Downloaded from Stanmorephysics.com

JUNE EXAMINATION GRADE 12

2025

Stanmorephysics.com

MATHEMATICAL LITERACY

(PAPER 1)

MATHEMATICAL LITERACY P1

C2601E

morephysics.com

2 hours

MARKS: 100

9 pages + an addendum with 3 annexures

XØ5

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of FOUR questions. Answer ALL the questions.
- 2. Use the ANNEXURES in the ADDENDUM to answer the following questions:

ANNEXURE A for QUESTION 2.1

ANNEXURE B for QUESTION 3.2

ANNEXURE C for QUESTION 4.1

- 3. Number your answers correctly according to the numbering system used in this question paper.
- 4. Start EACH question on a NEW page.
- 5. An approved calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. Show ALL calculations clearly.
- Round-off ALL final answers appropriately according to the given context, unless stated otherwise.
- 8. Indicate units of measurement, where applicable.
- 9. Write neatly and legibly.

QUESTION 1

1.1 Rise and Shine Primary School presented its budget for the 2023/2024 financial year at its Annual General Meeting (A.G.M.). TABLE 1 below is an extract of the actual income for 2023 and the expected income for 2024.

(PAPER 1)

TABLE 1: ACTUAL AND EXPECTED INCOME FOR RISE AND SHINE PRIMARY SCHOOL FOR 2023/24

INCOME //	2023 (ACTUAL) (IN RAND)	2024 (EXPECTED) (IN RAND)
SCHOOL FEES 2024		
Total expected roll: 825 learners		
Exemptions: 64		
Non-payers: 97		
Total paying pupils: 664 rephysics.com		
Grade 1 – 7: 605 @ R11 500/year		6 957 500
Grade R : A @ R15 000/year		885 000
LESS DISCOUNT		(117 300)
Total school fees		7 725 200
Government subsidy Section 21	591 396	634 890
Grade R subsidy	143 340	154 900
Exemption reimbursement	26 000	34 860
Tuckshop rental	36 250	72 500
Uniform sales	85 600	87 000
Fundraising	144 550	145 000
Interest on investments	32 000	35 600
Other sources	121 800	89 600
TOTAL	8 180 936	8 979 550

Use TABLE 1 above to answer the questions that follow.

Define the term income in this context.

	Jean Hor Epriyales.com	
1.1.2	Write down the total school fees expected in 2024 in words.	(2)
1.1.3	Calculate the value of A, the number of Grade R learners expected in 2024.	(2)
1.1.4	Calculate the difference between the total income in 2023 and 2024.	(2)
1.1.5	Identify the type of income that doubled in 2024.	(2)
1.1.6	Calculate the monthly school fees for Grade R learners.	(2)

1.1.1

(2)

1.2	Ms Msimang, the hockey coach at Rise and Shine Primary School measured and recorded
	the heights (in cm) of the Under-13 team players as follows:
	000

150 159 144 146 159 135 156 159 144 158 149

Use the information above and answer the questions that follow.

- 1.2.1 State whether the above data is categorical or numerical. (2)
- 1.2.2 Write down the modal height of the hockey team in metres. (2)
- 1.2.3 Arrange the heights of the players in descending order. (2)
- 1.2.4 Calculate the median of the data set. (2) [20]

Stanmorephysics.com

QUESTION 2

2.1 Mr Yusuf is a 38-year-old quantity surveyor at Arrow Quantity Surveyors. He earns a gross monthly salary of R45 000. He contributes 7,5% of his salary to a pension fund and pays R3 200 per month for medical aid, which covers him and three dependants.

Use the tax table in ANNEXURE A to answer the questions that follow.

- 2.1.1 What does the abbreviation SARS stand for? (2)
- 2.1.2 Calculate Mr Yusuf's annual taxable income. (4)
- 2.1.3 Determine his annual medical tax credit. (3)
- 2.1.4 Hence, calculate the annual income tax he had to pay for the 2024/2025 tax year. (5)

GR12 0625

5

2.2 Padel is a sport similar to traditional tennis but played on a smaller court, and with a few key differences. Below is an advertisement for the Nox MM2 Hybrid Pro padel racket. The price in the advertisement below includes VAT.

