

EDUCATION REPUBLIC OF SOUTH AFRICA

CURRICULUM GRADE 10-12 DIRECTORATE NCS (CAPS)

LIFE SCIENCES

TEACHER SUPPORT DOCUMENT

GRADE 12

WINTER CLASSES

2025

KZN Lie and a from Stanmonephysics.com JIT Term 1 and 2

CONTENTS

No.	TOPIC	PAGE NO.
1.	DNA Code of life	3 - 10
2.	Meiosis	11 - 14
3.	Reproductive Strategies and Human Reproduction	15 - 33
4	Genetics Stanmorephysics.com	34 – 51
5	Human Response to the environment	52 - 68
6	Endocrine system and Homeostasis	69 - 78

KZN Lie Contracted from Stanmonephysics.com JIT Term 1 and 2

Question

Topic: DNA Code of Life

1	DESCRIPTION	TERM
1.1	A tangled network of DNA and protein located within the nucleus	Chromatin network√
1.2	The bonds that hold the two strands of a DNA molecule together.	Hydrogen bonds√
1.3	The sugar found in DNA	Deoxyribose sugar√
1.4	The analysis of DNA samples to identify individuals that may be related	DNA Profiling√
1.5	The process whereby DNA makes an exact copy of itself	DNA replication√
1.6	The monomers of nucleic acids	Nucleotides√
1.7	The natural shape of a DNA molecule	Double helix√
1.8	Sections of DNA that carry hereditary information	Gene√
1.9	The sugar that forms part of a nucleotide in RNA	Ribose√
1.10	The process whereby mRNA is formed from DNA	Transcription√
1.11	Base triplets found on mRNA	Codons√
1.12	The cell organelle to which mRNA attaches during protein synthesis	Ribosome√
1.13	The process of arranging amino acids according to the sequence of bases on mRNA	Translation√
1.14	The organelle in a cell where translation occurs	Ribosome√
1.15	The triplet of bases found on a tRNA molecule	Anticodon√
1.16	The type of RNA containing anticodons	tRNA√
1.17	Bonds that join amino acids together	Peptide bond√
		(17 X 1) (17)

2.1	DNA/Deoxyribo-nucleic acid√	(1)
2.2	(a) Hydrogen bond√	(1)
	(b) Phosphate√	(1)
2.3	Ribose√	(1)
2.4	(a) 1√	(1)
(b)	(b) 1√	(1)
		(6)

	Canalog ded from Stannwateplaysics.com JIT Term 1 and 2	March	202
uestic	on 3		
3.1	mRNA/messenger RNA		(1)
3.2	-The DNA helix unwinds√ and		(')
0.2	-(the double strand) unzips / (weak) hydrogen bonds break		
	-to form two separate strands√		
1	-one strand is used as a template		
ŕ	-to form RNA√		
1	-using free RNA nucleotide ✓ from the nucleoplasm		
	-the mRNA is complementary to the DNA/A complements U		
	-G complements C	Any	(6)
		-	
3.3	-Molecule X (DNA) is double stranded \checkmark (double helix)		
	-Molecule Y (RNA) is single stranded ✓		
	OR		
	- Molecule X (DNA) has H-bonds√		
	- Molecule Y (RNA) has no H-bonds√		
	OR		
	- Molecule X (DNA) contains deoxyribose√ sugar		
	- Molecule Y (RNA) contain ribose√sugar		
	OR		
	- Molecule X (DNA) has thymine√/T as a nitrogenous base		
	 Molecule Y (RNA) has uracil √/U as a nitrogenous base 		
	OR		
	Molecule X (DNA) is longer√		
	- Molecule Y (RNA) is shorter√		
	(Mark first ONE only)	Any (1x2)	(2)
3.4	TAC✓		(1)
3.5	-Arginine ✓		
	-Proline ✓		(2)
			(1)

4.1	(a) Y √	(1)
	(b) X √	(1)
4.2	4√	(1)
4.3	A C T G (Must be in the correct order) \checkmark	(1)
4.4	(DNA) replication√	
	Transcription (Protein synthesis) ✓	(2)
		(6)

Quest	ion 5	
5.1	(a) W- Nucleotide \checkmark U – DNA \checkmark	(2)
	(b) X - Phosphate ✓ / phosphate ions	
	Y – Deoxyribose ✓	(2)
	(c) Hydrogen bond√	(1)
É	(d) V – Adenine√	(1)
5.2	Nucleus√	(1)
5.3	Interphase ✓	(1) (8)
Quest	ion 6	
6.1	(a) DNA replication	(1)
0.1	(b) (Weak) hydrogen bond√	(1)
6.2	(a) Nucleotide√	(1)
0.2	(b) Thymine√	(1)
6.3	Interphase /	(1)
6.4	Nucleus√	(1)
0.4	Nucleus.	(6)
Quest	ion 7	
7.1	Ribosome√	(1)
7.2	- Brings the required/specific amino acid√	
	- according to mRNA //codon to the ribosome	(2)
7.3	(a) CCU√	(1)
	(b) GTA√√	(2)
7.4	-A mutation occurred√ -that changed the sequence of nitrogenous bases on DNA from -GGG to GAA√/when A replaced by G -mRNA codon changed from CCC to CUU√/when U replaced C -causing tRNA to bring a different amino acid√	
	-oddoing trank to bring a unerent annuo aciuv	

KZN Lie Contracted from Stanmonephysics.com JIT Term 1 and 2

Any (3)

March 2025

(9)

Questi	on 8	
8.1	Heila ✓ and Leo ✓	(2)
8.2	- All the (DNA) bands from Heila and Leo ✓	
1	- match with the DNA of the mother and father √	
1	OR	
T	 none of the (DNA) bands from Priya ✓ 	
4	- match with the (DNA) bands of the mother and the father \checkmark	(2)
8.3	- Tracing missing persons√	
	- Identification of genetic disorder's	
	 Identification of suspects in a crime ✓ 	
	- matching tissues for organ transplants ✓	
	- Identifying dead persons	(3)
	(Mark first THREE only)	
		(7)
Questi	on 9 Stanmorephysics.com	
9.1	DNA Profiling√	(1)
9.2	Jennie√	(1)
9.3	-Jennie's DNA profile√ /bands	
	matches DNA profile/ bands of the sample \checkmark from the crime scene	(2)
		(-)
9.4	-Proof of paternity√	(1)
	- Tracing missing person√	()
	- Identification of genetic disorders√	
	- Establishing family relationships√	
	- Matching tissues for organ transplants√	
	- identifying dead persons $$ animals.	
	aonarying acad percents / animate.	
9.5	- Samples containing DNA can be planted√/person was framed	
0.0	- Human error√ during DNA profiling process	
	- Costly procedure√	
	- Invasion of privacy√	
		(2)
	(Mark first TWO only) any 2	(2)
		(7)
Questi	on 10	
Questio		
10.1	Mary√√	(2)
		(2)
10.2	There are no matching bands // bars/ patter/ DNA profile	
	with both parents√ and Mary	(2)
		(4)

March 2025

KZN Lie and consider from Stanmone Aysics.com JIT Term 1 and 2

KZN L	JIT Term 1 and 2	cs.com	March 2025
Questi	on 11		
11.1	Number of people√ found guilty/ convicted		(1)
11.2	44 - 25√ = 19√		(2)
11.3	 More criminals are found guilty when DN investigation DNA found at crime scene can be compared to the DNA database making it easier to identify suspects in the crime 		
	(Mark first FOUR only)	any 4	(4)
			(7)

- 12.1 Nucleus √ (Nucleoplasm)
 12.2 (a) Deoxyribose √
 - (b) Uracil √/U
- 12.3

Transcription	Stanmorephysic	DNA replication
Only one strand a template ✓	acts as a	Both strands acts as a template ✓
(Free) RNA nucle complementary		(Free) DNA nucleotides are complementary ✓
Adenine compler uracil / (A comple U) ✓		Adenine complements with thymine / (a complements with T) ✓
Only a short sect used √	ion of DNA is	The whole DNA molecule is used
DNA unwinds an partially √	d unzips	DNA unwinds and unzips completely ✓
Mark first TWO	only)	1 mark for table + (Any 2 x

(8)

(1) (1)

(1)

Questio	on 13			
13.1	(a)	Amino acids ✓		(1)
	(b)	mRNA ✓		(1)
13.2	(a)	TAC ✓✓		(2)
	(b)	GUA ✓		(1)
13.3	Trar	slation √*		
	- Ea	ch RNA carries a specific amino acid 🗸	¢	
	- wh	en the anticodon on tRNA ✓ / GUA		
	- ma	tches the codon on mRNA √/ CAU		
	- the	n tRNA brings the required amino acid	to the ribosome \checkmark	
	- am	ino acids become attached to each oth	er by the peptide bonds \checkmark	
	- to 1	form the required protein \checkmark	1* compulsory + 6	(7)
				(12)

1.10.000	1001		
14.1	Transcription√		(1)
14.2	mRNA√		(1)
14.3	IDDAT	carry hereditary information	
	-contains coded information		(2)
14.4	A (DNA)	B (RNA)	
4	Double strand√ / Paired	Single strand√ Unpaired	
	bases√	bases√	
	Double helix/ helical	Non- helical√	
	Thymine √	Uracil√	
14.5	 unzips √/ weak hydrogen to form two separate strand one strand acts as a temple to form mRNA √ using free nucleotides from the mRNA is complementate the copied message for pro- Onto mRNA√ This will result in different to 	bonds break ds √cs.com ate ✓ n the nucleoplasm ✓ ary to the DNA ✓ otein synthesis is thus copied (Any RNA molecules ✓	(5) (6)
Questi	 bringing different amino ac leading to the formation of 		(3) (18)
Queen			
15.1	 changed to GAU ✓ Both these codons code for 	or the same amino acids ✓/ Aspartic ac ffect on the protein formed ✓	id (4) (4)
Questi	on 16		
16.1	Gene √ mutation		(1)
16.2		ce (of nitrogenous bases) from CCG	(1)
16.3	 (a) 5 √/Five (b) UAU √ 		(1) (1)

March 2025

KZN Lie Condended from Stanmoneplaysics.com JIT Term 1 and 2

Question 14

(c) -The codon CCG changed to CUG ✓ / 4th codon has changed
 - The anticodon/ tRNA sequence changed ✓

	- The amino acids proline ✓ - Was replaced by Leucine ✓		
	- This resulted in a different protein √/no protein being formed		(4) (8)
Questi	on 17		
17.1	The presence of thymine √ in the original sequence		(1)
17.2	489 🗸		(2)
17.3	 A form of a gene√ that is carried on chromosome 1 to 22√ and is always expressed in the phenotype√ of an individual 		
	- in a heterozygous ✓ condition	Any	(3)
17.4	 (a) - The changed from GAC to GUC ✓ - resulting in amino acid Leu replaced by Gln√ - The other codon changed from AUA to AGA√ - resulting in amino acid Try replaced by Argu√ - This changed the sequence of amino acids √ 		
	 A different protein formed√ 	Any	(5)
	(b) - Harmful effect√		
	- The blood clot is not broken down		
	 Leading to blockage of arteries √/oxygen and nutrients are not transported to cells. 		
		Any	(3)
		,	(14)
Questi	on 18		
18.1	(a) GAC√		(1)
	(b) ACU√√		(2)
18.2	(Gene) mutation✓		(1)
18.3	- CTC on the DNA changed to CAC✓		
	 Codons (on the mRNA) changed √/GAG changed to GUG Anticodons (on tRNA) changed √/CUC replaced by CAC 		
	which resulted in a different amino $\operatorname{acid} \sqrt{/\operatorname{Val}}$		(4)
18.4	 The cells will not receive enough oxygen ✓ resulting in reduced cellular respiration ✓/ a person lacking energy/ 		(-)
	becoming tired/ anaemia		(2) (10)

KZN Liegowarded	from Stannonephysics.com	
	JIT Term 1 and 2	

Questi	on 19	
19.1	 (a) Transcription√ (b) Translation√ 	(1) (1)
19.2	 (a) Nucleus√ (b) mRNA√ 	(1)
19.3	Chloroplasts√ Mitochondria√	(2)
19.4	 (a) - The double helix DNA unwinds√ and (the double-stranded DNA) unzips√/weak hydrogen bonds break to form two separate strands√ One strand is used as a template√ to form mRNA√ using free (RNA) nucleotides√ from the nucleoplasm The mRNA is complementary to the DNA√/ (A-U, G-C) mRNA now has the coded message for protein synthesis√ (b) - Each tRNA carries an amino acid√ When the anticodon on the tRNA√ matches the codon on the mRNA√ the tRNA brings the (required) amino acid to the ribosome√ Amino acids become attached by peptide bonds√ to form the (required) protein√ 	(7) (6)
19.5	 (a) TCG√ (b) Tyrosine√ Valine√ 	(1) (2)
19.6 19.7	 Gene mutation√ The anticodon will be GGA√/not GAA The last amino acid would be proline instead of leucine√ 	(1)
	resulting in a different protein \checkmark / no protein at all	(3) (26)

KZN Lie Condended from Stanmoneplaysics.com JIT Term 1 and 2

TOPIC: MEIOSIS

Question 1

Give the correct biological term for EACH of the following descriptions. Write only the term next to the question numbers (2.1 to 2.12) in the ANSWER BOOK.

1.1 ¢	None sex chromosomes in humans	Autosomes
1.2	The part of the plant where the male gametes are produced	Anther
1.3	The structure that holds the two chromatids of a chromosome together	Centromere
1.4	The chromosome condition of a cell that has a single set of chromosomes	Haploid
1.5	The phase of meiosis where paired chromosomes are arranged at the equator	Metaphase I
1.6	The division of the cytoplasm of a cell during a cell division	Cytokinesis
1.7	The structure formed by the centrioles during cell division	Spindle fibres
1.8	A genetic disorder caused by having an extra copy of chromosome number 21	Down syndrome
1.9	The failure of chromosome pairs to separate during meiosis	Nondisjunction
1.10	The phase in the cell cycle during which the cell growth occurs to doubles the genetic material	Interphase

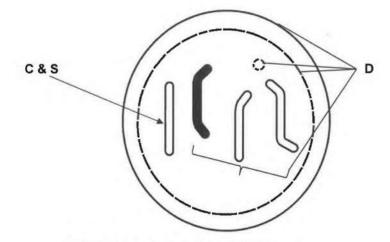
1 x 10 (10)

Question 2

2.1			
	(a)	Centromere✓	(1)
	(b)	Homologous chromosomes√	(1)
	(c)	Spindle fibres / spindle threads ✓	(1)
2.2	Anap	hase II✓	(1)
2.3	2,1,3	$\checkmark\checkmark$	(2)
2.4	In me pairs	etaphase I , the chromosomes arrange at the equator in homologous \checkmark	(2)
	Whe	reas in metaphase II, the chromosomes arrange at the equator singly \checkmark	
			(8)

3.1	Chromosomal ✓ mutation	(1)
3.2	Sperm√	(1)
	(a) 22√	(1)
	(b) 2√	(1)
3.4	XXY 🗸 / XYX	(2)
		(6)

KZN Lie and a from Stanmonephysics.com JIT Term 1 and 2

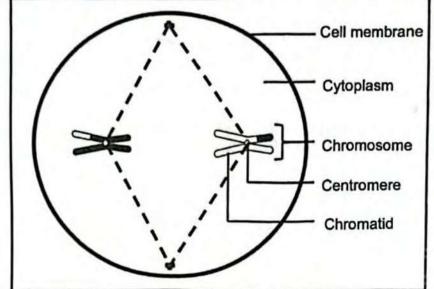

Ques	stion 4	
4.1		
	(a) Crossing over√	(1)
	(b) Prophase I√	(1)
4.2		87 M
	(a) Chiasma√	(1)
	(b) Chromosome√	(1)
4.3	C√ - Centromere√	(2)
		(2)
4.4	TrDn✓	(1)
4.5		
	(a) 4√	(1)
	(b) 8√	(1)
		(9)
		(5)

