

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

Stanmorephysics.com

MATHEMATICS P2

JUNE EXAMINATION

2025

Stannorephysics.com

MARKS: 150

TIME: 3 hours

This question paper consists of 13 pages, 1 information sheet and an answer book of 19 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions in the ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 7. An information sheet with formulae is included at the end of the question paper.
- 8. Write neatly and legibly.

QUESTION 1

The box-and-whisker diagram below illustrates the distribution of the Mathematics June examination marks, out of 150, for a class of 32 grade 12 learners. The median of the marks is 65 and the mean is 71,75.

- 1.1 If none of the learners had a mark of 90 out of 150, how many learners had marks of higher than 90? (1)
- 1.2 Describe the skewness of the data. (1)
- 1.3 Calculate the range of the data. (2)
- 1.4 There is only one candidate who had a mark of 125 out of 150. On checking the answer book of this candidate, it was discovered that a mistake was made when adding his marks. The mistake was corrected, and his total mark then changed to 142 out of 150.

Determine the resulting value of each of the following:

- 1.4.1 the median (1)
- 1.4.2 the mean (3)

[8]

[13]

QUESTION 2

A group of teenagers were surveyed on how many hours they spent using social media over a period of 7 days. The results are tabulated below.

NUMBER OF HOURS SPENT USING SOCIAL MEDIA OVER A PERIOD OF 7 DAYS	NUMBER OF LEARNERS	
$0 \le x < 10$	4	
$10 \le x < 20$	5	
$20 \le x < 30$	9	
$30 \le x < 40$	13	
$40 \le x < 50$	18	
$50 \le x < 60$	11	
$60 \le x < 70$	7	

2.1	How many teenagers were surveyed?	(1)
2.2	Write down the modal class.om	(1)
2.3	Calculate the estimated mean.	(3)
2.4	Complete the cumulative frequency table provided in the ANSWER BOOK.	(2)
2.5	Draw a cumulative frequency curve (ogive) to represent the data on the grid provided in the ANSWER BOOK.	(3)
2.6	Use the cumulative frequency curve (ogive) to estimate the number of teenagers from this group who spent on average between 2 and 4 hours per day using social media.	(3)

QUESTION 3

In the diagram below, G, J(12;-3) and H(14;-9) are vertices of \triangle GHJ. The equation of line GH is $y = -\frac{2}{3}x + c$.

- 3.1.1 Calculate the angle of inclination of line JH. (4)
- 3.1.2 Calculate the size of \hat{H} . (3)

In the diagram, A(-5;1) and C(-3;9) are vertices of $\triangle ADC$ and $\triangle ABC$.

B and D are points on the y-axis such that $\triangle ABC = \triangle ADC = 90^{\circ}$.

- 3.2.1 Calculate the coordinates of M, the midpoint of AC. (2)
- 3.2.2 Calculate the length of the radius of the circle passing through A, C and D. (3)
- 3.2.3 Calculate the coordinates of D. (5)
- 3.2.4 Write down the coordinates of B. (2)

[19]

QUESTION 4

4.1 In the diagram below, the circle with centre C touches the y-axis at A(0; 2).

A straight line with equation 3x+4y+7=0 cuts the circle at B(-1;-1) and D.

- 4.1.1 Determine the equation of the tangent to the circle at B. (4)
- 4.1.2 Determine the equation of the circle in the form $(x-a)^2 + (y-b)^2 = r^2$. (5)
- 4.1.3 Determine the coordinates of the image of B, after reflection of the circle in the line y = 2. (2)
- 4.2 A circle with equation $x^2 4x + y^2 + 6y 51 = 0$ is drawn in a Cartesian plane.
 - 4.2.1 Determine the coordinates of the centre of the circle and the length of its radius. (4)
 - 4.2.2 Another circle with equation $x^2 + y^2 = r^2$ is drawn in the same Cartesian plane and touches the circle with equation $x^2 4x + y^2 + 6y 51 = 0$ internally.

Calculate the value of r. Give your answer correct to 2 decimal digits. (4)

[19]

QUESTION 5

Given: A(-2; y), a point in a Cartesian plane, with $OA = \sqrt{13}$ and θ the angle between OA and the positive x-axis.