[Source: Balwinpaddle.co.za]

Study the information above and answer the questions that follow.

Stanmorephysics.com

- 2.2.1 Calculate the cost of the NOX MM2 Hybrid Pro, excluding VAT. (3)
- 2.2.2 Calculate the percentage decrease in the price of the padel racket, rounded to the nearest whole number. You may use the following formula:

Percentage decrease =
$$\frac{New \ price}{Old \ price} \times 100$$
 (3)

The Nox MM2 Hybrid Pro padel racket is priced at R2 499 in South Africa. A 2.2.3 similar racket is available in the United States for USD 180. A padel player claims that it will be cheaper to purchase the racket in the United States. Verify, showing all calculations, whether the player's statement is valid if the current exchange rate is 1 USD = ZAR 18.19.

(4)[24]

QUESTION 3

3.1 Formula 1 racing is a high-speed motorsport where drivers compete in specially designed single-seater cars on various international tracks. It is also known for its cutting-edge technology, precision driving, and global fan base. The table below shows the 2024 Formula 1 Drivers' Standings, ranking the top drivers in the championship by points earned in each race based on their finishing positions.

(PAPER 1)

TABLE 3: FORMULA 1 DRIVERS' STANDINGS

POSITION	DRIVER	NATIONALITY	CAR	POINTS
1	Max Verstappen	Netherlands	Red Bull Racing	362
2	Lando Norris	United Kingdom	McLaren	315
3	Charles Leclerc	Monaco	Ferrari	291
4	Oscar Piastri	Australia	McLaren	251
5	Carlos Sainznorephy	Spain	Ferrari	240
6	Lewis Hamilton	United Kingdom	Mercedes	189
7	George Russell	United Kingdom	Mercedes	177
8	Sergio Pérez	Mexico	Red Bull Racing	150
9	Fernando Alonso	Spain	Aston Martin	62
10	Nico Hulkenberg	Germany	Haas Ferrari	A

[Adapted from www.formula1.com]

PLEASE DETACH THIS ADDENDUM WITH 4 PAGES.

JUNE EXAMINATION Stanmoreph GRADE 12 2025

MATHEMATICAL LITERACY

(PAPER 1)

ADDENDUM

4 pages with 3 annexures

ANNEXURE A

QUESTION 2.1

TABLE 2: 2024/2025 TAX YEAR (1 March 2024 – 28 February 2025)

E	ANNUAL TAXABLE INCOME (R)	RATES OF TAX (R)
A	1 – 237 100	18% of taxable income
В	237 101 – 370 500	42 678 + 26% of taxable income above 237 100
С	370 501 – 512 800	77 362 + 31% of taxable income above 370 500
D	512 801 - 673 000	121 475 + 36% of taxable income above 512 800
E	673 001 – 857 900	179 147 + 39% of taxable income above 673 000
F	857 901 – 1 817 000	251 258 + 41% of taxable income above 857 900
G	1 817 001 and above	644 489 + 45% of taxable income above 1 817 000

TAY DED ATE	TAX YEAR	
TAX REBATE	2024/2025	
Primary	R 17 235	
Secondary (65 years and older)	R 9 444	
Tertiary (75 years and older)	R 3 145	

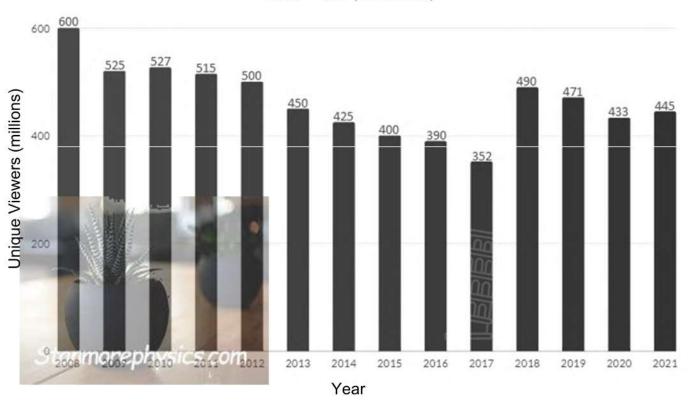
Medical Monthly Tax Credit	
For the tax payer and one dependant	R 728
For each additional dependant	R 246