Question 5

5.1	Cell membrane√	(1)
5.2	Produce spindle fibres√	(1)
5.3	-Some chromatids have a mixture of genetic material ✓ from its homologue -as crossing over ✓ took place during prophase I	(3)
5.4	-A pair of chromosomes with the same structure \checkmark / location of centromere/ length and same sequence of genes \checkmark .	
	-One maternal origin and the other of paternal origin√	(2)
5.5	48√√	(2)

tanmorephysics.com

5.6


Criteria for assessing the drawing

Criteria	Mark
Cell D copied correctly (D)	1
Missing chromosome drawn has a straight shape (C)	1
Missing chromosome is unshaded (S)	1

(3)

(12)

	CLUT	
6.1	Anaphase II	(1)
6.2	 Chromosome pairs separate during Anaphase I ✓/ chromosomes move to Poles. 	
	-A chromosome separates during Anaphase II ✓/ chromatids move to the poles OR	
	- Centromere do not split during Anaphase I√	
- 1	- Centromeres split during Anaphase II ✓	(2)
6.3		(-/
	(a) Centriole √/ Centrosome	(1)
	(b) Spindle fibre	(1)
6.4	- Attaches to the centromere	(.)
1075 F 68	-To pull chromatids / chromosomes towards the (opposite) poles	
	OR	
	-It contracts ✓/ shortens	
	-to pull chromatids / chromosomes towards the (opposite) poles ✓	(2)
6.5	Stanmorephysics.com	
	Diagram showing metaphase II	
	R Cell membrane	

Guidelines for assessing the drawing

NO	Criteria	Codes	Marks
1.	Position: Chromosomes in a single row at the equator	(P)	1
2.	Number: 2 unpaired chromosomes drawn	(N)	1
3.	Shading of chromosomes: 1 shaded chromosome with an unshaded tip, 1 unshaded chromosome tip	(S)	1
4.	Any TWO correct labels (except centriole & spindle fibre)	(L)	2
	Total score	Т	5

(5) **(12)**

Question	hol
I	ากกา

7.1	Karyotype✓	(1)
	Cones✓	(1)
	Gonosome√/ Sex chromosomes	(1)
	-Similar size✓	
	-Same location of centromere ✓	
	-Position a gene ✓ / alleles	
	-Genes coding for the same characteristics ✓	(3)
7.5	46 chromosomes per cell 23 pairs of chromosomes</td <td>(1)</td>	(1)
		(7)
	- 17	
Ques	stion 8	
0.1	Area of the mether (in years	(1)
8.1	Ages of the mother ✓ in years 45√ (years)	(1)
	(Joano)	(1)
8.3	-Likelihood of an egg containing an abnormal chromosome rises	
	significantly as a woman gets older ✓ -Higher chances of abnormal cell division during egg formation ✓	(1)
Q /	-Decide on the sample size per age category√	(1)
0.4	-Decide on the duration of the investigation ✓	
	-Ask the permission to the mothers \checkmark and in hospital \checkmark	
	-Decide on how to record and analyse data√	
	(Mark the first two)	(2)
8.5	-Increase number of hospitals√	(2)
0.0	-Include all races in the research ✓	
	-All ages between 25 and 45√	
	(Mark the first one)	(1)
86	- Same diet√	(1)
0.0	- Same health status✓	
	- Each age group should have the same sample size√	
	(Mark the first one)	(1)
		(1)
8.7	$\frac{1}{1250} x100 \checkmark = 0.08 \checkmark$	(2)
		(4)
8.8	As the age of the mothers increases ✓ the greater the chances of getting the	
	babies with a genetic disorder✓	(2)
		(11)

KZN Lie and a from Stanmonephysics.com JIT Term 1 and 2

扁

TOPIC: REPRODUCTION SOLUTIONS

	DESCRIPTION	TERM
1.1	A reproductive strategy where the young receives nutrients through the placenta	Vivipary√
1.2	The duct that transports semen and urine to the outside of the body	Urethra√
1.3	The structure that serves as a micro-filter during pregnancy	Placenta√
1.4	The part of the male reproductive system which temporarily stores sperm until they mature	Epididymis√
1.5	The fusion of the sperm and egg outside the body	External fertilization√
1.6	The development of the embryo inside an incubated egg that is laid.	Internal fertilization√
1.7	The development of the embryo in the uterus and the young are born alive.	Vivipary√
1.8	The complete development of the embryo inside an egg in the female body.	Ovovivipary√
1.9	The development of the embryo in which very little energy is used and parental care is required.	Altricial✓
1.10	The development of the embryo in which a lot of energy is used and the young are able to move directly after hatching.	Precocial√
1.11	Structure that provides nutrition to the embryo in the amniotic egg	Yolk Sac√
1.12	Fluid filled bag around embryo	Amnion√
1.13	Structure in the sperm cell that contains enzymes used to penetrate the ovum	Acrosome√
1.14	The liquid that surrounds the human embryo	Amniotic fluid√
1.15	A hollow ball of cells into which the fertilised ovum develops	Blastula/blastocyst√
1.16	The lining of the uterus which is richly supplied with blood vessels	Endometrium√
1.17	Coiled tubular structure outside the testis that stores sperms	Epididymis√
1.18	The part of the female reproductive system in which fertilisation takes place	Fallopian tube/Oviduct√
1.19	The name given to the embryo after it reaches 12 weeks	Foetus√
1.20	The hormone produced by the pituitary which controls growth of the Graafian follicle	Follicle Stimulating Hormone√
1.21	Layer within the ovary that is responsible for formation of ova through meiosis	Germinal Epithelium√
1.22	Another name for the period of pregnancy	Gestation√
1.23	The process by which the embryo becomes attached to the uterine wall	Implantation√

KZN Lifessial casded from Stanmonace JIT Term 1 and 2

	JII Term 1 and 2	
1.24	The hormone which converts the ruptured follicle into a corpus luteum	Luteinizing Hormone√
1.25	Type of cell division by which sperms are produced	Meiosis√
1.26	The 28-day reproductive cycle in females involving changes in the ovary and uterus	Menstrual cycle√
1.27	Tearing away of the endometrium lining of the uterine wall, accompanied by the loss of blood	Menstruation√
1.28	The cell division by which the zygote becomes multicellular	Mitosis√
1.29	Production of ova by meiosis	Oogenesis√
1.30	The hormone which starts the preparation of the lining of the uterus for attachment of the fertilised ovum	Oestrogen√
1.31	Process by which an ovum is released from the ovary in humans	Ovulation√
1.32	Gland in the brain that produces FSH and LH	Pituitary/hypophysis√
1.33	Combination of foetal and maternal tissue responsible for gas exchange, nutrition and excretion	Placenta√
1.34	Hormone that maintains pregnancy	Progesterone√
1.35	The stage when sexual maturity is reached in males and females	Puberty√
1.36	Production of spermatozoa by meiosis	Spermatogenesis√
1.37	Hormone responsible for secondary sexual characteristics in males	Testosterone√
1.38	A hollow, rope-like tube which attaches the embryo to the placenta	Umbilical cord√
1.39	The blood vessel that carries nitrogenous waste from the foetus to the placenta	Umbilical artery√
1.40	The blood vessel that carries oxygenated blood from the placenta to the foetus	Umbilical vein√
1.41	The structure where testosterone is produced	Testes√
1.42	Sac-like structure that contains testes	Scrotum√
1.43	A gland that lubricates end of penis	Cowper's gland√
1.44	Common tube for sperm and urine	Urethra√
1.45	A gland that produces alkaline medium of semen	Prostate gland√
1.46	A gland that provides nutrients for the sperms	Seminal vesicle√
1.47	A tube that transfers sperms to the urethra	Vas deferens√
1.48	Finger-like projections that develop from the outer membrane of an embryo after implantation	Chorionic villi
1.49	The fluid that protects the developing foetus against mechanical injury	Amniotic fluid

KZN Litesciences ded from Stanmonace playsics.com JIT Term 1 and 2

1.50	The organelles found in large quantities in the neck region of a sperm cell	Mitochondria√
1.51	The type of development in birds in which the young is born fully developed and able to move and feed itself	Precocial√ development
1.52.	The structure in the sperm that contains enzymes to dissolve the outer layer of the ovum	Acrosome√
1.53	A blood vessel that transports carbon dioxide from the foetus to the placenta	Umbilical artery√
		(53x 1) (53)

-		
2.1	Both A and B 🗸 🖌	
2.2	B only ✓ ✓	
2.3	B only VV	
2.4	A only√√	
2.5	None√√	
2.6	A only 🗸 🗸	
2.7	B only ✓✓	
2.8	A only 🗸 🗸	
2.9	A only 🗸 🗸	
2.10	B only ✓✓	
2.11	B only ✓✓	
2.12	Both A and B $\checkmark \checkmark$	
2.13	None 🗸 🗸	
2.14	None 🗸 🗸	
2.15	Both A and B $\checkmark \checkmark$	
2.16	B only ✓✓	
2.17	None 🗸 🗸	
2.18	B only ✓✓	
2.19	None√√	
2.20	Both and $B \checkmark \checkmark$	
2.21	B only√√	
		(21 x 2) (42)

(7)

Question 3 3.1 External ✓ fertilisation (1) 3.2 -The eggs will dry out ✓ - because they have no shells \checkmark are not amniotic eggs/ have no amnion (2) - The male and the female bodies are in close contact \checkmark 3.3 - so that sperms can be released directly onto the ova \checkmark OR -Many/ up to 6000 ova are released √ -since fertilisation is external ✓ (Mark the first ONE only) (2) 3.4 - The male and the female bodies are in close contact√ - so that sperms can be released directly onto the ova \checkmark Stanmorephysics.com -Many/ up to 6000 ova are released ✓ -since fertilisation is external \checkmark (Mark the first ONE only) (2)

4.1	(a) They lay eggs√	
	(Mark first ONE only)	(1)
	(b) - The eggs are protected ✓ /incubated by the parents	
	 The young chicks are fed by the parents√ /display parental care 	
	(Mark first ONE only) Any	(1)
4.2	 It increases the chance of fertilisation ✓ /gametes are in close contact 	
	 Gametes are protected from predation ✓ /desiccation /environmental 	
	factors	
	- Water is not needed√	
	- Fewer gametes are needed√	
	(Mark first TWO only) Any	(2)
4.3	- Eyes are closed v when they hatch	. ,
	- Bodies do not have (down) feathers√	
	- Unable to move ✓ directly after hatching	
	- Dependent on parents for food / /protection Any	
	(Mark first TWO only)	(2)
4.4	- The chicks are not fully developed when they hatched \checkmark since	()
	- the eggs have less yolk ✓ /there is high degree of parental care	(2)
		(8)
		(-)

(7)

Question 5

- LON
- The (amniotic) egg is retained inside the mother's body ✓*
- to protect the embryo from predators \checkmark
- The allantois ✓ protects the embryo
- by removing waste products√
- The embryo is protected from shock ✓ /sudden changes in temperature /dehydration by the
 - Chorion√
 - Amnion√
 - Amniotic fluid√ inside the amniotic membrane
 - Shell ✓ /outer covering
 - Air pocket√

Compulsory 1* + Any 4

- Nourishment (N)
 - The embryo receives nutrients
 - from the egg yolk \checkmark in the yolk sac
 - and from the albumen \checkmark

6.1	Internal fertilisation ✓			(1)
6.2	Internal fertilisation ✓			
	increases the chances of fertilisation \checkmark			
	Ovovivipary √ / eggs retained inside the f	female's body	/	
	where they are protected√			
	(Mark first TWO only)	Any	(2 x 2)	(4)

- 6.3 -To increase the chances of fertilisation √/ the survival of the eggs/ number of offspring
- As eggs may be lost to predators //environmental factors etc. - Since there is external fertilisation√ Any 1 (1) (7) **Question 7** External√ fertilisation 7.1 (1) 7.2 - Their embryos develop inside eggs √ that are (2) - outside the body of the female√ 7.3 - The males release semen all around the female \checkmark (2) - A large number of gametes/ ova are produced√ 7.4 Graph X√ (1)7.5 - They will have a higher number of surviving embryos $\sqrt{\text{/eggs/offspring}}$ - Because their fertilised eggs are attached to the vegetation ✓ - where they are protected from predators \checkmark /washing away (3) (9)

(5)

(11)

Question	8

8.1 8.2	External ✓ fertilisation -To increase the chances of fertilisation ✓ -since the gametes may be lost/✓ not reach one another due to predation ✓ /water currents	(1))
c	OR -To produce more zygotes ✓/offspring -since many will be lost ✓	(3))
8.3	-because they are preyed on \checkmark /washed away/dry out The embryos develop inside an egg, outside the female's body \checkmark	(1))

Question 9

9.1	(a) Vas deferens√/sperm duct		(1)
	(b) Scrotum√		(1)
	(c) Penis√		(1)
9.2	D√ Epididymis√		(2)
	G√Urethra		(2)
	E√ Testis√		(2)
9.3	A√		
	B√		
	E√	Any 2x1	(2)
		•	

(Mark first TWO only)

Question 10

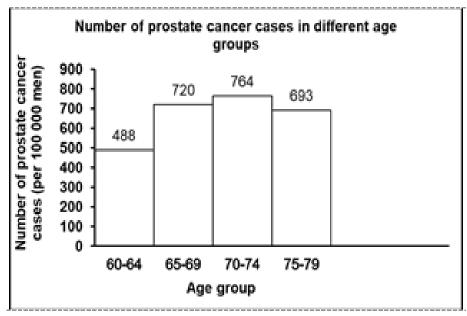
10.1	a)	C√ - Urethra√ OR D√ - Penis√	(2)
	b) c)	B√ -Epididymis√ E√ -Testes√	(2) (2) (2)
10.2	a) b)	Prostate gland√ Spermatogenesis√	(1) (1) (8)

QUESTION 11

11.1	Vas deferens ✓		(1)
11.2	 Sperm storage√ Sperm maturation √ 	Any 1 x1	
	(Mark first ONE only)	,	(1)

11.3	 The semen will not contain sperm ✓ because they are not transported√ 	
	 but will contain all other secretions of the accessory glands / examples thereof 	
	the vasectomy occurred before ✓ the accessory glands	(3)
11.4	 The temperature of the testes inside the body will be too high ✓ No/abnormal sperm will be produced ✓ The man will be infertile ✓/not able to reproduce 	(-)
11.5	 Under the influence of testosterone√ 	(3)
11.5	 onder the initialize of testosterone diploid cells√/germinal epithelial cells in the seminiferous tubules√/testes undergo meiosis√ 	
	 to form haploid sperm cells √ 	(4)
		(4) (12)
		()
Quest	ion 12	
12.1	Seminal vesicle√	(1)
	Transports semen out of the body√	(1)
12.3	 Transports its secretions in ducts √ / secretion not directly in blood Does not produce a hormone √ 	(2)
12.4	Spermatogenesis	(1)
12.5	- The secretion is alkaline	
	to neutralise the acidity of the vagina ✓ / urethra - The secretion contains nutrients ✓	
	for the sperm to generate energy for movement \checkmark	
	- The secretion is a fluid√/mucus	<i>(</i> ,)
	which facilitates the movement of the sperm cells \checkmark Any (2 x 2)	(4) (9)
		(-)
Quest	ion 13	
13.1	(a) Mitochondria√	(1)
10.1	(b) Acrosome√	(1)
13.2	Seminiferous tubules	(1)
13.3	 (a) - It fuses with the nucleus of the ovum√ to form the zygote√ - It carries genetic material √/DNA/chromosomes which is transferred to 	
	the offspring	
	 Contains haploid number of chromosomes ✓ which contributes to the 	
	formation of a diploid cell Any (1 x 2)	(2)
	 (b) - It contains enzymes √ that digest the outer membrane of the ovum √ 	(2)
13.4	 Organelles in part B release energy√ 	(-)
40 F	which enables movement ✓ of part C	(2)
13.5	5 (mm/minute) x 45 (minutes) ✓ = 225√ mm	(2)
		(11)