5.1.1 Without the use of a calculator, determine the value of:

$$(a) y (2)$$

(b)
$$\sin \theta$$
 (1)

- 5.1.2 Use a calculator and determine the size of angle θ . (2)
- 5.2 Simplify the following without the use of a calculator:

$$\frac{\tan(-60^{\circ}).\cos(-156^{\circ}).\cos 294^{\circ}}{\sin 852^{\circ}} \tag{7}$$

5.3 Given:
$$\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x} = 2 \tan 2x.$$

5.3.2 more For which values of
$$x$$
 is $2 \tan 2x$ undefined? (2)

If $\cos 40^\circ = p$, determine the value of the following in terms of p, without the use of a calculator:

$$\cos 10^{\circ} + \cos 70^{\circ} \tag{4}$$

Solve for x, in the interval $x \in (-180^\circ; 180^\circ]$, if $4\sin x \cos x = 3\sin^2 x$. (6)

5.6 If $\tan \theta = m$, in any right-angled triangle:

5.6.1 Show that $\sin 2\theta = \frac{2m}{m^2 + 1}$. (3)

Hence, or otherwise, calculate the maximum value of $\frac{(m+1)^2}{m^2+1}$. (3)

[34]

QUESTION 6

In the diagram below, the graphs of $f(x) = a \sin 2x$ and $g(x) = \tan bx$ for $x \in [-90^\circ; 90^\circ]$ are drawn. $P(-68,53^\circ; -0,68)$ and Q are points of intersection of f and g.

6.1 Write down the:

6.1.1 value of
$$a$$
 (1)

6.1.2 value of
$$b$$
 (1)

6.1.4 value of
$$k$$
 if $f(x+k) = 2\sin^2 x - 1$. (2)

6.2 For which value(s) of x, in the given interval, will
$$x.\sqrt{g(x)-f(x)} > 0$$
? (3)

[9]

QUESTION 7

In the diagram, A, B and C lie in the same horizontal plane. CD is a vertical lamp post. The angle of depression from D to B is 30° . $\triangle ABC = BAC = 90^{\circ} - \beta$ and $\triangle CD = h$ metres.

Show that $AB = 2\sqrt{3}.h\sin\beta$.

[7]

GIVE REASONS FOR YOUR STATEMENTS IN QUESTIONS 8, 9 AND 10.

QUESTION 8

In the diagram, O is the centre of circle ABCDE. CE is a diameter. AB || EC. BE, AC, BO and OD have also been drawn.

 $\hat{C} = 26^{\circ}$.

- 8.1 Write down, with reasons, three other angles each equal to 26°. (5)
- 8.2 Calculate the size of \hat{O}_1 . (2)
- Calculate the size of BDE. 8.3 (3)

[10]

QUESTION 9

9.1 In the diagram $\triangle PQR$ is drawn. Line ST intersects PQ and PR at S and T respectively, such that ST \parallel QR.

Prove the theorem which states that a line drawn parallel to one side of a triangle divides the other two sides proportionally, i.e. $\frac{PS}{SQ} = \frac{PT}{TR}$. (6)

9.2 In the diagram below, L is a point on side KM of Δ KMQ. N and P are points on side MQ, such that NL || PK and LP || KQ. MN = 20 units and NP = 12 units.

9.2.1 Determine the ratio $\frac{KL}{LM}$ in its simplest form. (2)

9.2.2 Calculate the length of PQ. (3)

9.2.3 Determine the ratio $\frac{KQ}{LP}$ in its simplest form. (3)

[14]

QUESTION 10

In the diagram, O is the centre of circle BCEF. ABD is a tangent to the circle at B, and COE is a diameter. Lines AFO, BF, BE and BC are drawn. AFO cuts BE in G. AO || BC.