[Adapted from www.sars.gov.za]

tanmorephysics.com

MATHEMATICAL LITERACY (PAPER 1) ADDENDUM

GR12 0625


3

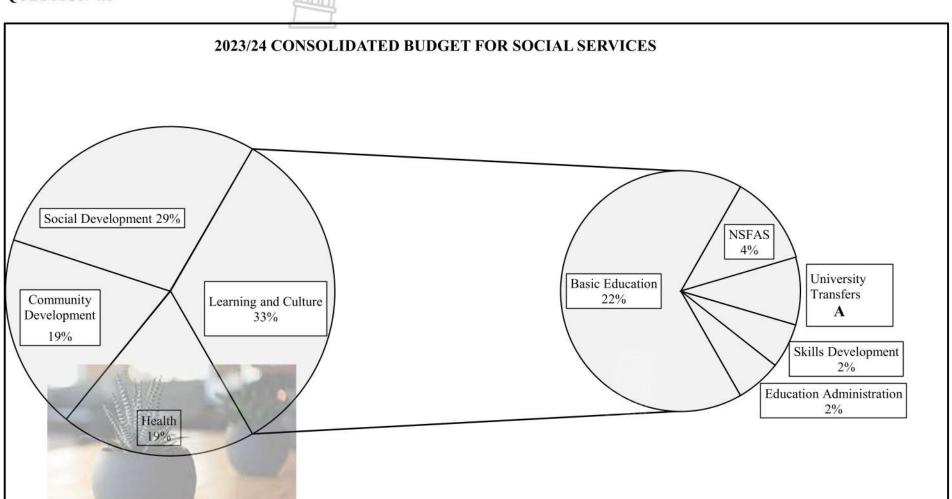
ANNEXURE B

QUESTION 3.2

FORMULA 1s UNIQUE VIEWERSHIP OVER THE YEARS

2008 – 2021 (in millions)

[Source: reddit.com]



stanmorephysics.com

4

ANNEXURE C

QUESTION 4.1

Downloaded from Stanmarephysics Camuliteracy (PAPER 1) GR12 0625

Study the information in TABLE 3 and answer the questions that follow. 3.1.1 Identify the driver with the second-highest points. (2) 3.1.2 Is the data represented in the points column continuous or discrete? Explain your answer. (4)3.1.3 Calculate the value of A, if the range of the points is 331. (3) 3.1.4 Determine the interquartile range for the number of points scored by the Formula 1 drivers. (6)3.1.5 Determine the probability, as a decimal, of selecting a Formula 1 driver who drives a Ferrari. (3) 3.2 Unique viewership is a benchmark used in media and broadcasting to count the total number of distinct individuals who watched at least one race during a season. Each person is only counted once, regardless of how many races they watched or how frequently they tuned in. Use ANNEXURE B to answer the following questions. 3.2.1 Describe the general trend in unique viewership from 2014 to 2017. (2)3.2.2 Determine the mean of the unique number of viewers for Formula 1 racing from 2008 to 2021. (3) 3.2.3 How might a decrease in unique viewership affect sponsors of Formula 1? (2)[25]

GR12 0625

8

QUESTION 4

4.1 The Minister of Finance is responsible for presenting the government's budget in February of each year.

ANNEXURE C shows the consolidated government expenditure on Social Services for the 2023/24 financial year. A total of R1,35 trillion was allocated to Social Services for this year.

1 trillion = 1 000 billion

1 000 000 000 000 = 1 trillion

Study ANNEXURE C and answer the following questions.