KZN Life Schences ded from Stannos acepta ysics.com JIT Term 1 and 2


~			
14.1 14.2	Acrosome√ - Fuses with the nucleus of the ovum√		(1) (1)
	- Carries genetic material		
14.3	- Produce energy \checkmark / site for cellular respiration which is needed for movement \checkmark of the sperm		(2)
14.4	 The oval/torpedo-shaped head√ will facilitate faster movement√ The presence of an acrosome√/part A enables the sperm to penetrate the ovum A longer tail√ ensures faster movement√ (Mark first TWO only) 		(4)
		Any (2 x 2)	
			(8)
Questio	n 15		
15.1	(a) Seminal visicle√		(1)
	(b) Testosterone ✓		(1)
15.2	 It is alkaline ✓ to neutralize the acidic conditions of the vagina ✓ It contains mucus ✓/ provide medium/ to facilitate the movement of the sperm ✓ it contains nutrients ✓ 		
	to supply the sperm with energy \checkmark		(2)
15.3	Mark the first ONE only (a) (70 -74) ✓		(1)
10.0	(α) $(10^{-1}T)$		(1)

(6) (11)

JIT Term 1 and 2

Criteria for marking of the graph:

Criteria	Mark allocation
Histogram is drawn (T)	1
Caption of the graph includes both variables (C)	1
Correct labels on the X-axis and Y-axis with correct unit on the Y-axis (L)	1
Correct scale for Y-axis and bars of equal width with no spaces for X-axis (S)	1
Plotting (P) correctly done for:	
1-3 age groups	1
All 4 required age groups only	2

If a bar graph or line graph is drawn, marks will be lost for:

- Type of graph
- Scale

If axes are transposed:

- · Can get all marks if labels are also swopped and bars are horizontal
- If labels are not corresponding, then:
 - Marks will be lost for labels and scale
 - > Plotting can get credit if coordinates are correct for given labels.

- 16.1Male fertility \checkmark (1)16.2Measuring the sperm count \checkmark (1)
 - 16.3 Age√
 - Diet√
 - Exercise√
 - Activity level√

	 Lifestyle√ Occupation√ etc. (Accept factors that are NOT related to health; race) (Any(2x1) (Mark first TWO only) 	(2)
16.4	- TU inhibits the secretion of testosterone√	(2)
	- spermatogenesis cannot take place√/no sperm will be produced	(2)
16.5	- The higher temperature/pressure on the testes√ due to the tight underwear	
	 could decrease the sperm count √/sperm production/lead to the production of abnormal sperm. 	(2)
16.6	- To determine if TU is still effective after 12 months \checkmark	
10.0	- To see if the sperm count returns to normal√ when the treatment stops Any	(1)
	(Mark first ONE only)	()
16.7	- No sperm will be transported	
	- from the epididymis to the urethra√	(\mathbf{a})
	- Semen without sperm will be released ✓ Any two	(2) (11)
Question	17	
17.1	(a) Age√	(1)
17.2	(b) Fertility√ in men They determined the:	(1)
17.2		
	- sperm county number of normal sperm per mit of semen	
	 sperm count √ /number of normal sperm per mℓ of semen progressive motility √ /ability of sperm to swim effectively in a straight 	
	 progressive motility ✓ /ability of sperm to swim effectively in a straight line 	(3)
	 progressive motility √/ability of sperm to swim effectively in a straight line sperm necrosis √/immature or dead sperm per fresh semen sample (Mark first THREE only) 	(3)
17.3	 progressive motility √/ability of sperm to swim effectively in a straight line sperm necrosis √/immature or dead sperm per fresh semen sample (Mark first THREE only) The investigation was conducted from 1999 to 2017 √/over 18 years 	(3)
17.3	 progressive motility √/ability of sperm to swim effectively in a straight line sperm necrosis √/immature or dead sperm per fresh semen sample (Mark first THREE only) 	(3)
17.3 17.4	 progressive motility √/ability of sperm to swim effectively in a straight line sperm necrosis √/immature or dead sperm per fresh semen sample (Mark first THREE only) The investigation was conducted from 1999 to 2017 √/over 18 years 1 294 men √ were tested (Mark first TWO only) So that age will be the only independent variable √ since high temperature can affect fertility √/sperm count /sperm motility/ 	
	 progressive motility ✓ /ability of sperm to swim effectively in a straight line sperm necrosis ✓ /immature or dead sperm per fresh semen sample (Mark first THREE only) The investigation was conducted from 1999 to 2017 ✓ /over 18 years 1 294 men ✓ were tested (Mark first TWO only) So that age will be the only independent variable ✓ since high temperature can affect fertility ✓ /sperm count /sperm motility/ sperm necrosis 	(2)
	 progressive motility √/ability of sperm to swim effectively in a straight line sperm necrosis √/immature or dead sperm per fresh semen sample (Mark first THREE only) The investigation was conducted from 1999 to 2017 √/over 18 years 1 294 men √ were tested (Mark first TWO only) So that age will be the only independent variable √ since high temperature can affect fertility √/sperm count /sperm motility/ 	

Questic	on 18		
18.1 18.2	Cervix ✓ - The site of fertilisation ✓ - The site of zygote division√		(1)
18.3	 The site of 2ygote division The transfer of the ovum/embryo to the uterus ✓ Diploid cells in the ovary undergo mitosis√ 	(Mark first ONE only)	(1)
	 to form numerous follicles√ Under the influence of FSH √ one cell undergoes meiosis√ to form a (haploid) ovum √ 	Any	(4)
18.4	-It is a hollow organ ✓ - It has a muscular wall✓ - It has a blood-rich lining√/endometrium	Any	
18.5	 No follicle will develop √ No oestrogen produced √ and no progesterone produced√ 	(Mark first ONE only)	(1)
	- Therefore, the endometrium will not develop $\sqrt{*}$ to Compulsory mark $\sqrt{*1}$ + Any 2	be shed during menstruation	(3)
			(10)

	Endometrium√ Fertilisation √	(1) (1)
	The (nucleus of the) sperm fuses with (the nucleus of) the ovum $\Box \checkmark$ - Zygote divides by mitosis \checkmark	(1)
	 to form a (solid) ball of cells√ called the morula√ which develops into a hollow ball of cells√ called the blastula√ /blastocyst 	(4)
19.5	 It is muscular √ to protect the foetus from mechanical injury√/ to allow for parturition/birth It is flexible√ /can expand to accommodate the growing foetus√ It is hollow√ to accommodate the growing foetus√ 	
	 The thickened endometrium ✓ allows for implantation ✓ /survival of the embryo Mark first TWO only) Any (2 x 2) 	(4)
19.6	 The secretion is alkaline ✓ which neutralises the acidic conditions ✓ of the vagina 	(2) (13)

- 100
- Under the influence of testosterone√ -
- diploid cells/√germinal epithelium cells -
- in the seminiferous tubules \checkmark of the testis -
- undergo meiosis \checkmark to form haploid sperm \checkmark -Any

(4)

Question 21

21.1	Oogenesis√		(1)
21.2	Amniotic√ egg		(1)
21.3	 It has a shell ✓ 		(2)
	To prevent drying out \checkmark of the embryo /amniotic fluid		
	 It has amniotic fluid ✓ 		
	To prevent drying out \checkmark of the embryo	Any (1x2)	
	(Mark first ONE only)		
21.4	 Females can reproduce without males ✓ 		
	increasing the chances of the species to survive \checkmark /therefore,	less energy is	
	used for reproduction		(2)
	(Mark first ONE only)		
			(6)
Ouostio	n 22		

22.2	 250 females per group were used √/1000 females participated Measurement was done for 5 cycles √ (Mark first TWO only) 	(2)
22.3	Older groups of women have a higher (average) FSH level than the younger groups $\sqrt[]{}$. ,
	OR	
	Younger <u>groups</u> of women have a lower (<u>average)</u> FSH level than the older	
	groups√√ Any (1x2)	(2)
	(Mark first ONE only)	
22.4	 The Graafian/developing follicles secretes oestrogen√but since the number of follicles are low√/depleted less/no oestrogen will be secreted√ 	(3)
22.5	- A high concentration of progesterone	()
	 inhibits the pituitary gland //results in reduced FSH secretion 	
	- This will decrease the validity of the investigation \checkmark	(3)
		(12)

23.1	Acrosome√	(1)
23.2	mitochondrion	(1)
23.3	(a) 3√	(1)
Lí Lí	(b) 1√	(1)
T	(c) 1√	(1)
23.4	B√- Nucleus√	(2)
23.5	Mitosis√	(1)
23.6	- After implantation the chorion \checkmark	
	- develops many finger-like outgrowths√	
	- called chorionic villi√	
	- The endometrium√	
	- together with the chorionic villi forms the placenta \checkmark	
	- The umbilical artery√	
	 and the umbilical vein√ develops 	
	- inside a hollow tube \checkmark to form the umbilical cord between the foetus and the	
	placenta√ Any	(6)
		(14)

24.1			(1)
	(a)	Zygote ✓	(1)
	(b)	Morula ✓	(1)
	(C)	Blastocyst/blastula ✓	(1)
24.2			
	(a)	Fertilisation 🗸	(1)
	(b)	Endometrium √	(1)
24.3	Mito	sis √	(1)
24.4	23 v		(1)
24.5	Cho	rion √	(1)
			(8)
Questi	on 25		
o= /			(
25.1	(a) (b)	Fallopian tube√	(1)
25.2.	(b) (a)	Ovary√ - It has a rich blood supply √/ is vascular	(1)
20.2.	(u)	- It is glandular√	
		- It is thick√	
		(Mark first TWO only) Any	(2)
	(b)	- Sperm cells are present in the fallopian tube \checkmark / proximity of the ovum	
		 Ovulation has taken place ✓ /an ovum has been released 	(2)
		(Mark first TWO only)	(2)

JIT Term 1 and 2

During oogenesis√* 25.3.

- diploid cells in the ovary undergo mitosis√
- to form numerous follicles.√
- At the onset of puberty√
- under the influence of FSH√
- one cell inside a follicle (enlarges and) undergoes meiosis. \checkmark
- Of the four cells that are produced, only one survives to form a (mature), haploid ovum√

(6)

Compulsory mark $\sqrt{*}$ (1) + Any (5)

- Part A /the fallopian tube is unable to provide the space√ 25.4.
 - and there is no endometrium ✓ /blood supply
 - to provide nutrients / /oxygen **OR** remove waste products
 - in order for the embryo to develop \checkmark

(3)

(15)

Question 26

26.1	(a)	Pituitary√ gland/hypophysis √	(1)
	(b)	Graafian follicle ✓	(1)
	(c)	Ovulation ✓	(1)
	(d)	Corpus luteum√	(1)
26.2	Rema	ains low√/decreases	(1)
26.3	- stim	ulates ovulation√	
	- stim	ulates the development of the corpus luteum \checkmark	(1)
	(Ma	ark first ONE only)	
			(6)

27.1 27.2 27.3	20√ FHS√ - The progesterone level is decreasing√ /goes from 5 to 0.8ng/ml therefor - FHS secretion /the pituitary gland is no longer inhibited√	re	(1) (1)
27.4	$\left[\frac{280-70}{70}\right] \checkmark \times 100\checkmark$		(2)
	= 300 \sqrt{%}		(3)
27.5 27.6	It remains high ✓ /will increase - The corpus luteum does not disintegrates ✓ - and continues to secrete progesterone ✓ OR - The placenta develops ✓ - Which secretes progesterone ✓		(1)
		Any	(2) (10)