10.1 Prove that:

10.1.3
$$\triangle OEG \parallel \triangle BAG$$
 (3)

10.2 If
$$BC = 10$$
 units and $AG = 35$ units, calculate the length of EO . (7)

[17]

TOTAL: 150

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+m) \qquad A = P(1-n) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1 \qquad S_\infty = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad \text{Indiagorable } y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In\Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \Delta ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \cos \alpha + \cos \alpha + \cos \alpha \cdot \cos \alpha + \cos \alpha \cdot \cos \alpha + \cos \alpha + \cos \alpha \cdot \cos \alpha + \cos \alpha \cdot \cos \alpha + \cos \alpha + \cos \alpha \cdot \cos \alpha + \cos \alpha + \cos \alpha \cdot \cos \alpha + \cos \alpha + \cos \alpha \cdot \cos \alpha + \cos$$

 $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$

 $\hat{v} = a + bx$

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

MATHEMATICS P2

JUNE 2025 EXAMINATION

MARKING GUIDELINES

Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

tanm GRADE 12 .com

MARKS: 150

These marking guidelines consist of 13 pages.

Mathematics/P2 lownloaded from Stanmorephysics.com

Marking Guideline

QUESTION 1

1.1	8 learners	✓A answer
	ALL STATES OF THE STATES OF TH	(1)
1.2	Skewed to the right OR positively skewed	✓A answer
Texas I de	1000	(1)
1.3	Range = $125-34$	✓A 125-34
	= 91 Answer only: Full marks	✓A answer
	Full Illaiks	(2)
1.4.1	median = 65 OR the value does not change	✓A answer
		(1)
1.4.2	Total of learners' marks = $71,75 \times 32 = 2296$	\checkmark A 71,75×32 = 2296
	New total of learners' marks = $2296 + (142 - 125) = 2313$	✓CA new total of learners'
		marks
	New mean $=\frac{2313}{32} = 72,28$	✓CA answer
	34	(3)
	Company house of the company	[8]

QUESTION 2

1000 M				✓A answer	(1)
$40 \le x < 50$			✓A answer	(1)	
$\overline{x} = \frac{5 \times 4 + 15 \times 5 + 25 \times 9 + 35 \times 13 + 45 \times 18 + 55 \times 11 + 65 \times 7}{67}$			✓A numerator	(1)	
$\overline{x} = \frac{2645}{67}$ = 39,48	07			✓CA denominator ✓CA answer	(3)
					(5)
NUMBER OF HOURS ON SOCIAL MEDIA	FREQUENCY	CUMULATIVE FREQUENCY			
$0 \le x < 10$	4	4			
$10 \le x < 20$	5	9			
20≤x<30	9	18		/A 0. 19. 21	
$30 \le x < 40$	13	31		VA 9; 18; 31	
40 ≤ x< 50	18	49			
$50 \le x < 60$	11	60		✓CA 49; 60; 67	
$60 \le x < 70$	7	67		8 15	
TOTAL	67				(2)
	$\overline{x} = \frac{5 \times 4 + 15 \times 5 + 25 \times 9}{67}$ $\overline{x} = \frac{2645}{67}$ $= 39,48$ NUMBER OF HOURS ON SOCIAL MEDIA $0 \le x < 10$ $10 \le x < 20$ $20 \le x < 30$ $30 \le x < 40$ $40 \le x < 50$ $50 \le x < 60$ $60 \le x < 70$	$ \overline{x} = \frac{5 \times 4 + 15 \times 5 + 25 \times 9 + 35 \times 13 + 45 \times 18 + 67}{67} $ $ \overline{x} = \frac{2645}{67} $ $ = 39,48 $ NUMBER OF HOURS ON SOCIAL MEDIA $ 0 \le x < 10 $ $ 10 \le x < 20 $ $ 20 \le x < 30 $ $ 9 $ $ 30 \le x < 40 $ $ 13 $ $ 40 \le x < 50 $ $ 18 $ $ 50 \le x < 60 $ $ 11 $ $ 60 \le x < 70 $	$\overline{x} = \frac{5 \times 4 + 15 \times 5 + 25 \times 9 + 35 \times 13 + 45 \times 18 + 55 \times 11 + 65 \times 7}{67}$ $\overline{x} = \frac{2645}{67}$ = 39,48 NUMBER OF HOURS ON SOCIAL MEDIA $0 \le x < 10$ $10 \le x < 20$ $20 \le x < 30$ $30 \le x < 40$ $30 \le x < 40$ $40 \le x < 50$ 18 $40 \le x < 50$ 18 $50 \le x < 60$ $60 \le x < 70$ 7 67 Answ. Full media CUMULATIVE FREQUENCY FREQUENCY 18 4 4 4 4 4 6 6 6 6 6 6 6 6	$\overline{x} = \frac{5 \times 4 + 15 \times 5 + 25 \times 9 + 35 \times 13 + 45 \times 18 + 55 \times 11 + 65 \times 7}{67}$ $\overline{x} = \frac{2645}{67}$ = 39,48 Answer only: Full marks NUMBER OF HOURS ON SOCIAL MEDIA $0 \le x < 10$ $10 \le x < 10$ $10 \le x < 20$ $20 \le x < 30$ 9 18 $30 \le x < 40$ 13 31 $40 \le x < 50$ 18 49 $50 \le x < 60$ 11 60 $60 \le x < 70$ 7	$\overline{x} = \frac{5 \times 4 + 15 \times 5 + 25 \times 9 + 35 \times 13 + 45 \times 18 + 55 \times 11 + 65 \times 7}{67}$ $\overline{x} = \frac{2645}{67}$ $= 39,48$ Answer only: Full marks Answer CA answer CA answer CA answer CA answer Answer CA answer CA answer CA 4 4 10 \leq x < 10 4 4 4 10 \leq x < 20 5 9 20 \leq x < 30 9 18 30 \leq x < 40 13 31 40 \leq x < 50 18 49 50 \leq x < 60 11 60 60 \leq x < 70 7 67