- 4.1.1 Calculate the value of A, the percentage budgeted for University Transfers. (3)
- 4.1.2 Calculate the amount of money budgeted for Basic Education. Write down the answer in billions. (3)
- If the amount budgeted for Social Services makes up 60,3% of the total 4.1.3 government expenditure for the 2023/24 financial year, calculate the total government expenditure in trillions. (4)
- 4.1.4 Discuss TWO ways in which government generates funds/revenue to cover its budget. (4)

GR12 0625

9

Municipalities across South Africa publish their electricity tariffs annually in compliance with 4.2 regulations.

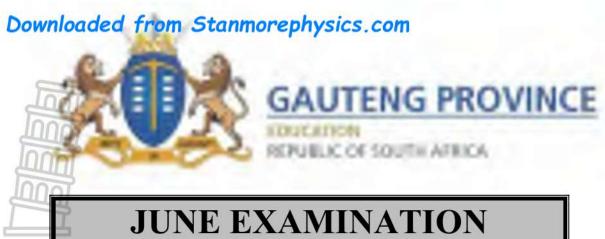
Sam works from home most of the time and recently discovered that his electricity bill has increased significantly.

TABLE 4 below shows information regarding electricity tariffs published by the City of Tshwane for the 2022/23 and 2023/24 financial years.

TABLE 4: CITY OF TSHWANE ELECTRICITY TARIFFS FOR 2022–2024 FINANCIAL YEARS.

BLOCK	2022/23 TARIFF (R/KWH)	2023/24 TARIFF (C/KWH)
1 (0 to 100 kWh)	2, 0970	270,33
2 (101 to 400 kWh)	2, 4541	316,37
3 (401 to 650 kWh) more of	ysics.co2, 6738	344,67
4 (more than 650 kWh)	2, 8824	371,58
	NB: All tariffs ex	clude 15% VAT.

[Adapted from www.gpwonline.co.za]


Use the information above and answer the questions that follow.

- 4.2.1 Define the term tariff in this context. (2) 4.2.2 Determine the number of kWh allocated in block 3.
- 4.2.3 Calculate the tariff, including VAT, for block 1 for 2023/24 in rands. (3)
- In June 2024 Sam spent R1 941,42, including VAT, on electricity. Calculate the 4.2.4 number of units (kWh) of electricity he used for the month. (8)
- 4.2.5 Suggest TWO ways in which Sam can reduce his electricity usage. (2)[31]

(2)

TOTAL: 100

JUNE EXAMINATION GRADE 12

2025

MARKING GUIDELINES

MATHEMATICAL LITERACY

(PAPER 1)

SYMBOL	EXPLANATION
M	Method
MA	Method with accuracy
MCA	Method with consistent accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT	Reading from a table/graph/document/diagram
SF	Correct substitution in a formula
0	Opinion/Explanation
P	Penalty e.g. for no unit, incorrect rounding-off, etc.
NPR	No penalty for correct rounding
NPU	No penalty for omitting unit, but wrong unit is penalised
AO	Answer only

KEY TO SUBJECT SYMBOLS:

M = Measurement; MP = Maps, Plan and other representations; P = Probability

6 pages

	TON 1 [20 marks]	ANSWER ONLY		1
Q	Explanation	Awarding of marks	Marks	T&L
1.1.1*	Income is the amount of money that the school receives. ✓✓	2A Correct Definition.	(2)	F 1
1.1.2	Seven million, seven hundred and twenty-five thousand two hundred rand	2A amount in words. NPU	(2)	F 1
1.1.3	$A = 664 - 605 \checkmark$ = 59 \checkmark OR $A = R885 000 \div R15 000 \checkmark$ = 59 \checkmark	1MA subtracting correct values 1 A simplification OR 1MA Dividing correct values 1 A simplification	(2)	F 1
	Stanmorephysics.com			
1.1.4	Difference = R8 979 550 − R8 180 936 = R798 614 ✓	1MA subtracting correct values 1A answer	(2)	F 1
1.1.5	Tuckshop rental ✓✓	2RT correct income type Accept Tuckshop	(2)	F 1
1.1.6	Monthly fees = R15 000 ÷ 12 ✓ = R 1250 ✓	1MA dividing correct values by 12 1A answer	(2)	F 1
1.2.1	Numerical ✓✓	2A choosing correct data classification	(2)	DH 1
1.2.2	Modal height = 1,59 m ✓✓	2RT correct answer (Accept 159) NPU	(2)	DH1
1.2.3*	159 159 159 158 156 150 149 146 144 144 135 🗸	2RT correct order (accept height in meters)	(2)	DH 1
1.2.4	morephysics.com	2 A correct median	(2)	DH 1