Quest	tion 21	
28.1	-Av	
	-B✓	
	-EXIO	(2)
<u> </u>	Mark first TWO only	
28.2	-The scar tissue√	
	-may partially block the Fallopian tube	
	- preventing the embryo from reaching the uterus √/resulting in implantation in	(2)
28.3	the Fallopian tube - The other Fallopian tube is still present√/ not blocked	(3)
20.5	- Fertilisation may still take place in this fallopian tube \checkmark / the developing	
	embryo can move along this Fallopian tube	
	OR	
	- During invitro fertilisation√/ IVF	
	- the resulting embryo is inserted into the uterus \checkmark	
	OR	
	- The ovum can be placed after the blockage \checkmark	
	- allowing fertilisation√	(2)
28.4	 insufficient space√ 	
	 poor/ no placental development√ 	
	 decreased blood supply√ 	
	- insufficient nutrients // oxygen	(2)
	(Mark first TWO only)	(0)
		(9)
Quest	tion 29	
29.1	- Stimulates the development of ovarian follicles√	(1)
~~~~	- Initiates puberty ✓	
29.2 29.3	- LH√/Luteinising Hormone	(1)
23.5	- therefore, ovulation will not take place√	
	- There will be no ovum to fertilise√	(2)
29.4	- A Graafian follicle is not formed√	
	- Since the Graafian follicle secretes oestrogen	
	<ul> <li>oestrogen levels will be reduced ✓ therefore</li> <li>the endometrium will not develop ✓/ thicken</li> </ul>	
	- and no implantation can take place	
	OR	
	- There is no ovum produced / and Graafian follicle is not formed	

- Ovulation does not occur√
- No fertilisation ✓ occurs and
- a zygote is not formed✓
- and no implantation can take place  $\checkmark$

(5) **(9)** 

30.1		gesterone maintains/thickens the endometrium $\checkmark$ and therefore, maintains the	
		jnancy√	(2)
30.2	(a) I	Progesterone treatment√	(1)
	(b) [	Development of gestational diabetes√	(1)
30.3	- Gl	ucose levels were taken daily√	
2		Then the glucose level of a pregnant woman remains high continuously it licates the development of gestational diabetes. $\checkmark$	(2)
30.4	(Sai	me) dosage/250 mg of progesterone√	
	(Saı (Saı	me) period of time for injection injections given between weeks 16 and $20$ me) frequency of injections/weekly injections $$ . Any 2 mrk first TWO only)	(-)
	(1410		(2)
30.5	Gro	up B did not receive progesterone√	
	lf ge	estational diabetes develops in group A it would be due to the progesterone	
	•	tment√	(2)
			( <u></u> 10)
			(10)
•			
Quest	ion 3	1	
31.1			
	(a)	Graafian follicle	
		Corpus Luteum	$\langle \mathbf{O} \rangle$
	(4-)	(Mark first TWO only)	(2)
	(b)	(Intense) pain√	
		(Internal) bleeding√ (Mark first TWO aphy)	( <b>2</b> )
		(Mark first TWO only)	(2)
31.2			
	(a)	FSH✓	(1)
	(b)	Oestrogen√	
		OR	
		OR FSH√	(1)
31.3	Tho	Graafian follicle keeps on producing oestrogen $$ fails to rupture	(1)
51.5	me	OR	
•	The	increased secretion of oestrogen stimulates the secretion of LH $\checkmark$	
	Evo	OR ess production of FSH can cause the failure to ovulate $\checkmark$ / Graafian follicle to	
	rupt		(1)
31.4		e corpus luteum does not degenerate√ and	(')
01.4		$ps$ on secreting progesterone $\checkmark$	
		s will inhibit the pituitary gland $\checkmark$	
		n secreting FSH√	
		erefore no follicles will develop√ and	
		ovulation√ will take place ANY	(5)
		•	(12)

Quest	ion 32			
32	1 (a) Amniotic√ f (b) Placenta√	luid		(1) (1)
32		-		(1)
	(b) - Chorion - Endome	ic villi√ /chorion		
2	(Mark first			(2) <b>(5)</b>
0.1	estion 33			
33				(1)
33		∢absorber√		(')
		ccation √/dehydration		
	- It helps to keep	the temperature within a narrow range $\checkmark$		
	- It facilitates free	e movement√ of the foetus	Any	
	(Mark first TWO	only)		(2)
33	3 - The zygote divi	des by mitosis√		
	<ul> <li>to form a (solid)</li> </ul>			
	- called the moru			
		into a hollow ball of cells√		
22	- called the blast	•		(4)
33		-filter√/protect against pathogens mful metabolic waste√		
	- Produces antib			
	- Maintains the e		Any	
	(Mark first TWO		<i>i</i> try	(2)
33	•	0		(1)
33		eveloping foetus receives nutrients from the mot	ther's√ blood	(-)
	- via the placenta			
	- In oviparous or	ganisms the developing embryo receives nutrien	ts from the	
	yolk√/albumen			(3) <b>(13)</b>
Quest	ion 34			
34.1	- Stimulates ovulation	ı∕ <b>200</b>	r	
	- Stimulates the deve	elopment of the corpus luteum		(2)
		(Mark the first TWO only)		
34.2	(a) - FSH√/a high	concentration of hormone A		
		follicles to develop√		$\langle 0 \rangle$
		va will be produced $\checkmark$ increasing the chances to f	all pregnant	(3)
	(b) - A peak in ho			
		hat ovulation is about to happen $\checkmark$		(2)
	<ul> <li>therefore, an</li> </ul>	ovum will be available for fertilisation $\checkmark$ Any 2		(4)

34.3 - The levels will remain low  $\checkmark$  because

KZN L	ecsonalcesded from Stanmonaeplaysics.com JIT Term 1 and 2	March 2025
	<ul> <li>the high progesterone levels ✓ during pregnancy</li> <li>will inhibit the secretion of FSH ✓/hormone A</li> </ul>	(3) <b>(10)</b>
E	<ul> <li>ion 35</li> <li>The Graafian follicle√</li> <li>secretes oestrogen√</li> <li>causing- The corpus luteum√</li> <li>secretes progesterone√</li> <li>which (further) increases the thickness of the endometrium√</li> <li>High levels of progesterone inhibit FSH secretionng√ the endometrium to thicker√/more glandular or vascular</li> </ul>	become <b>(5)</b>
Quest	ion 36	
36.1	(a) Oestrogen√	(1)
	(b) Progesterone√	(1)
36.2	- It increases√	
	- the thickness ✓ of the endometrium/the blood vessels in the endometrium	
	amount of glandular tissue in the endometrium	(2)
36.3	(a) Release of an ovum $\checkmark$ from the ovary $\checkmark$ /Graafian follicle	(2)
	(b) Day 14 ✓	(1)
	(c) LH/ Luteinising Hormone ✓	(1)
36.4	<ul> <li>High levels of hormone B/progesterone will inhibit√</li> <li>the secretion of FSH√</li> <li>OR</li> </ul>	
	- No new ova/mature follicles√	
	- are required during pregnancy√	(2)
36.5		(2)
00.0	- levels decreased√	
	- because the corpus luteum degenerated√	(3)
36.6	- High levels of progesterone ✓	(0)
00.0	- stimulate the Pituitary gland/ Hypophysis $\checkmark$ to secrete a less FSH $\checkmark$	
	To prevent the growth of a new follicle $\checkmark$ / ovulation during the pregnancy	
	OR	
	- Low levels of progesterone√	
	- stimulate the Pituitary gland/ Hypophysis $\checkmark$ to secrete a more FSH $\checkmark$	
	-which stimulate the development of new follicles $\checkmark$	(4)
		( <del>1</del> 7) (17)
		("")

37.1	<ul> <li>Stimulates ovulation√</li> </ul>	
	- Stimulates the development of the corpus luteum $\checkmark$	(2)
	(Mark first TWO only)	
37.2	Follicle stimulating hormone√ /FSH	(1)
37.3	Progesterone√	(1)
37.4	- The (progesterone) levels will remain low $\checkmark$	
	<ul> <li>The LH levels are low ✓ therefore</li> </ul>	
	- ovulation will not take place $\checkmark$ and	
	<ul> <li>no corpus luteum will develop√</li> </ul>	(4)
37.5	Hormone X /progesterone levels remain high√	(1)
		(9)

38.1	Accept day 14√ or day 15	(1)
38.2	Days 0 - 7√	(1)
	<ul> <li>Causes the follicle to burst open ✓ /stimulates ovulation</li> </ul>	(1)
	- Stimulates the formation of corpus luteum√	
	(Mark first ONE only)	
38.4	- LH levels remain low up to day 12/13√	
	- Then it increases sharply up to day 14 $\checkmark$	
	- After which it decreases and remains low√	(3)
38.5	As the oestrogen level increases√	
	The thickness of the endometrium also increases $\checkmark$	(2)
38.6	Maintain the increase in the thickness of the endometrium $\checkmark$ for greater chance	
	of implantation ✓	(2)
38.7	No√	(1)



#### March 2025

#### **TOPIC: GENETICS**

	DESCRIPTION	TERM
1.1	The study of heredity and variation in organisms	Genetics
1.2	All the genes that make up an organism	Genome
1.3	Two or more alternative forms of a gene at the same locus	Alleles
1.4	The position of a gene on a chromosome	Locus
1.5	The non-sex chromosomes in humans	Autosomes
1.6	An inherited disorder where blood fails to clot properly	Haemophilia
1.7	The number, shape and arrangement of all chromosomes in the nucleus of a somatic cell	Karyotype
1.8	A genetic cross involving one gene and its alleles	Monohybrid
1.9	A genetic disorder where blood does not clot	Haemophilia
1.10	The use of living organisms and their biological processes to improve the quality of human life	Biotechnology
1.11	The type of inheritance involving two alleles that are not dominant over one another	Incomplete dominance
1.12	Characteristics controlled by genes which are located on the sex chromosomes	Sex-linked
1.13	The type of inheritance involving alleles that equally determine the phenotype of heterozygous offspring	Codominance
1.14	An allele that is expressed phenotypically only in the homozygous condition	Recessive
1.15	The physical and functional expression of a gene	Phenotype
1.16	The production of a genetically identical copy of an organism using biotechnology	Cloning
1.17	The manipulation of the genetic material of an organism to get desired changes	Genetic engineering
1.18	A diagram showing the inheritance of genetic disorders over many generations	Pedigree diagram
1.19	An allele that does not influence the phenotype when found in the heterozygous condition	Recessive
1.20	Organisms having two identical alleles at a given locus	Homozygous
1.21	An allele that is always expressed in the phenotype	Dominant
1.22	An individual having two non-identical alleles for a characteristic	Heterozygous
1.23	A segment of a chromosome that codes for a particular characteristic	Gene
1.24	The type of inheritance which produces an intermediate phenotype	Incomplete Dominance

# KZN Literswindersded from Stanmonaepitzysics.com JIT Term 1 and 2

	The position of a gene on a chromosome	Locus
1.25		
	The type of dominance which results in an intermediate phenotype in	Incomplete
1.26	the heterozygous condition.	Dominance
	The production of a genetically identical copy of an organism using	Cloning
1.27	biotechnology	
4	Undifferentiated cells in animals that have the potential to become	Stem cells
1.28	any type of tissue	
	A genetic disorder that results in a person who cannot distinguish	Colour
1.29	between the colours red and green	blindness
	The biotechnological process that produces genetically identical	cloning
1.30	organisms	
		30 x1 = (30)

2.1	Both A and $B \checkmark \checkmark$		
2.2	None√√		
2.3	A only√ ✓		
2.4	B only√√		
2.5	A only√√		
2.6	None√√		
2.7	A only ✓✓		
2.8	B only√√		
2.9	None√√		
2.10	None√√		
2.11	None√√		
	U	(11x2) <b>(2</b>	2)



(1)

JIT Term 1 and 2

#### Question 3

3.1 Incomplete dominance√

3.2 The pink flower colour is an intermediate phenotype  $\checkmark$  / a blend of red and white indicating that neither of the alleles is dominant  $\checkmark$  (2)

Pink

3.3 **P**1

Phenotype Genotype

Genotype

Genotype

Phenotype

G/gametes Fertilisation  $\begin{array}{cccc} RW & X & RW \checkmark \\ \hline R, & & X & R, & W \checkmark \\ \hline RR; & RW; & RW; & WW \checkmark \end{array}$ 

X

Pink /

1 Red: 2 Pink: 1 White√*

P₁ and F₁✓ Meiosis and fertilisation✓

#### OR

P1	Phenotype	Pink	X	Pink
	Genotype	RW	×	RW-

Meiosis

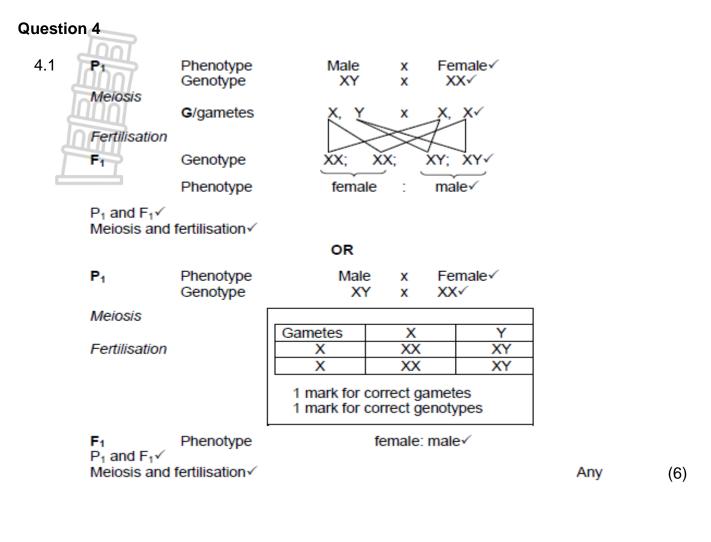
Meiosis

F1

Fertilisation

Gametes	ĸ	W
R	RR	RW
VA/	PW/	10/10

 $F_1$  Phenotype  $P_1$  and  $F_1 \checkmark$  Meiosis and fertilisation  $\checkmark$ 


1 Red: 2 Pink: 1 White **

1* compulsory + Any 5

(6) (9)



#### KZN Liteswiencesded from Stanmonacepitzysics.com JIT Term 1 and 2



- 4.2 Normal females have two X √ chromosomes
  - Normal males have one X and one  $\mathsf{Y}^\checkmark$
  - The female always provides X in the egg  $\checkmark$
  - If an egg cell is fertilized by an X bearing sperm  $\checkmark$  a female/girl $\checkmark$  is formed
  - If an egg is fertilized by a Y bearing sperm
  - a male/boy√ is formed

	0		Any	(5)
Gametes		male	gamete√	
		X	Y	
female gamete√	Х	XX√	XY	
	XX : 2 X emale √		(Any	

(1)(2) (1) (1) (2)(7)

Quest	Question 5			
5.1	ffHh			
5.1				
5.2	(a) (a) FfHh√√			
	(b) (b) 3✓			
	(c) (c) h ✓			
	(d) (d) Long fingers and continuous hairline $\checkmark \checkmark$			

#### **Question 6**

6.1	Dihybrid√ cross	(1)
6.2	TTrr√√	(2)
6.3	TR√, Tr√, tR√, tr√	(4)
		(7)

#### **Question 7**

-An individual inherits one allele from each parent  $\checkmark$ 

- The Y chromosome was inherited from the father -
- and the recessive allele/X  $^{\rm h}$  was inherited from the mother  $\checkmark$
- since the mother has two recessive alleles/X  $^{h}X^{h}\checkmark$
- A son only needs to get one recessive allele to be haemophiliac  $\checkmark$  since the
- Y-chromosome does not carry any allele to mask the haemophilia allele any (4)

#### **Question 8**

8.1	Pedigree√ diagram		(1)
8.2	(a) 6√		(1)
	(b) 1√		(1)
8.3	X _G X _a √ √		(2)
8.4	Unaffected√√ / without Goltz syndrome		(2)
8.5	<ul> <li>Pilusa is affected ✓ X^GY</li> </ul>		
	<ul> <li>Anju is unaffected ✓ X⁹X⁹</li> </ul>	Innat	
	- Males inherit the Y chromosome from Pilusa $\checkmark$		
	- and inherit X ^g from Anju√	ЩП	(4)
			(11)
Quest	tion 9		

9.1	A change	e in the sequence $\checkmark$ of nitrogenenous bases $\checkmark$ / nucleotides in a gen	e (2)
9.2	Nigeria 🗸	´%	(1)