Mathematics/P2nloaded from Stanmorephysics.com

Marking Guideline

Mathematics/P2 lownloaded from Stanmorephysics.com

Marking Guideline

3.1.1	$m_{JH} = \frac{-3 - (-9)}{12 - 14}$ $= -3$ $\tan \theta = m_{JH} = -3$ $\therefore \theta = 180^{\circ} - 71,57^{\circ} = 108,43^{\circ}$ $m_{GH} = \frac{-2}{3} = \tan \beta$ $\therefore \beta = 180^{\circ} - 33,69^{\circ} = 146,31^{\circ}$	✓A substitution in gradient formula ✓CA gradient of JH ✓CA $\tan \theta = -3$ ✓CA answer ✓A $\tan \beta = \frac{-2}{3}$ ✓A $\beta = 146,31^{\circ}$
	$\hat{H} = 146,31^{\circ} - 108,43^{\circ}$ = 37,88°	✓CA answer (3)
3.2.1	M(-4;5)	\checkmark A x-value \checkmark A y-value (2)
3.2.2	AC is a diameter, \therefore CM is a radius $CM = \sqrt{(-3 - (-4))^2 + (9 - 5)^2}$ $= \sqrt{17}$	✓A identifying AC as diameter ✓CA substitution ✓CA answer (3)
	OR AC is a diameter, : AM is a radius $AM = \sqrt{(-5 - (-4))^2 + (1 - 5)^2}$ $= \sqrt{17}$	OR ✓A identifying AC as diameter ✓CA substitution ✓CA answer (3)
	OR AC is a diameter $AC = \sqrt{(-3 - (-5))^2 + (9 - 1)^2}$ $= 2\sqrt{17}$ $\therefore \text{ radius} = \sqrt{17}$ Don't penalise if it is not written that AC is the diameter, but it is used.	OR ✓A identifying AC as diameter ✓A substitution ✓CA answer (3)

Mathematics/P2 Normal Stanmore Physics.com

Marking Guideline

3.2.3	$m_{\rm AD} \times m_{\rm CD} = -1$	\checkmark A $m_{AD} \times m_{CD} = -1$
	$\frac{1-y}{-5-0} \times \frac{9-y}{-3-0} = -1$	✓A substitution
	(1-y)(9-y) = -15	
	$y^{2}-10y+24=0$ $(y-6)(y-4)=0$	✓CA standard form
	(y-6)(y-4)=0	✓CA factors
	y=6 or $y=4$	701
	D(0;6)	✓CA answer (5)
3.2.4	B(0;4)	✓✓CA answer
		(2)
		[19]