Downloaded from Stanmorephysics MATHEMATICAL LITERACY MARKING GUIDELINES (PAPER 1) GR12 0625

Q	ION 2 [24 marks] Explanation	Awarding of marks	Marks	T&L
2.1.1	South African Revenue Service. ✓ ✓ A	2A explanation	(2)	F1
5.1.1	South African Revenue Service.	2A explanation	(2)	1.1
212		124 12	0	
2.1.2	Gross Annual income	1M monthly × 12		F2
4	$R45\ 000 \times 12 = R540\ 000\checkmark$	& answer		F3
		1364 1 1 7 7 704 6		
	Pension Fund:	1MA calculate 7,5% of		
	7,5% × R540 000 = R40 500 ✓	salary.		
	Taxable Income:	(accept 45 $000 \times 7,5\% =$		
	= Annual Gross Income - Pension	R3375.		
	Contribution	$R3375 \times 12 = 40500\checkmark$		
	= R540 000 − R40 500 ✓			
	= R499 500 ✓	1M subtraction of pension	(4)	
		fund	7. 2	
		1CA simplification		
2.1.3*	Medical Tax Rebate tanmore physics.com			F3
	= 728 + (246 × 2) ✓	1A answer when × 246 by 2		-
	= R1 220	1M answer multiplied by 12		
	= R1 220 × 12 ✓	and the control of the		
	= R14 640 ✓	1CA answer	(3)	
	1111010	TOTT WILD WOT	(5)	
2.1.4		CA 2.1.2 and 2.1.3		F3
	=77 362 + 31% [(499 500 − 370 500)] ✓	1SF substitution into		
	77 302 - 3170 [(133 300 370 300)]	formula		
	= 117 352 ✓	1S simplification		
	= 117 352 − 17 235 ✓ − 14 640 ✓	2 subtracting rebates/		
	117 352 17 233 11 010	medical credit		
	= R85 477 ✓	1CA simplification	(5)	
	100 177	Terr simplification	(3)	
2.2.1 *	= 2 499 ✓ ÷ 1,15 ✓	1RT correct value		F2
	= 2 173,04 ✓	1M calculating excl VAT		1.2
	OR	1S Simplification		
	200,000	15 Simpification		
	$=2499\checkmark\times\frac{15}{115}\checkmark$	1RT correct value		
	= 325,96	1M calculating VAT		
	= 2499 - 325,96	1S simplification		
	= 2 173,04 ✓	13 simplification	(3)	
S IS OKE	0.000			90000000
2.2.2	$= \frac{2499 - 5000}{5000} \checkmark \times 100 \checkmark MA$	2MA substitution into		F2
	= -50,02% decrease ✓A	formula.		
	Accept 50%	1A answer in percentage		
	Accept 5070	NPR	006970	
	400000000000000000000000000000000000000	AO	(3)	
2.2.3	180 ✓ × 18,19 ✓	1RT correct amount in		5= 8
	= R3 274,20 ✓	dollars		F4
	Cheaper to purchase the racket in South	1MA multiply by correct		
	Africa. ✓	exchange rate	(4)	

or 2499 ÷ 18.19 ✓= \$137.38 ✓ \$137.38 < \$180 ✓ Cheaper to purchase the racket in SolAfrica. ✓	1S simplification 10 opinion outh	
---	-----------------------------------	--