9.3	<u>39 746 </u> √	x 100√ =13√ %	
	305 733		(3)
9.4	(a) ddy	(	(1)
	(b) Dd	$\checkmark$	(1)
			(8)

Question	10

(b) 1√/ One	(1)
10.2 I ^A i√√	(2)
10.3 (a) Son 1✓	(1)
(b) Mother√	(1)
(c) Son 1✓	(1)
	(7)

11.1	<ul> <li>The nucleus of the somatic cell is diploid/ ✓ has a full set of chromosomes/has all the genetic material whereas</li> <li>the nucleus of the sperm cell is haploid ✓ /contains half the set of chromosomes/ has half the genetic material</li> </ul>	
11.2	<ul> <li>The somatic cell carries the desired characteristic ✓/straight hair</li> <li>To ensure that:</li> </ul>	(3)
	<ul> <li>The DNA (of the ovum)/characteristic of curly hair is removed ✓</li> <li>Only the desired DNA is present in the clone ✓</li> </ul>	
11 0	- Correct number of chromosomes is present in the clone any	(2)
11.3	<ul> <li>(Horse) S ✓</li> <li>To produce organisms with desired traits ✓ e.g. health, appearance, nutritious, yield, shelf life etc.</li> </ul>	(1)
	<ul> <li>Conservation of threatened species ✓</li> <li>To create tissue/organs for transplant ✓ Any</li> </ul>	(2)
	(Mark first TWO only)	(-)
		(8)
Questi	on 12	
12.1	I ^A √ I ^B √i√	(3)
12.2	2√	(1)
12.3	- Any individual inherits one allele	(2)
12.4	- from each parent ✓ - Each child ✓	
	- has an equal $\sqrt{25\%}$ chance of having	
	- any blood group ✓/A, B, AB, or O.	(3) <b>(9)</b>
		(3)
Questic		
13.1	(a) $I^{B}I^{B}\checkmark$ or $I^{B}i\checkmark$ (b) $ii\checkmark$	(2) (1)
13.2	- The baby inherited one allele for type O blood/i from each parent ✓ since	(1)
	- her genotype is ii✓	
13.3	<ul> <li>Mr Phonela does not have an allele for O blood ✓</li> <li>Blood type can be used to exclude a particular m ✓ an as the parent</li> </ul>	(3)
10.0	but it cannot confirm that a particular man is the father $\checkmark$	
	Since a large portion of the population have the same blood type $\checkmark$ Any	(2)
		(8)

14.2	3√/ Three - Complete d - The allele fo	or blood group	o B√/ IB is domina O√/ i is recessive		(1) (3)
14.3	P1 Meiosis	Phenotype: Genotype:	I ^A I ^B	x Blood group $B \checkmark$ x $I^B i \checkmark$	
	Fertilisation <b>F</b> 1	<b>G</b> /gametes Genotype:		$X   B   i \vee$ $ B   B   B   i \vee$	
	P ₁ and F ₁ √ Meiosis and	Phenotype: fertilisation√	AB; A;	B√* m <b>pulsory 2</b> *+ Any 4	
	OR				
	<b>P</b> ₁	Phenotype: Genotype:		x Blood group B√ x I ^B i√	
	Meiosis Fertilisation	Dhamaturaat	Gametes I ^B i 1 mark for corre 1 mark for corre		
	F ₁ P ₁ and F ₁ √ Meiosis and	Phenotype: fertilisation√	Blood group: AB; A;	B√* Compulsory 2*+ Any 4	(6) <b>(10)</b>

KZN Life Sciences ded from Stanmona applaysics JIT Term 1 and 2	S. COM	March 2025
<ul> <li>Question 15</li> <li>The blood group of a child is determined by the alleles received from</li> <li>The blood group of the mother, the child and the possible father is de</li> <li>If the blood group of the mother and possible father cannot lead to the of the child ✓</li> <li>the man is not the father ✓</li> <li>If the blood group of the mother and the possible father can lead to the of the child ✓</li> <li>the man might be the father ✓</li> </ul>	termined√ he blood group	
<ul> <li>This is not conclusive ✓</li> <li>because many men have the same blood group ✓</li> </ul>	Any 6	(6)
Question 16		

16.1	Dih	ybrid√ cross	(1)
16.2	(a)	Smooth√ stem	(1)
	(b)	Elongated√ fruit	(1)
16.3	(a)	nnrr√√/nrnr/ rrnn	(2)
	(b)	Smooth stem round fruit ✓ ✓	(2)
			(7)

17.1		disorder is controlled by alleles $\checkmark$ /genes that located on the autosomes $\checkmark$	(2)
			(2)
17.2	One≁	//1	(1)
17.3	-	Individuals 3 and 4 are both without Tay-Sachs disease $\checkmark$	. ,
	-	The child has Tay-Sachs√/Individual 7 has Tay-Sachs	
	_	which is only expressed in the phenotype in a homozygous condition $\checkmark$	
	_	Each parent must carry a recessive allele $\checkmark$ /be heterozygous	
	_	The child has two recessive alleles $\checkmark$	
	-		
	-	One was received from each parent√	
		OR	
	-	Individuals 3 and 4 are both without Tay-Sachs disease	
	-	If it was caused by a dominant allele $\checkmark$	
	-	then individual 3 or 4 would have Tay Sachs√	
	-	and still have a child with Tay-Sachs $$ /individual 7 has Tay-Sachs	
	-	who could be heterozygous ✓ Any	
			(5)
17.4	TT√		
	tt√		(2)
			(10)
			()

# KZN Litersweices ded from Stanmonaepitzysics.com JIT Term 1 and 2

Ques	P1	Phenotype	Woman without haemophilia	x	Man with haemophilia√
Meiosis		Genotype	X ^H X ^h	x	X ^h Y√
		<b>G</b> /gametes	X ^H , X ^h	X	X ^h , Y√ 77
	Fertilisation	1		>>	
	F1	Genotype	X ^H X ^h , X	^{(H} Υ, X ^h X ^h ,	X ^h Y√
	Phenotype		1 daughter without haemophilia, 1 daughter with haemophilia, 1 son without haemophilia, 1 son with haemophilia√		
			0%√*chance of a daughter homozygous for normal blood clotting		
	$P_1$ and $F_1 \checkmark$			olo tal ig	
	Meiosis and	d fertilisation√			
			*1 compulsory mark + any 6 OR		
	P1 Phe	enotype Wo	oman without	х	Man with
			aemophilia	~	haemophilia√
	Genotype		X ^H X ^h	V	X ^h Y√
		lotypo		Х	
	Maiaaia	101390		Х	
	Meiosis		[		
			Gametes	X ^H	X ^h
	Meiosis Fertilisation		Gametes X ^h	X ^H X ^H X ^h	X ^h X ^h X ^h
			Gametes X ^h Y 1 mark for 6	X ^H	X ^h X ^h X ^h X ^h Y
			Gametes X ^h Y 1 mark for 0 1 mark for 0	X ^H X ^H X ^h X ^H Y correct game correct genc thout haemo nilia, 1 son w	X ^h X ^h X ^h X ^h Y etes otypes
	Fertilisation		Gametes X ^h Y 1 mark for 0 1 mark for 0 1 daughter with haemophilia, 7	X ^H X ^H X ^h X ^H Y correct game correct genc thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo	X ^h X ^h X ^h X ^h Y etes otypes
	Fertilisation F1 P1 and F1√		Gametes X ^h Y 1 mark for o 1 mark for o 1 daughter wit haemophilia, o 0%√* chance	X ^H X ^H X ^h X ^H Y correct game correct genc thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo thout haemo	X ^h X ^h X ^h X ^h Y etes otypes ophilia, 1 daughter rithout aemophilia√

*1 compulsory mark+ any 6

(7)

(1)

(3)

#### Question 19

19.1 19.2	To determine which blood group was the most common in their community ✓ (a) - Obtain permission from the school □/clinic to conduct the investigation			
10.2		Investigation		
	Decide on the sample size			
	<ul> <li>Decide on the method for recording results</li> </ul>			
	Decide on time/date to collect data from the clinic			
_	(Mark first THREE only)		(3)	
	(b) - Sampled 3/all blood donor clinics in the community √			
	- 200 donors per clinic sampled√ /600 donors	Any		
	(Mark first ONE only)		(1)	
	(c) First time donors' blood groups are not known yet $\checkmark$ /			
	not in the database		(1)	
19.3	$\frac{15}{100}$ x $\checkmark 600 \checkmark = 90 \checkmark$ participants			
			(3)	
19.4	(a) (Blood group) O√		(1)	
	(b) (Blood group) AB√		(1)	
19.5	I ^A I ^A √		( )	
	l ^A i√		(2)	
			(14)	
			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

#### **Question 20**

20.1	3√/Three	(1)
20.2	(a) H√	(1)
	(b) Rr√	(1)
	(c) C√and F√	(2)
		(5)

#### **Question 21**

21.1 Dih	nybrid√cross		(1)
21.2 (a)	Brown√ fur and long ears√		(2)
(b)	bbee√√	Innat	(2)
(c)	Be√ be√		(2)
		TUUT	(7)

#### **Question 22**

22.1 954 000√

22.2 1 800 000  $\checkmark$  - (954 000 + 180 000 + 54 000)  $\checkmark$ = 612 000√ people OR

> 1 800 000 - 1 188 000 -= 612 000√ people

OR

 $\frac{34}{100}$   $\checkmark$  x 1 800 000 $\checkmark$  = 612 000 $\checkmark$  people

KZN Lifecsteincesded	rom Stan	monaceplaysics.com
		JIT Term 1 and 2

			••••••••••••••	
			B/ I ^B is inherited from the other parent√ therefore AB√/genotype I ^A I ^B	(3) (7)
Questi	on 23			
23.1	this allele - have to in - whereas f	and herit only one emales have	chromosome $\checkmark$ /The Y-chromosome does not have recessive allele $\checkmark$ to have white teeth two X chromosomes $\checkmark$ and have to inherit two re white teeth $\checkmark$	(4)
23.2	<b>P</b> 1	Phenotype	Male with brownFemale withteethxwhite teeth	
	Meiosis	Genotype	X ^B Y x X ^b X ^b ✓	
		G/gametes	$X^{B}$ , $Y$ $x$ $X^{b}$ , $X^{b}$	
	Fertilisation			
	F1	Genotype	$X^{B}X^{b}$ , $X^{B}X^{b}$ , $X^{b}Y$ , $X^{b}Y$	
	P₁ and F₁√ Meiosis and	Phenotype fertilisation√	1 female with brown teeth: 1 male with white teeth ✓*	
		*1	compulsory mark + Any 5 OR	
	<b>P</b> 1	Phenotype	Male with brown Female with teeth x white teeth ✓	
	Meiosis	Genotype	X ^B Y x X ^b X ^b √	
	Fertilisation		GametesXBYXbXBXbXbYXbXBXbXbY	
			1 mark for correct gametes 1 mark for correct genotypes	
	$\mathbf{F}_1$ $\mathbf{P}_1$ and $\mathbf{F}_1$	Phenotype	1 female with brown teeth: 1 male with white teeth ✓*	

 $P_1$  and  $F_1 \checkmark$ 

Meiosis and fertilisation  $\checkmark$ 

*1 compulsory mark + Any 5 (6)

(10)

(6)

### Question 24

24	24.1	Pedigree√ diagram	(1)
	24.2	3√/Three	(1)
	24.3	3√/Three	(1)
	24.4	I ^A i	
	<u> </u>	l ^B i √√	
		ii J	(2)
	24.5	ii√	(1)
	24.6	Ann√√	(2)
			(8)

#### **Question 25**

25	₽1 Meiosis	Phenotype Genotype	With polydactyly Rr	x Without polydactyly✓ x rr✓	
	MEIOSIS	<b>G</b> /gametes	R,r	x r, r√	
	Fertilisation				
	F1	Genotype	Rr, Rr,	rr, rr√	
		Phenotype	2 polydactyly ;	2 without polydactyly√	
			50√*% chance of	f polydactyl child	
	$P_1$ and $F_1 \checkmark$				
	Meiosis and	fertilisation√			
	*1 compulsory mark + Any 5				
	_		OR		
	<b>P</b> 1	Phenotype	With polydactyly	x Without polydactyly√	
		Genotype	Rr	x m√	
	Meiosis				
			Gametes	R	
	Fertilisation		r	Rr rr	
			r I	Rr rr	
			1 mark for correc 1 mark for correc	5	
	F ₁	Phenotype	2 polydactyly ; 2	without polydactyly√	
			50√*% chance o	f polydactyl child	
	P₁ and F₁✓				

Meiosis and fertilisation√

*1 compulsory mark + Any 5

Question 26	
26.1 (a) BBDD✓ bbdd✓	(2)
26.2 (a) BD ↓ ✓	(2)
Bd bd J (b) One√/1	(2) (1)
26.3 BBdd and BBdd✓✓	
OR	

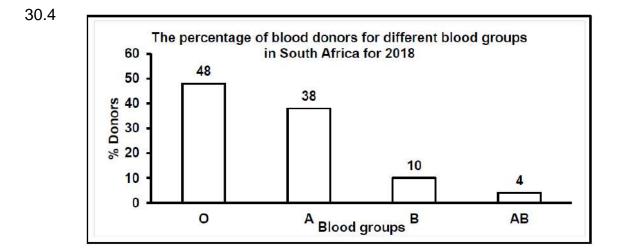
BBdd and Bbdd $\checkmark\checkmark$ 

OR

BBdd and bbdd√√	(2)
	(9)

27.1	- Embryos√		
	- Umbilical cord√		
	- Bone marrow√		
	(Mark first THREE only)		(3)
27.2	<ul> <li>Stem cells are undifferentiated√</li> </ul>		
	- and have the potential to develop into any type of cell $\checkmark$		
	- to replace affected/defective cells causing a disorder</td <td>Any</td> <td>(2)</td>	Any	(2)
27.3	- Stem cells are undifferentiated√		
	- and have the potential to develop into any type of cell $\checkmark$	to replace	
	affected/defective cells causing a disorder</td <td>Any</td> <td>(1)</td>	Any	(1)
	-		(6)
0	1	لطلال	
Quest	ion 28		
28.1	Three√/3		(1)
28.2	bb√		(1)
28.3	- Both parents (5 and 6) have a dominant and a recessive a	allele√/Bb	( )
20.5			
	- since they do not have cystic fibrosis√.		
	- They have children 8 and 9 with cystic fibrosis √/who are I	nomozygous	
	recessive/bb		
	- who received one recessive allele from each parent $\checkmark$		(4)

(6)


(12)

## KZN Life Schences ded from Stanne Sta

28.4			(Male) without cystic fibrosis	(Female) without o X fibrosis√	cystic
	Meiosis	Genotype E	Зb	x Bb√	
ç	Fertilisation	G/gametes	B, b	x B, b√	
	F1	Genotype	BB , Bb	, Bb, bb√	
		Phenotype 3	3 without cystic fi	brosis: 1 with cystic fibr	osis√
	P₁ and F₁√				
	Meiosis and	fertilisation√			Any 6
			OR		
	P ₁	Phenotype	e (Male) without cystic fibrosis	(Female) without o X fibrosis√	cystic
		Genotype	Bb	x Bb√	
	Meiosis	;			-
	Fertilisa	ation	Gametes B	B b BB Bb	
			b	Bb bb	וב
			1 mark for corr 1 mark for corr		
	F1	Phenotype	e 3 without cystic	c fibrosis: 1 with cystic fib	rosis√
	P ₁ and Mojosis	F₁√ and fertilisation√	/		
	Meiosis		,		Any 6
Questi	on 29				
					नित

29.1 Dihybrid  $\checkmark$  cross(1)29.2 Red spots  $\checkmark$  and black eyes  $\checkmark$ (2)29.3 (a) RRee  $\checkmark$   $\checkmark$  and Rree  $\checkmark$   $\checkmark$ (4)(b) Red spots, black eyes  $\checkmark$ (1)(c) re  $\checkmark$ (1)(g)

- 30.1 0
- 30.2 Complete ✓ dominance
- 30.3 -The man is heterozygous√ /is I^Ai for blood group A
  - -The woman has an allele for blood group  $B\sqrt{Is} I^A I^B$ 
    - -The child inherits the I^B allele from the mother√
    - -and the i allele from the father  $\checkmark$
    - -Therefore, the child will be heterozygous√ for blood group B/ the genotype will be I^Bi



#### Guideline for assessing the graph

CRITERIA		ELABORATION	MARK
Correct type of graph	(T)	Bar graph drawn	1
Caption of graph	(C)	Both variables, SA and 2018 included	1
Axes labels	(L)	X- and Y axis correctly labelled with units	1
Scale for X- and Y-axis	(S)	<ul> <li>Equal space and width of bars for X-axis and</li> <li>Correct scale for Y-axis</li> </ul>	
Plotting of co-ordinates	(P)	<ul> <li>1 to 3 co-ordinates plotted correctly</li> <li>All 4 co-ordinates plotted correctly</li> </ul>	

Histogram or line graph drawn

-Lose marks for type of graph and for scale

Transposed axes:

-Can get full credit, if axes labels are also swapped and bars are horizontal

-If labels are not corresponding, then lose marks for labels and scale -Check that the plotting is correct for the given labels

(6)

(13)

(1) (1)

(5)

