [2 or O Mark] (2)

3.3.2 Temperature✓

3.3.3 Endothermic. ✓

Kc value increases as the concentration of products increases. ✓.

(According to Le chatelier's principle), increase in temperature favours endothermic reaction which causes temperature decrease. ✓

Forward reaction is favoured as it causes increase in concentration of the products. ✓

(4) **[17]**

(1)

QUESTION 4

7		
4.1.1	HIGHER THAN✓	(1)
4.1.2	EQUAL TO ✓	(1)
4.2	NO₂ added/ [NO₂] increased✓	(1)
4.3	(According to Le chatelier's principle), the system re-instate a new equilibrium by favouring a reaction that decreases/uses up NO₂✓ The reverse reaction is favoured, ✓ as this is a reaction that decreases the concentration/amount of NO₂ and increases the concentration of N₂O₄✓	(3)
4.4	$Kc = [NO_2]^2$ $[N_2O_4]$ $Kc = (0,2)^2$ $(0,7)$ $Kc = 0,057$	
	Stanmorephysics.com	(3)
4.5.1	REMAINES THE SAME✓	(1)
4.5.2	DECREASES✓	(1)
4.6.1	DECREASES✓	(1)
4.6.2	The system reacts/ re-instate a new equilibrium by favouring a reaction that leads to lowering of pressure (according to Le chatelier's principle).✓ Reverse reaction is favoured✓ because it occurs by decrease in number of moles and it attempts to decrease pressure.✓	(3) [15]
	TOTAL: 50	[10]