Q	ION 3 [25 marks] Explanation	Awarding of marks	Marks	T&L
3.1.1 *	Lando Norris 🗸 🗸	2RT corerct driver	(2)	DH 1
5.1.1	Edito Portis	Ziti cololet diivei	(2)	DITT
3.1.2 *	The data is discrete ✓ ✓ because points	2A type of data	-	
3.1.2	are counted in whole numbers, and	20 explanation		DH 2
4	fractional points are not possible in this	20 explanation		DH 2
	context. \checkmark		(4)	
	Context. V		(4)	
3.1.3	Panga = May Value - Min yalue	1A concent of rouge	8	DH 3
3.1.3	Range = Max Value − Min value ✓	1A concept of range		рп 3
	331 = 362 - A	1M Changing subject of the		
	A = 362 - 331	formula		
	A - 302 - 331 V	Torritura		
	A = 31 ✓	1CA answer	(2)	
	A-31 •	TCA aliswei	(3)	
3.1.4	Arrange values in ascending order:			DH 3
211.1	31, 62, 150, 177, 189, 240, 251, 291, 315,	1A arranging values in		2113
	362 ✓	ascending order		
	CONTROL CONTRO	ascending order		
	$Median = \frac{189 + 240}{2}$			
	= 214,5	1RT answer Q1		
	<i>Q1</i> = 150 ✓	1RT answer Q1 1RT answer Q3		
	<i>Q3</i> = 291 ✓	TRT allswer Q3		
	$IQR = Q3 - Q1 \checkmark$	1MA concept of IQR		
	= 291 − 150✓	1SF Substitution in formula		
		1CA answer		
	= 141 ✓	TCA answer	(6)	
3.1.5	$=\frac{3}{10}$	1A numerator		P3
	= 0,3 ✓	1A denominator		
	-0,5 •	1CA simplification		
		Accept $\frac{2}{10}$		
		= 0.2		
		AO	(3)	
		AO	(3)	
3.2.1	From 2014 to 2017, the unique viewership	2O decrease/decline		L4
	decreased. ✓ ✓		(2)	- Strate (1997)
3.2.2	600 + 525 + 527 + 515 + 500 + 450 + 425 +	1A adding correct values		DH 3
: 58 5 - 5 5 5 5 5	400 + 390 + 352 + 490 + 471 + 433 + 445	1MA dividing by 14		
	= 465,93			
	= 465,93 = 465 ✓	1D Daymdin a		
	-403 V	1R Rounding	(2)	
		Accept 466	(3)	
3.2.3	A degrage in unique viewership may	20 avalanation	-	L4
3.4.3	A decrease in unique viewership may	20 explanation		L4
	result in lower brand exposure for	Accept any reasonable		
	sponsors, potentially leading to reduced	explanation.		
	sponsorship deals and investment in		(2)	
	Formula 1. ✓ ✓		(2)	

Q	TON 4 [31 marks] Explanation	Awarding of marks	Marks	T&L
4.1.1 J	A = $33\% - (22\% + 4\% + 2\% + 2\%)$ = 3% \checkmark OR $33 \checkmark - 30\checkmark$	1RT using 33% in the calculation 1MA subtracting values 1CA answer		DH 2
	= 3 V	NPU	(3)	
4.1.2	Budgeted amount = 22% × R1, 35 trillion = R0, 297 trillion ✓ = R297 000 000 000 ✓ OR R297 Billion	1MA multiply by 22% 1S answer in trillions 1A amount in billions		DH 2
	Budgeted amount = 22% ✓ × R1 350 000 000 000 ✓ = R297 000 000 000 ✓	1MA multiply by 22% 1S answer in trillions 1A amount in billions	(3)	
4.1.3	Total government expenditure = R1,35 trillion ÷ 60,3% ✓ ✓ = R2,23880597 ✓ = R2,2388 trillion ✓	2MA dividing correct values 1CA answer 1R rounding off correctly (Accept 2.24 Trillion or 2.239 Trillion)	(4)	DH 3
4.1.4	Income tax – deducting a certain portion of money from the citizens' salaries/wages/earnings ✓✓ Charging VAT – consumption tax levied on the consumption of goods and services ✓✓ Import duty – tax levied on imported goods	20 type of tax and explanation 20 type of tax and explanation Accept any TWO revenue sources NB: Must provide explanation for second mark.	(4)	DH 4
4.2.1	Tariff – Cost of electricity per unit/kWh	2A definition	(2)	F 1
4.2.2	Number of units = 650 – 400 kWh ✓ = 250 kWh ✓	1A subtracting 400 kWh 1CA answer	(2)	F 2
4.2.3	Tariff including VAT = $270,33c \times 1,15$ = $310,8795c \checkmark$ = $R3,11 \checkmark$	1MA increasing correct tariff by 15% 1CA tariff incl. VAT in cents 1CA answer in rands	(3)	F 2