**Question 31** 31 31.1 Three√/3 (1) 31.2 (a) Male without muscular dystrophy√ (1) X^DX^d√ (b) (1) 31.3 -Males only have one X chromosome  $\sqrt{XY}$  and -need only one recessive allele to have muscular dystrophy√ -The Xd allele on a male cannot be masked by a dominant allele  $\checkmark$ -Females have two X-chromosomes√ and -need two recessive alleles to have muscular dystrophy  $\checkmark\!\!\!/ X^d X^d$ -In females, a dominant allele on one X chromosome would mask the effect of the recessive allele //XD masks Xd

Any(5)

31.4	P ₂	Phenotype	Female without muscular dystrophy	x	Male without muscular dystrophy√
	Meiosis	Genotype	$X^DX^d$	х	X ^D Y√
		Gametes	X ^D , X ^d	х	X ^D , Y√
	Fertilisation			>	
	F ₂	Genotype	X ^D X ^D X	ΦY,	X ^D X ^d , X ^d Y ✓
		Phenotype		nout mu	muscular dystrophy scular dystrophy lar dystrophy
			25√*% chance of	of muse	cular dystrophy child
	$P_2$ and $F_2 \checkmark$				Innat
	Meiosis and f	ertilisation√			
			*1 c	compul	sory mark + Any 5

#### KZN Liteswaheed from Stanmonaepubysics.com

JIT Term 1 and 2

		OR			
<b>P</b> ₂	Phenotype	Female without muscular dystrophy	Male w muscu x dystrop	lar	
	Genotype	$X^DX^d$	x X ^D Y√		
Meiosis		[			
		Gametes	XD	Xq	
 Fertilisation		XD	X _D X _D	X _D X _q	
		Y	X ^D Y	XdA	
F2	Phenotype	1 mark for correct 1 mark for correct (50%) females w (25%) male with (25%) male with	ithout muscular o	lystrophy 🗸	
P₂ and F₂√ Meiosis and fo	ertilisation√	25√*% chance o *1	-	strophy child <b>mark</b> + Any 5	(6)
				-	(10)
					(13)

#### **Question 32**

32

- 32.1 It is harmful // prevents clotting of blood - and leads to excessive bleeding // internal bleeding/ swelling of joints/ bruising (2) 32.2  $\left[\frac{25}{100} \times 25000\right] \checkmark = 6250 \checkmark$ OR  $25\% \times 25000 \checkmark / (0,25 \times 25000) = 6250 \checkmark$ OR  $\frac{25000}{4} \checkmark = 6250 \checkmark$  (2)
- 32.3 Males have only one X-chromosome  $\checkmark/{\rm XY}$ 
  - If this chromosome carries the recessive allele the male will have haemophilia {\checkmark}
  - as there is no other allele that could mask the effect of the recessive allele  $\checkmark$

(3) (7)

KZN Liteosoliancesded	from	Stanmonaceplaysics.com
		JIT Term 1 and 2

Ques	stion 33		
33			
	33.1 -The Bt producing gene is cut from the bacterial DNA $\checkmark$ and		
	-inserted into maize DNA√		
	-This recombinant DNA✓		
	-causes the maize plant to produce the Bt toxin $\checkmark$		
		Any	(3)
	33.2 -Fewer crops damaged $\checkmark$ leads to increased yield $\checkmark$ /more food for		
	people/increased food security/healthier crops/more profit		
	-Reduced need for pesticides $\checkmark$ , farmers save money $\checkmark$ /less toxins to		
	consumers/environment		
	(Mark first TWO only)	(2 x 2)	(4)
		. ,	(7)



**TOPIC: HUMAN RESPONSE TO ENVIRONMENT SOLUTIONS** 

Question

	DESCRIPTION	TERM
1.1	The part of the brain that receives impulses from the maculae	Cerebellum√
1.2	The structure that connects the left and right hemispheres of the brain	Corpus callosum√
1.3	The part of the brain that controls body temperature	Hypothalamus 🗸
1.4	The branch of the autonomic nervous system that restores an increased heart rate back to normal	Parasympathetic ✓
1.5	The part of the nervous system that is made up of cranial and spinal nerves	Peripheral nervous system √
1.6	A part of the nervous system that consist of sympathetic and parasympathetic section	Autonomic √
1.7	A functional gap between two consecutive neuron	Synapse √
1.8	Collective name for the membranes that the brain and spinal cord	Meninges √
1.9	Neurons that carry impulses from receptors	Sensory√
1.10	The part of the skull that protects the brain	Cranium√
1.11	The part of the brain that regulates breathing	Medulla oblongata√
1.12	The disease characterised by the degeneration of brain tissue, leading to memory loss	Alzheimer's disease√
		(12x1) <b>(12)</b>

#### **Question 2**

- 2.1 B Only √√
- 2.2 A Only √√
- 2.3 Both Å and B  $\checkmark \checkmark$
- 2.4 B Only √√
- 2.5 B only√√

#### **Question 3**

#### 3.1

(a)	B √ - Cerebrum √		(2)
(b)	D √ - Cerebellum √		(2)
(C)	A ✓ - Pituitary gland ✓/ Hypophysis		(2)
(d)	C ✓ - Corpus callosum ✓		(2)
(e)	E ✓ - Spinal cord ✓		(2)
		(5x2)	(10)



(5x2) (10)

(11)

#### Question 4

4.1	(a) Spinal cord√	(1)
	(b) Pituitary gland√/hypophysis	(1)
4.2	A	(1)
4.3	Between the two hemispheres of the cerebrum $\sqrt{\sqrt{2}}$	(2)
4.4	(a) - Part D/ medulla oblongata which controls breathing√	(2)
	<ul> <li>was not injured√</li> </ul>	
	(b) - The learner (occasionally) lost balance√	(2)
	<ul> <li>due to no coordination of voluntary movements ✓ by part B</li> </ul>	
	(c) - The loss of memory indicates a possible injury to part $\mathbf{A}$ /the cerebrum	(2)

- which is also responsible for hearing  $\sqrt{}$  (interpretation of) sound

#### **Question 5**

5.1	(a) Myel	in sheath √	(1)
	(b) Axor	ı ✓	(1)
5.2	(a) A √		(1)
	(b) C √		(1)
5.3	D √- Syna	apse √	(2)
			(8)

6.1	Mot	or√ /efferent neuron	(1)
6.2	С —	$A \to A \checkmark \checkmark$ (Must be in the correct sequence)	(2)
6.3	- Im	pulse will be transmitted faster in neuron $1\sqrt{\sqrt{2}}$ slower in neuron 2	
	- be	cause of the presence of myelin sheath in neuron $1$ absence of myelin	
	she	ath in neuron 2	(3)
6.4	- Im	pulses from the receptor√/ sensory neuron	
	- wi	I be transmitted to the central nervous system $\checkmark$ but	
	- the	e impulse will not reach the effector ✓	(3)
			(9)
Quest	ion 7		
7.1	Ref	ex arc√	(1)
7.2	(a)	B- Motor neuron/Multipolar neuron/efferent neuron	(1)
	(b)	C - Interneuron√	(1)
	(c)	E – Sensory neuron/unipolar neuron/afferent neuron√	(1)
7.3	(a)	F√	(1)
	• •	A✓	(1)
7.4	. ,	D√- Synapse√	(2)
1.4	· · /	$G \sqrt{-Myelin sheath} \sqrt{-Myelin sheath}$	
	(u)		(2)
			(10)

QUUG		
0.4	1001	(4)
8.1 8.2	A $\checkmark$ The Impulse does not travel to the brain $\checkmark$ / goes directly from receptor to	(1)
0.2	effector via the spinal cord	(2)
8.3	- Allows the person to respond rapidly $\checkmark$	(2)
0.5	- and without thinking $\checkmark$ /involuntary	
	- to a stimulus V	
	- to prevent damage to the body $\sqrt{*}$	
	1* compulsory + any other 2	(3)
8.4	Nerve ✓/ spinal cord	(1)
8.5	- Its acts as the insulator	
	<ul> <li>and therefore, speed up the nerve impulse / prevents a short circuit</li> </ul>	(2)
8.6	- The person would be able to feel the stimulus $\checkmark$	
	- but would be unable to react $\checkmark$	
	- because the impulse would not be transmitted to the effector $\checkmark$	
	(Any two)	(2)
8.7	- The receptor receives the stimulus V	
	- And convert it to an impulse√	
	- which is transported by the sensory neuron $\checkmark$ via the spinal cord	
	- to the brain $\sqrt{*}$ cerebrum	
	- the brain/cerebrum interprets the impulse $\checkmark^*$ - the brain/ cerebrum sends an impulse to the motor neuron $\checkmark$	
	- which conducts impulse to the effector $\checkmark$	
	- to bring about response $\checkmark$ <b>2* compulsory + any other 4</b>	(6)
		(16)
		()
Ques	tion 9	
9.1	<ul> <li>A rapid involuntary/automatic response√</li> </ul>	
	- to a stimulus√	(2)
9.2	(a) It ensures that the impulse is transmitted in one direction $\checkmark$	(1)
	(b) It is important for balance √/movement	(1)
9.3	The impulse is transmitted from the receptors in the patellar tendon $\checkmark$	
	through the	
	_ sensory neuron ✓ and the	
	_ synapse√ to the	
	_ motor neuron√ and to the	
	_ quadriceps√muscle	(5)
	(Correct sequence is required)	(5) (9)
		(9)

(2) (2)

(2)

(3) (9)

(1)

(1)

(1)

(2)

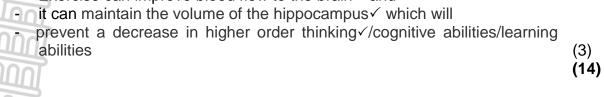
(2)

(2)

**Question 10** 

10.1	- From the dendrites ✓
10.0	- to the axon $\checkmark$
10.2	0 to 1 ✓ ✓ um / 0 to 0,9 um
10.3	As the axon diameter increase the speed of the impulse increases $\sqrt{\sqrt{2}}$
1	OR
10.4	As the axon diameter decrease the speed of the impulse decrease $\sqrt{}$ - The speed of the impulse will decrease $$
10.4	
	<ul> <li>resulting in it taking longer for impulse to reach the effectors ✓</li> <li>and the person will react more slowly ✓</li> </ul>
	- and the person will react more slowly v
Questi	on 11
11.1	<ul> <li>Degeneration //wasting away of nerve tissue</li> </ul>
	<ul> <li>Plaque/proteins formed around the nerve tissue√</li> <li>(Mark first ONE only)</li> <li>Any</li> </ul>
11.2	<ul> <li>(a) Worsening ability to remember new information ✓</li> <li>(Mark first ONE only)</li> </ul>
	(b) Family history√
	(c) - Learning ability√
	- Orientation
	(Mark first TWO only)
11.3	They:
	<ul> <li>Were all females √/considered gender</li> <li>Were between the ages of 65 and 75 √/considered age group/age</li> </ul>
	<ul> <li>Did not show symptoms of Alzheimer's disease√</li> <li>Any</li> </ul>
	(Mark first TWO only)
11.4	They:
	- Used 37 participants√
	<ul> <li>Conducted the investigation three times a week</li> </ul>
	<ul> <li>Conducted the investigation for three months ✓</li> <li>Any</li> <li>(Mark first TWO only)</li> </ul>
11.5	- Investigation did not establish the relationship between exercise and
	development of Alzheimer's disease√
	- since no changes in the nervous tissue were measured $\checkmark$ / period was
	short
	OR
	- There was no control group√
	- to show that it is the exercise that improve blood flow $$ /higher
	order-thinking abilities
	OR De sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-
	<ul> <li>People who did not show symptoms of Alzheimer's disease were used therefore, results do not show provention of development of Alzheimer's</li> </ul>
	<ul> <li>therefore, results do not show prevention of development of Alzheimer's disease ✓</li> <li>Any (1 x 2)</li> </ul>
	FF

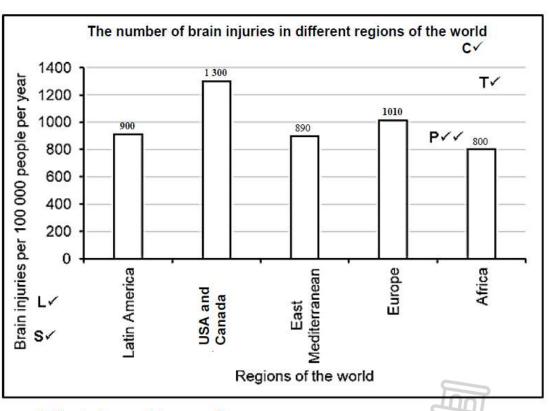
(2)


(1)

(2)

#### KZN Liteosenaleesded from Stanmonaeplaysics.com

JIT Term 1 and 2


#### 11.6 Exercise can improve blood flow to the brain $\checkmark$ and



#### **Question 12**

#### 12.1 Africa√

- 12.2 not all brain injuries are recorded √
  - due to poor health facilities√
- 12.3



# Criteria for marking graph:CriteriaMark allocationBar graph is drawn (T)1Caption of the graph includes both variables (C)1Correct labels on X-axis and Y-axis (L)1Correct scale for Y-axis1Equal spaces between bars and equal width of bars<br/>for X-axis (S)1Plotting: (P)1

1-4 co-ordinates plotted correctly

All 5 co-ordinates plotted correctly

(6)

12

(9)

13.1	(a) Peripheral √ nervous sys	stem		(1)
	(b) Autonomic nervous syst			(1)
13.2	Spinal ✓ nerves			(1)
13.3	.3 E ✓– Parasympathetic nervous system ✓			
13.4	Neurons✓			(1)
13.5	- Meninges√			
- d	- Cranium/bone tissue√			
	- Cerebrospinal fluid√	(Mark first TWO only)	Any	(2)
			-	(8)

14	14.1 -	The p	pathway along which impulses are transmitted	$\checkmark$	(1)
		to br	ring about a reflex action $\checkmark$		(1)
	14.2	(a)	Guillain-Barre syndrome√		
		. ,	(Mark first ONE only)		(1)
		(b)	Damage to the motor neurons $\checkmark$		
			(Mark first ONE only)		(1)
		(c)	The skeletal muscles have a decreased refle	ex response√	
			(Mark first ONE only)		(1)
	14.3		hyporeflexia damage is between the spinal co scles√ while	ord and the skeletal	
		- in	hyperreflexia damage is between the brain an	nd the spinal cord $\checkmark$	
			(Mark first ONE only)		(2)
	14.4	Mye	elin sheath√		(1)
	14.5	- A>	kon is no longer insulated $\checkmark$		
		- Tł	nis causes the speed of transmission of nerve	impulses to decrease√	
		- wł	hich can lead to a delayed response√ and		
		- th	erefore, loss of muscle control $\checkmark$	Any	(3)
					(11)
•				LOON	
Ques	tion 15 15.1		or√neuron	Innat	
15	-				
	15.2		e neuron has many dendrites√/is multipolar e cell body is located at one end√		
			e axon is long and the dendrites are short $\checkmark$		
			k first ONE only)		(1)
	15.2	•	ansmits impulses√		(1)
	15.5		the central nervous system $\checkmark$ /interneuron		
			ne effector√		(3)
	15 4	$C \rightarrow$	$A \rightarrow B \checkmark \checkmark$		(2)
			ple sclerosis√		(2)
	13.3	mant			
					(8)

# KZN Life Sciences ded from Stanmonace playsics.com JIT Term 1 and 2

(6)

Ques	stion 16		
16	16.1 (a)	5õm	(1)
	(b)	800õm	(1)
	16.2 (a)	(The impulse speed) is faster in a myelinated neuron than in an unmyelinated neuron $\sqrt[]{}$	
	<u>entil</u>	OR	
		(The impulse speed) is slower in an unmyelinated neuron than in a myelinated neuron $\surd\checkmark\checkmark$	(2)
	(b)	As the axon diameter increases, the impulse speed is faster $\checkmark\checkmark$	(2)



JIT Term 1 and 2

1	001
Question	12

#### THE EYE

	DESCRIPTION	TERM
1.1	A type of vision in which both eyes are used together to focus on an object	Binocular vision ✓
1.2	The watery fluid that supports the cornea and the front chamber of the eye	Aqueous humor√
1.3	The pigmented layer of the eye that absorbs excess light	Choroid✓
1.4	The series of changes that take place in the shape of the lens and the eyeball in response to the distance of an object from the eye	Accommodation√
1.5	A defect condition of the eye where a person can see nearby objects clearly while distant objects are blurred.	Myopia ✓
1.6	The visual defect characterised by a cloudy lens	Cataract ✓
1.7	The area of the retina that contains the highest concentration of cones	Yellow spot ✓/fovea centralis