QUESTION 4

4.1.1	Equation of diameter (radius): $y = -\frac{3}{4}x - \frac{7}{4}$	
	$\therefore m_{\text{radius}} = -\frac{3}{4}$	✓A gradient of radius
	$\therefore m_{\text{tangent}} = \frac{4}{3}$	✓CA gradient of tangent
	Equation of tangent: $y = \frac{4}{3}x + c$	
	Substitute $(-1;-1)$: $-1 = \frac{4}{3}(-1) + c$	✓CA substitution of <i>m</i> and point
	$c = \frac{1}{3}$ $\therefore y = \frac{4}{3}x + \frac{1}{3}$	✓CA answer (4)
4.1.2	y-coordinate of $C = y$ -coordinate of $A = 2$	\checkmark A y – coordinate of C
	For x-coordinate of C, substitute $y = 2$ into $3x+4y+7=0$: 3x+4(2)+7=0	\checkmark A substitution in $3x + 4y + 7 = 0$
	$\therefore C(-5;2)$ $x = -5$	\checkmark A x – coordinate of C
	$r^2 = [-5 - (-1)]^2 + [2 - (-1)]^2 = 25$	✓CA calculation of r^2
	Equation of the circle: $(x-a)^2 + (y-b)^2 = r^2$ $(x+5)^2 + (y-2)^2 = 25$	✓CA answer (5)
4.1.3	Vertical distance from B to $y=2:3$ units Vertical distance from B' to $y=2:3$ units \therefore B' is 6 units higher than B.	
	Image of B: $(-1;5)$	✓ A x-coordinate ✓ A y-coordinate
		(2)

Mathematics/P2 lownloaded from Stanmorephysics.com

Marking Guideline

1995		
4.2.1	$x^2 - 4x + y^2 + 6y - 51 = 0$	
	$(x-2)^2 + (y+3)^2 = 51 + 4 + 9$	
	$(x-2)^2 + (y+3)^2 = 64$	✓A LHS of equation
	TOO STATE OF THE PARTY OF THE P	✓A RHS of equation
	centre: $(2;-3)$	✓CA coordinates of centre
	radius = 8 units	✓CA length of radius
		(4)
4.2.2	Coordinates of centre of $x^2 + y^2 = r^2$: (0;0)	36 - 3
	Distance between centres of two circles = $\sqrt{(2-0)^2 + (-3-0)^2}$	✓A substitution
	$=\sqrt{13}$	✓CA distance between centres
	When touching internally:	
	Distance between centres = radius of circle ₁ - radius of circle ₂	
	$\sqrt{13} = 8 - r$	\checkmark CA $\sqrt{13} = 8 - r$
	$r = 8 - \sqrt{13}$	2000-0000 X (2000) 1000
	Stanmorephy 4,39 whits	✓CA answer
		(4)
		[19]

QUESTION 5

5.1.1	$y^2 = r^2 - x^2 [Pythagoras]$	
(a)	$=\left(\sqrt{13}\right)^2-\left(-2\right)^2$	✓A substitution
	= 9	
	y = -3	✓CA answer
		(2)
5.1.1 (b)	$\sin \theta = \frac{-3}{\sqrt{13}}$	✓CA answer (1)
5.1.2	ref. ∠: 56,31°	✓CA 56,31°
	$\therefore \theta = 180^{\circ} + 56,31^{\circ} = 236,31^{\circ}$	✓CA answer (2)
5.2	$\frac{\tan(-60^{\circ}).\cos(-156^{\circ}).\cos 294^{\circ}}{\sin 852^{\circ}}$ $= \frac{-\tan 60^{\circ}.\cos 204^{\circ}.\cos 66^{\circ}}{\sin 132^{\circ}}$ $= \frac{-\tan 60^{\circ}\cos 24^{\circ}.\sin 24^{\circ}}{\sin 48^{\circ}}$ $= \frac{\tan 60^{\circ}.\cos 24^{\circ}.\sin 24^{\circ}}{2\sin 24^{\circ}\cos 24^{\circ}}$ $= \frac{\tan 60^{\circ}}{2}$ $= \frac{\sqrt{3}}{2}$	✓A -tan 60° ✓A cos 66° ✓A -cos 24° ✓A sin 24° ✓A sin 48° ✓A 2sin 24°.cos 24° ✓CA answer (7)
		[(7)]