NPR	
3	
3	NPR

Q	Explanation	Awarding of marks	Marks	T & L	
4.2.4	Amount excl. $VAT = R1 941, 42 \div 1,15$ = R1 688,19	1A correct value excluding VAT		F 3	
	Block $1 = R2,7033 \times 100 = R270,33\sqrt{n}$	MA correct answer block 1			
	Block $2 = R3,1637 \times 300 = R949,11\checkmark$	MA correct answer block 2			
	Amount spent in block 3	1MCA calculating block 3			
	$= R1 688,19 - (R270,33 + R949,11)$ $= R468,75 \checkmark A$	amount 1A block 3 amount			
	Number of units in block 3	TA block 3 amount			
	= R468,75 ÷ R3,4467 ✓ = 135, 9996518 kWh ✓	1 calculating number of units in block 3			
	Total number of kWh = $100 + 300 + 135,9996518$	1CA number of units in block			
	= 535, 999	1A answer			
	= 536 kWh ✓	NPR			
		(535.999award full marks without rounding)	(8)		
4.2.5	Switch off his geyser when not in use. ✓	10 first suggestion		F 4	
	• Use a gas stove to cook.	10 second suggestion			
	• Invest in a solar system.	NB: Accept any reasonable			
	• Invest in energy efficient appliances. ✓	suggestion	(2)		
			[31]		

TOTAL: 100

Natas	LONT	
Notes		
1.1.2	If the word school is omitted	1/2
1.2.3	If one value omitted	1/2
	If more than one value omitted	Zero
2.1.3	If 246 not multiplied by 2	2/3
2.2.1	= 5000 \(\display \display 1,15 \(\display \)	3/3
	= 4347.83 ✓	
	Or	
	$=5\ 000\checkmark\times\frac{15}{115}\checkmark$	3/3
	= 652.17	
	= 5 000 - 652.17	
	= 4 347.83 √	
3.1.1	If answer is 315 (points)	Zero
4.2.1	Accept Unit R/kWh or cents/kWh	2/2

TAXONOMY LEVEL GRID

TOTAL: 100

JUNE EXAMINATION

TASK: _____ 2025 GRADE: ____ 12

Question Number	TL 1	TL 2	TL3	TL4
1.1.1	2F			
1.1.2	2F			
1.1.3	2F			
1.1.4	2F			
1.1.5	2F	April 1		
1.1.6	2F			
1.2.1	2F			
1.2.2	2F			
1.2.3	2F			
1.2.4	2F			
Stani	norephysics.c	o m		
2.1.1	2F	-	477	
2.1.2	1	1	4F	
2.1.3			3F	
2.1.4		2.5	5F	
2.2.1		3F	-	
2.2.2	1	2F		AT.
2.2.3	2D			4F
3.1.1 3.1.2	21)	4D	-	
3.1.3	2	40	3D	
3.1.4			6D	
3.1.5		1	3W	
			3 W	25
3.2.1			45	2F
3.2.2		ļ	3D	
3.2.3				2F
4.1.1		3D		
4.1.2		3D		
4.1.3		4D		
4.1.4				4D
4.2.1	2F			
4.2.2	2F			
4.2.3	3F			
1.2.3				
4.2.4			8F	
4.2.5			01	3F
	21	10	2.5	
Total	31	19	35	15
%			-	
100	31	19	35	15

100		2		
	Inol			
	2			
	lnnn			

Finance 65 %
Data handling 32 %
Probability 3%