1.8	The layer in the eye that is richly supplied with blood vessels	Choroid ✓
1.9	Photoreceptors that react to low light intensity and are responsible for black and white vision	Rods
		(9x1) <b>(9)</b>

#### Question 2

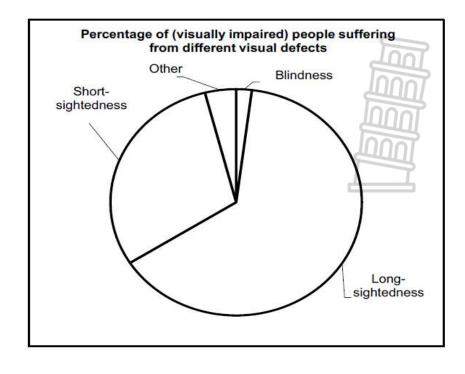
- 2.1 A only ✓ ✓
- 2.2 Both A and  $B\checkmark\checkmark$
- 2.3 Both A and  $B\checkmark\checkmark$
- 2.4 Both A and  $B\checkmark\checkmark$
- 2.5 B only√√

#### **Question 3**

- (a) A ✓- Iris✓
- (b)  $E \checkmark Optic nerve\checkmark$
- (c) C ✓- choroid✓
- (d) D ✓ Fovea / yellow spot ✓
- (e) B ✓- Cornea✓

(5x2) **(10)** 




(6) (14)

Ques	tion 4			
4.1	(a)	Accommodation	$\checkmark$	(1)
	(b)	Pupillary mechar	nism√/ pupillary reflex	(1)
4.2	(a)	B√ and D √	(Mark the first TWO only)	(2)
	(b)	A√ and B√		(2)
4.3	(a)	C✓ and D ✓	(Mark the first TWO only) (Mark the first TWO only)	(2)
	(b)	A ✓ and C ✓		(2)
			(Mark the first TWO only)	(10)

#### **Question 5**

5.1		Long-sightedness√	(1)
5.2	(a) (b)	The lens becomes cloudy/opaque/milky ✓ and there it does not allows the light to pass through ✓ Surgery ✓ (Mark first ONE only)	(2) (1)
5.3		The lens is less convex $\checkmark$ / the eye ball is too short / Cornea is flat. This causes the light rays to fall behind the retina $\checkmark$ Therefore light rays are focused on the retina to form a clear image $\checkmark$	(3)
5.4		Astigmatism√	(1)

#### The percentage of (visually impaired) people suffering from different visual defects 5.5



Rubric for assessing the graph		
Title of the graph shows the relation between the two variables ( <b>H</b> )	1	
Correct calculation to determine the	2:All 4 correct	
proportion ( <b>C</b> )	1:1-3 correct	
Correct proportions for the labelled	2:All 4 sectors correct	
sectors (P)	1:1-3 sectors correct	

6.1	(a) (b)	Curvature✓ of the lens Distance✓ of the pencil		(1) (1)
6.2	Same Same	e light intensity ✓ e person doing experiment ✓ e person taking measuring ✓ I the same optic instrument ✓		
	0	to focus on the pencil√		
		e eye√	(Mark first TWO only)	(2)
6.3		prove the validity $\checkmark$ of the procedure		( )
	•	t results for the factors $\checkmark$ that is being testere with the factors being tested $\checkmark$	ed so the above factors do not	
			(Mark first TWO only)	(2)
6.4		e distance increases√ curvature of the len		(2)
6.5	-	y muscle ✓ ensory ligament✓		(2) <b>(10)</b>

7.1 7.2 7.3	(a) $B\checkmark$ - Iris $\checkmark$ (b) $A\checkmark$ - Sclera $\checkmark$ (a) $2\checkmark$ (b) $3\checkmark$ (c) Circular $\checkmark$ muscles (b) Circular $\checkmark$ muscles	(2) (1) (1) (1) (1) <b>(8)</b>
Quest	ion 8	
8.1 8.2	<ul> <li>Iris√</li> <li>Helps to maintain the shape of the eye√</li> <li>Plays a role in refraction of light√</li> <li>Allows the transmission of light√</li> <li>Prevents desiccation√ of structures in the eye</li> <li>Holds the retina in position√</li> <li>Nourishment√ of the eye</li> <li>Prevents mechanical injury√ in the eye (Mark first TWO only) (Any two) </li> </ul>	(1)

KZN L	ifecs wie	JIT Term 1 and 2	March 2025
8.3 8.4 8.5	- Ai Astig - Be	ea B contains (a high concentration of) photoreceptors ✓/ cones ea C contains no photoreceptors ✓/ no rods & cones matism ✓ ecause the lens will become cloudy ✓/opaque	(2) (1)
		o/less light will enter the eye✓ ng no sight ✓/weak sight	(3)
8.6	- TI - TI - Te - Ti	The ciliary muscle contracts ✓ The ciliary body moves closer to the lens ✓ The suspensory ligaments slacken ✓ The suspensory ligaments slacken ✓ The lens becomes more convex ✓ /rounded the lens becomes more convex ✓ /rounded	
	- To	o focus the light on the retina ✓ Any 6	(6) <b>(15)</b>
	Questi	on 9	
9			
	9.1	(a) Blind spot√	(1)
		(b) Cornea√	(1)
		(c) Sclera√	(1)
	9.2	<ul> <li>Radial muscles contract √ and</li> <li>circular muscles relax√</li> <li>The pupil wideps√/dilates</li> </ul>	
		<ul> <li>The pupil widens√/dilates</li> <li>More light enters the eye√</li> </ul>	(4)
	93	Accommodation√	(1)
		- It is more convex√	(1)
	0	- so that light rays are refracted (bent) more $\checkmark$	
		- to focus on the retina $\checkmark$ /to form a clear image on the retina	(3)
			(11)
Ques	tion 10		
10	10 1	Sub-capsular√ cataracts	(1)
		<ul> <li>Protein structures in the lens start to disintegrate and clump together√</li> <li>The lens becomes opaque√/milky and</li> <li>less/no light passes through√ the lens</li> </ul>	
		-onto the retina $\checkmark$ -therefore less/no stimuli will be converted to impulses $\checkmark$	(5)
	10.3	-The eyeball is too short√ -The image forms behind the retina√	
		-causing blurred vision√ OR	

OR

-The cornea is less convex√ -Less refraction occurs√/the image forms behind the retina -causing blurred vision√ 10.4 -The light rays will be refracted more√ causing the image to fall -on the retina√		(3) (2) <b>(11)</b>		
11	11.1	(a) (b)	Pupil√ Iris√	(1) (1)

(6)		(1)
11.2	-It is a rapid√ -involuntary□ response -to light√	(3)
11.3	-Radial√ muscles -Circular√ muscles <b>(Mark first TWO only)</b>	(2)
11.4	-The pupil dilated√/enlarged so that -more light will enter the eye√ -to improve vision√ -in dim light√	(4)
		(11)



## KZN Life Schences ded from Stanno acepta ysics.com JIT Term 1 and 2

#### EAR



1.1	Receptors that provide information about the gravitational position of the head	Maculae ✓	
1.2	A small device that is inserted in the ear to drain fluids caused by a middle-ear infection	Grommet ✓	
1.3	A structure in the ear that contains receptors that converts pressure waves into nerve impulse in the ear	Cochlea ✓	
1.4	A structure in the ear that absorbs excess pressure waves from the inner ear	Round window ✓	
1.5	A structure in the ear that transmits the nerve impulse to the cerebellum for the balance of the body	Auditory nerve ✓	
1.6	The part of the ear that receives sound waves from the auditory canal	Tympanic membrane√	
1.7	Receptors in the ear that detect changes in speed and direction of movement of the head	Crista√	
1.8	The ossicle that transfers vibrations to the oval window	Stapes/ stirrup√	
1.9	The part in the inner ear where the organ of Corti is located	Cochlea√	
		(1x9) (9)	

#### **Question 2**

2.1 Both A and B only  $\checkmark \checkmark$ 

Semi-circular canal ✓

 $E\checkmark$  - Oval window  $\checkmark$   $D\checkmark$  - Round window  $\checkmark$ 

Hair cells/Organ of Corti√

Auditory nerve√

Cerebellum√

- 2.2 A only ✓ ✓
- 2.3 B only √√
  2.4 None √√

(a)

(b)

(a)

(b)

(a)

(b)

#### **Question 3**

3.1

3.2

3.3

- (1) (1) (2)(2)(1) (1) (8)
- (4x2) (8)

	100	Ϋ́	
4.1	(a)	Semi-circular canals√	(1)
	(b)	Round window√	(1)
4.2	(a)	D√ Eustachian tube√	(2)
	(b)	C√ Cochlea√	(2)
4.3	(a)	F√	(1)
	(b)	A✓	(1)
			(8)

5.1	(a)	Transmits sound waves to the tympanic membrane√/Secretes ear wax (Mark first ONE only)	(1)
	(b)	Equalises pressure on either side of the tympanic membrane√ (Mark first ONE only)	(1)
	(c)	Releases pressure from the inner ear√ (Mark first ONE only)	(1)
5.2	(a)	C√	(1)
	(b)	D√	(1)
5.3	- N	The receptors cannot convert the stimuli into impulses ✓ No impulses/fewer impulses are transmitted to the cerebrum ✓ and the person does not hear anything ✓ /hearing is impaired	(3)
5.4	- te - ti - v	The sound vibrations are transmitted from the large tympanic nembrane ✓ o the smaller oval window ✓ hrough the ossicles ✓ which are arranged from largest to smallest ✓ This concentrates the vibrations ✓, amplifying them	(3)
5.5	- s - T - T - v - T	A change in speed/direction of movement timulates the cristae The stimulus is converted to an impulse The impulse is transmitted to the cerebellum tia the auditory nerve The cerebellum sends impulses to the muscles to restore to restore Any	(4)
			(15)

-The pinna of the ear traps sound waves ✓

-The auditory canal directs the sound waves to the tympanic membrane  $\checkmark$ 

-causing the tympanic membrane to vibrate  $\checkmark$ 

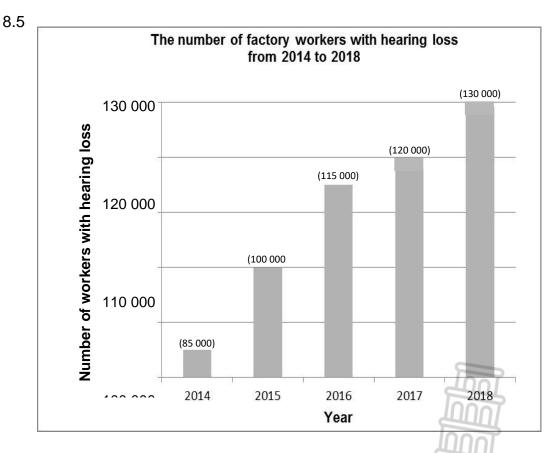
-which causes the ossicles to vibrate √ and

-pass the vibrations to the oval window  $\checkmark$  / amplify the vibrations

-(Pressure) waves are set up in the inner ear ✓ / perilymph/endolymph

- -The organ of Corti is stimulated  $\checkmark$
- -and converts the stimuli into impulses  $\checkmark$
- -which are transmitted by the auditory  $\operatorname{nerve} \checkmark$
- -to the cerebrum  $\checkmark$  for interpretation

Any (7)


(7)

#### **Question 7**

7.1	Coch	lea√	(1)
7.2	(a)	Absorbs excess pressure waves ✓/releases pressure from the	
		inner ear/ prevents an echo	
		(Mark first ONE only)	(1)
	(b)	It converts stimuli/pressure waves into impulses $\checkmark$	
		(Mark first ONE only)	(1)
7.3	- Part free	t A/tympanic membrane will not be able to vibrate ✓/vibrate ly	
	- No/	less vibrations will be carried to the middle $ear \checkmark /ossicles$	(2)
7.4	- Mid	dle ear infections cause fluid build-up in the middle ear $\checkmark$	
	- whic	ch can block the Eustachian tube√	
	- The	grommet will release the pressure $\checkmark$ that will build up in the	
	mide	dle ear/ drain the fluid from the middle ear	
		pressure on either side of the tympanic membrane is alised $\checkmark$	
	- prev	venting the tympanic membrane from rupturing $\checkmark$ and $\square$	(4)
	- allo	wing the ossicles to vibrate freely	
7.5	- The	cristae are stimulated ✓ and	
	- con	vert the stimuli into impulses✓	
		e impulses are sent via the auditory nerve√	
	- whic	ch interprets the information $\checkmark$ and	(4)
	- sen	ds impulses to the skeletal muscles ✓ to restore balance Any	( ')

(13)

Quest	ion 8		
8			
	8.1 Cochlea√		(1)
	8.2 $(130\ 000 - 85\ 000)$ $\checkmark$ x 100 $\checkmark$ = 52.94 $\checkmark$ %		
	85 000		(3)
	<ul> <li>8.3 - More factories ✓ were built increase in supply and de</li> <li>- More workers ✓ were employed</li> <li>- Extended exposure to loud sounds ✓</li> </ul>	emand	
	- Lack of precautionary measures√	Any 1	(1)
	<ul> <li>8.4 - The impulse will not be transmitted ✓ to the cerebrum ✓</li> <li>- and will not be interpreted ✓</li> </ul>	Any 2	(2)



#### (6)

#### Criteria for marking graph:

Criteria	Mark allocation
Type: Bar graph is drawn (T)	1
Caption of the graph includes both variables (C)	1
Correct labels on X-axis and Y-axis (L)	1
Correct scale for Y-axis	
Equal width of bars and spaces (S)	1
Plotting: (P)	
1- 4 co-ordinates are plotted correctly	1
All 5 co-ordinates are plotted correctly	2

JIT Term 1 and 2

Histogram or line graph drawn:

- Lose marks for type of graph and for scale

Transposed axes:

- Can get full credit if axes labels are also swapped and bars are horizontal
- If labels are not corresponding, then lose marks for labels and scale
- Check that the plotting is correct for the given labels



(13)

#### **Question 9**

#### 9

- 9.1 (a) Auditory nerve  $\checkmark$  (1) (b) Cochlea  $\checkmark$  (1)
- 9.2 (a) Absorbs (excess) pressure waves  $\checkmark$  from the inner ear/prevents echo (1)
  - (b) Equalises pressure on either side of the tympanic membrane  $\checkmark$  (1)
- 9.3 The person will suffer from hearing loss  $\checkmark$  */be deaf because
  - no/less vibrations will be transmitted to the oval window  $\checkmark$  and
  - no/less pressure waves will form in the cochlea  $\checkmark$  /inner ear
  - Therefore, there will be less/no stimulation of the organ of  $\mbox{Corti} \checkmark /$  hair cells
  - Less/no impulses will reach the cerebrum  $\checkmark$ 
    - Compulsory mark  $\sqrt{1}$  + Any 3 (4)

- 9.4 Cristae $\checkmark$ 
  - are stimulated by a change in speed/direction of (movement) of the head {\checkmark}
  - Maculae√
  - are stimulated by a change in the position of the head  $\checkmark$
  - to generate an impulse  $\checkmark$
  - which is transmitted by the auditory  $\mathtt{nerve}\checkmark$
  - to the cerebellum  $\checkmark$  for interpretation

(6) Any 6 (14)

#### TOPIC: ENDOCRINE AND HOMEOSTASIS SOLUTIONS

1	DESCRIPTION	TERM
1.1	A gland whose secretion are transported through blood streams.	Endocrine
		gland√
1.2	A system that is responsible for chemical coordination in the body.	Endocrine
		system√
1.3	A hormone that stimulates ovulation in humans	LH√
1.4	The process of maintaining a constant internal environment in the human body	Homeostasis√
1.5	A gland whose secretions are transported through ducts.	Exocrine Gland√
1.6	A hormone that stimulates mammary gland to produce milk.	Prolactin
1.0		
	A hormone that is responsible for osmoregulation in the body.	
1.8	Specialized cells in the pancreas that secretes insulin and glucagon	Islets of Langerhans√
1.9	A hormone responsible for secondary sexual characteristics in males	Testosterone√
1.10	A hormone that is responsible for maintaining salt balance in the blood.	Aldosterone√
1.11	A gland that secretes FSH and LH in females.	Pituitary√
1.12	Chemical messengers produced by endocrine glands.	Hormone√
1.13	A gland located in the neck that secretes thyroxin hormone.	Thyroid gland ✓
1.14	A hormone that controls the metabolic rate in the body.	Thyroxin√
1.15	A hormone that increases the blood glucose level in the body.	Glucagon√
1.16	A hormone that lowers the blood glucose level in the body.	Insulin√
1.17	Promotes the secretions of hormones produced by thyroid glands.	TSH√
1.18	A mechanism that detects imbalances and restores balance in the	Negative
	internal environment	feedback√
1.19	A hormone responsible for growth and development in the body.	Growth
		Hormone√
1.20	The blood vessel in the neck that contains receptors which are	Carotid
	sensitive to carbon dioxide levels in the blood	artery√
1.21	A hormone that stimulates the production of milk in humans	Prolactin√
		(21 x 1) (21)

2.1	None√√
2.2	A only√√
2.3	A only√√
2.4	A only√√
2.5	B only√√
2.6	A only√√

## (6 x 2) **(12)**

(2) (12)

#### Question 3

3.1

3.2

3.1.1	A√ F√	(2)
3.1.2	B√ - Capillaries√/blood vessel C√ - Sweat gland√	(4)
3.1.3	(a) $ADH \checkmark /antidiuretic hormone/vasopressin$	(1)
	(b) Kidney√	(1)
		(8)
3.2.1	1 – Pituitary gland√	
	4 - Adrenal gland√	(2)
3.2.2	a) C√ Pancreas√	

- b) A $\checkmark$  Pituitary gland $\checkmark$
- c)  $B\checkmark$  Thyroid gland $\checkmark$ d)  $D\checkmark$  Adrenal gland $\checkmark$  (8)
- 3.2.3 They respond to internal/external stimulus√
   They protect organisms √
  (Mark first TWO only)

4.1			
	(a)	Hypothalamus√	(1)
	(b)	Pituitary√ gland	(1)
	(c)	ADH√/ antidiuretic hormone	(1)
	(d)	Nephron√	(1)
4.2	Dec	crease√	(1)
			(5)

March	2025
١	March

**Question 5** 5.1 Sweat gland√ (1) 5.2 - Structure B will constrict √ / vasoconstriction occurs - less blood flows towards the surface ✓ of the skin - less heat is lost ✓ through the surface of the skin (3) - temperature increases √ / returns to normal 5.3 - Enzymes function optimally√ at normal body temperature√ - enzymes/proteins will denature√ at high temperatures√ - enzymes will become inactive√ at low temperatures√ (2) (Mark first TWO only) (6)

6.1	(a) Thermoregulation√	(1)
	(b) Hypothalamus√	(1)
6.2	(a) Sweat gland√	(1)
	(b) Capillary√/blood vessel	(1)
6.3	$\frac{(37,4-35,4)}{37,4} \int 4 \times 1004 = 5,354\%$	(3)
6.4	<ul> <li>Skin temperature decreased √/lowers from 37,4 °C to 35,4 °C</li> <li>because part Q dilated √/vasodilated</li> <li>more blood to flow to the (surface of the) skin √</li> <li>causing P to became (more) active √/produced more sweat</li> <li>causing more heat to be lost √ to the environment</li> <li>through evaporation √/ radiation/ convection</li> </ul>	(6) <b>(13)</b>

Questi	ion 7	
7.1	(a) - insulin√ - glucagon√ (Mark first TWO only)	(1) (1)
	(b) Pancreas√	(1)
7.2	08:00 and 09:00✓	(1)
7.3	<ul> <li>Blood glucose levels increased√</li> <li>to above 7,1√ mmol/L to 8,4 mmol/L</li> </ul>	(2)
7.4	<ul> <li>blood glucose levels decreased to below 3,9√ mmol/L at 14:00</li> <li>stimulating the islets of Langerhans√/ pancreas</li> <li>to secrete glucagon√</li> <li>which stimulates the conversion of glycogen to glucose√</li> <li>therefore, increasing blood glucose levels√ at 15:00 Any</li> </ul>	(4)
7.5	- levels would have remained high√ - for a longer period√	(2) <b>(12)</b>
Questi	ion 8	
8.1.1	Adrenal gland√	(1)
8.1.2	On top of the kidneys√	(1)
8.1.3	<ul> <li>it stimulates the breathing muscles√</li> <li>and this increase the rate/depth of breathing√ so that</li> <li>more oxygen is inhaled√</li> <li>it stimulates the heart√ muscle</li> <li>causing an increase in heart rate√/ blood pressure so that</li> <li>oxygen and glucose are transported faster√</li> </ul>	(5)
Questi	ion 9	
9.1	(a) Kidney√	(1)
	(b) Endocrine√ system	(1)
9.2	<ul> <li>It releases hormones√</li> <li>directly into the blood√/and it is ductless</li> <li>(Mark first TWO only)</li> </ul>	(2)
9.3	<ul> <li>Low salt levels are detected by receptor cells ✓ in the kidney</li> <li>Adrenal glands are stimulated ✓ to secrete</li> <li>more aldosterone ✓</li> <li>which stimulates the renal tubules ✓</li> <li>to be more permeable to salt ✓</li> <li>This increases the reabsorption of salt ✓ and 72</li> </ul>	

73

March 2025

KZN Life Sciencesded	from	Stanmonaceplaysics.com	
----------------------	------	------------------------	--

- More glucose is used√ - Less glucose is stored√

- Fat is broken down√ causing weight loss

JIT Term 1 and 2

	$\sim$ the salt levels in the blood increase $\checkmark$ /return back to normal		
9.4	Any The secretion of ADH $\checkmark$ will increase $\checkmark$ which will increase the permeability $\checkmark$ of the renal tubules $\checkmark$ in <b>X</b>	(5)	
ł	so that more water is reabsorbed $\checkmark$ from the filtrate	(5) <b>(14)</b>	)
Questi	on 10		
10.1 10.2	<ul> <li>(a) Growth hormone ✓</li> <li>(b) Prolactin√</li> <li>(a) Adrenalin√</li> </ul>		(1) (1) (1)
10.2	<ul> <li>(d) Furtherman</li> <li>(b) - more air/oxygen will be inhaled√</li> <li>- blood will be pumped faster√</li> <li>- therefore, transporting more oxygen and glucose√</li> <li>- to the skeletal muscles√</li> <li>- which will increase the rate of cellular respiration√/metabolism</li> </ul>	A. D. Y.	
10.3	<ul> <li>part B/ the medulla oblongata is stimulated√</li> <li>and sends impulses to the heart√ and to</li> <li>the breathing muscles√/ intercostal muscles and diaphragm</li> <li>more blood is transported to the lungs√</li> <li>and the carbon dioxide is exhaled faster√</li> <li>and the carbon dioxide levels return to normal√</li> </ul>	Any Any	(4)
Quest	tion 11		
11.1	50√		(1)
11.2	$(25 - 5) = 400 \checkmark \%$ $= 400 \checkmark \%$ $(24 - 5) = 400 \checkmark \%$ $(24 - 5) = 400 \checkmark \%$ $(24 - 5) = 400 \checkmark \%$ $= 380 \checkmark \%$ Accept a range between: - 24 and 25 for the first value and - 380% and 400% for the answer		(3)
11.3	- Thryotoxicosis increases the metabolic rate $\checkmark$ /rate of cellular respiration	on	(3)

- Any

(3)

11.4	<ul> <li>The high levels of thyroxin√ in the blood causes the pituitary gland√/hypophysis</li> <li>to secrete less TSH√ into blood</li> <li>causing the level of TSH to decrease√</li> </ul>	(4) <b>(11)</b>
12.	1 50°C	(1)
12.2	2 As the temperature increases the average rate of blood-flow to the skin increases	(2)
12.3	$\frac{11-4}{4} \rightarrow x \ 100 = 175 \%  \text{OR}  \frac{7}{4} \rightarrow x \ 100 = 175 \%$	(3)
12.4 12.5	<ul> <li>vasodilation occurs ✓ /blood vessels dilate</li> <li>to increase the rate of blood flow ✓ /more blood flows to the skin</li> <li>so that more heat ✓ / sweat can be lost</li> </ul>	(4)
	<ul> <li>Less blood flows to the skin√ at low temperatures</li> <li>More carbon dioxide√/waste products accumulate in the cells of the tissue and cells may die</li> </ul>	(2)
Questi	on 13	
-	<ul> <li>Body temperature increases√</li> <li>Pulse rate increases√</li> <li>30√ minutes</li> <li>Vasoconstriction</li> <li>Less blood reaches the surface of the skin√</li> <li>and less heat is lost√</li> <li>OR</li> <li>Less blood reaches the sweet glands√</li> <li>and less heat is lost√</li> <li>Increase in metabolism</li> </ul>	(2) (1)
13.4	<ul> <li>an increase in metabolism results in an increase in respiration√</li> <li>which generates more heat√</li> <li>amount of energy drink√</li> <li>length of time when measurements were taken√</li> <li>amount of caffeine in the energy drink√</li> </ul>	(4)
	- type of energy drink√	Any (2)

March 2025

JIT Term 1 and 2

#### Question 14

14.1 The level increases√

(1)

Fewer larger meals	More smaller meals	
<ul> <li>Maximum blood insulin concentration is higher√/is between 160-180 mg/dl</li> </ul>	<ul> <li>Maximum blood insulin concentration is lower√/between 120- 140 mg/dl</li> </ul>	
<ul> <li>Minimum blood insulin concentration is lower√/between 20- 30 mg/dl</li> </ul>	- Minimum blood insulin concentration is higher√	
- Blood insulin concentration rises and falls three times a day√/less often	- Blood insulin concentration rises and falls six times a day√	
- Large changes in insulin concentration√/between 140-160 mg/dl	- Small changes in insulin concentration √/between 80-100 mg/dl	
- Insulin concentration drops below minimum glucose concentration√	- Insulin concentration varies above and below minimum glucose concentration√	
	<ul> <li>Maximum blood insulin concentration is higher√/is between 160-180 mg/dl</li> <li>Minimum blood insulin concentration is lower√/between 20- 30 mg/dl</li> <li>Blood insulin concentration rises and falls three times a day√/less often</li> <li>Large changes in insulin concentration√/between 140-160 mg/dl</li> <li>Insulin concentration drops below</li> </ul>	

#### (Mark first TWO only)

1 for table + Any 2 x 2

(5)

(4)

(10)

- 14.3 a diabetic may not produce sufficient insulin√
  - when eating many smaller meals, less glucose√ enters the blood
  - less insulin√ is needed
  - to return blood glucose to normal  $\checkmark$

#### OR

- a diabetic may not produce sufficient insulin  $\checkmark$
- when eating fewer larger meals, more glucose√ enters the blood
- more insulin  $\checkmark$  is needed
- to return blood glucose to normal  $\checkmark$

#### **Question 15**

- 15.1 the pituitary gland√ is stimulated
  - to secrete less TSH√
  - low TSH levels causes the thyroid gland  $\checkmark$
  - to secrete less thyroxin  $\checkmark$
  - thyroxin levels return to normal  $\checkmark$



- less glucose will be broken  $\operatorname{down}\nolimits\checkmark$
- and more glucose will be converted and stored as fat√/glycogen

(3) (8)

(5)

#### **Question 16** 16.1 Adrenalin√ (1) 16.2 - Increases the heart rate√ increases blood pressure√ - stimulates the conversion of glycogen into glucose√ - increases the blood supply to the heart √/skeletal muscles - decreases blood flow to the digestive system√ - decreases blood flow to the skin√ - increases muscle tone√ - increases the rate/depth of breathing√ - increases the rate of respiration $\sqrt{}$ /metabolism - increases the diameter of the pupils $\checkmark$ (Mark first THREE only) Anv (3)- blood glucose levels rise√ above normal 16.3 - the pancreas √ / Islets of Langerhans - secretes insulin v into the blood - which travels to the liver√/muscles cells - and stimulates them to absorb glucose v from the blood - and to convert the excess glucose into glycogen $\checkmark$ - which decreases the blood glucose levels v to normal Any (5) (9) **Question 17** 17.1 To ensure that the change in blood glucose levels was due to insulin only $\sqrt{2}$ (2)

17.2 It stimulates the absorption of glucose v from the blood into the ce
---------------------------------------------------------------------------

- It stimulates the liver  $\sqrt{muscles}$  to convert glucose to glycogen  $\sqrt{muscles}$
- It causes increased cellular respiration //metabolic rate which utilises glucose Any (2 x 2)

#### (Mark first TWO only)

- 17.3 Group Y√
- 17.4 At 0 mins, the blood glucose level for group Y was within the normal range  $\checkmark$  /the blood glucose level for group **X** was high
  - At 90 minutes the blood glucose level for group Y returned to normal //the blood glucose levels for group X remained high
  - After the ingestion of glucose, the insulin level for group Y increased  $\sqrt{}$ /the insulin level for group X decreased (3)

(10)

(4)

(1)

JIT Term 1 and 2

Quest	ion 18			
18.1	(a)	Negative feedback√ mechanism		(1)
	(b)	Thyroid√ gland		(1)
	(c)	Goitre√		(1)
18.2		It regulates the metabolic rate ✓ It affects the growth and functioning of the heart ✓/nervo system It influences bone development ✓/muscle control (Mark first ONE only)	ous Any	(1)
18.3	-	The thyroxin level is low√ The pituitary gland is stimulated√		
	-	More TSH $\checkmark$ is secreted		
	-	which stimulates gland Y√/the thyroid gland to secrete more thyroxin√	Any	(4)
18.4	-	A lower metabolic rate √/less cellular respiration causes decreased usage of nutrients √/glucose and		
	-	excess nutrients/fat will be stored in the body $\checkmark$	Any	(2) <b>(10)</b>

#### **Question 19**

#### 19.1 When the carbon dioxide levels rise above normal:

- Receptor cells in the (carotid artery) in the neck/aorta are stimulated {\checkmark}
- to send impulses to the medulla oblongata  $\checkmark$
- the medulla oblongata send an impulses to the breathing muscles  $\checkmark$
- to contract more actively√
- and increase rate of breathing√
- an impulse is also sent to the heart  $\checkmark$
- to beat faster√
- more carbon dioxide is taken to the lungs√/exhaled
- the carbon dioxide levels return to normal  $\checkmark$



Any (7)

- 20.1 **Role of the endocrine system in providing energy:** 
  - more adrenalin√ is secreted
  - by the adrenal glands√
  - increases blood glucose //increase heart rate/increase breathing rate/ dilate
  - blood vessels to essential organs
  - more glucagon√ is secreted
  - by the pancreas // islets of Langerhans
  - increase blood glucose√
  - more TSH  $\checkmark$  is secreted
  - by the pituitary gland√
  - to increase thyroxin production  $\checkmark$
  - more thyroxin√ is secreted
  - by the thyroid gland√
  - to increase the body's metabolic rate  $\checkmark$ /rate of respiration

Any (9)