Marking Guideline

Marking Guideline	
OR	OR
$\tan(-60^{\circ}).\cos(-156^{\circ}).\cos 294^{\circ}$	
sin 852°	
-tan 60°.cos 204°.cos 66°	✓A -tan 60° ✓A cos 66°
$=\frac{\sin 132^{\circ}}{\sin 132^{\circ}}$	A -tailoo A cosoo
$-\tan 60^{\circ}$. $-\cos 24^{\circ}$. $\cos 66^{\circ}$	✓A -cos 24°
sin132°	✓A sin132°
tan 60°. sin 66°. cos 66°	✓A sin 66°
$= \frac{2\sin 66^{\circ}.\cos 66^{\circ}}{2\sin 66^{\circ}.\cos 66^{\circ}}$	✓A 2sin 66°.cos 66°
tan 60°	25m 00 1005 00
$=\frac{40000}{2}$	
$=\frac{\sqrt{3}}{2}$	(CA
$=\frac{\sqrt{c}}{2}$	✓CA answer (7)
OR	OR
Stanmorephysics.com	
$\tan(-60^{\circ}).\cos(-156^{\circ}).\cos 294^{\circ}$	
sin 852°	
-tan 60°.cos 204°.cos 66°	90.0
$=\frac{\sin 33 \cdot \cos 23 \cdot \cos 33}{\sin 132^{\circ}}$	✓A -tan 60° ✓A cos 66°
-tan 60° cos 24°. sin 24°	1967 PRODUCES A R. DEL CON DE
$=\frac{\sin 48^{\circ}}{\sin 48^{\circ}}$	✓A -cos 24° ✓A sin 24°
Landon Colonia Colonia	✓A sin 48°
$\tan 60^{\circ} \cdot \frac{1}{2} \sin 48^{\circ}$	1
$=\frac{2}{\sin 48^{\circ}}$	$\checkmark A \frac{1}{2} \sin 48^{\circ}$
tan 60°	2
$={2}$	
$=\frac{\sqrt{3}}{}$	
$=\frac{\sqrt{2}}{2}$	✓CA answer
	(7)
$5.3.1 \qquad \frac{\cos x + \sin x}{\cos x - \sin x}$	
$\cos x - \sin x \cos x + \sin x$	
$= \frac{\left(\cos x + \sin x\right)^2 - \left(\cos x - \sin x\right)^2}{\left(\cos x - \sin x\right)\left(\cos x + \sin x\right)}$	✓A numerator
	✓A denominator
$\cos^2 x + 2\sin x \cos x + \sin^2 x - \left(\cos^2 x - 2\sin x \cos x + \sin^2 x\right)$	
$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	
$4\sin x \cos x$	$4\sin x \cos x$
$= \frac{-\cos^2 x - \sin^2 x}{\cos^2 x - \sin^2 x}$	$\checkmark A \frac{4\sin x \cos x}{\cos^2 x - \sin^2 x}$
$2\sin 2x$	
$=\frac{1}{\cos 2x}$	\checkmark A $\frac{2\sin 2x}{\cos 2x}$
$= 2 \tan 2x$	(4)

-	Marking Guideline	
5.3.2	$2 \tan 2x$ is undefined when:	
	$2x = 90^{\circ} + k.180^{\circ}, \ k \in \mathbb{Z}$	\checkmark A $2x = 90^{\circ} + k.180^{\circ}, k \in Z$
	$\therefore x = 45^{\circ} + k.90^{\circ}, \ k \in \mathbb{Z}$	✓A $x = 45^{\circ} + k.90^{\circ}, k \in \mathbb{Z}$
	OR	(2)
	LHS is undefined when	OR
	$\cos x - \sin x = 0$ or $\cos x + \sin x = 0$	
	$\tan x = 1$ or $\tan x = -1$	\checkmark A tan $x=1$ or tan $x=-1$
	$\therefore x = 45^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$ or $\therefore x = 135^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$	$\checkmark A : x = 45^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$
		or $\therefore x = 135^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$
	Answer only: Full marks	(2)
5.4	cos10°+cos70°	
	$=\cos(40^{\circ}-30^{\circ})+\cos(40^{\circ}+30^{\circ})$	$\checkmark A \cos(40^{\circ} - 30^{\circ}) + \cos(40^{\circ} + 30^{\circ})$
	$= \cos 40^{\circ} \cos 30^{\circ} + \sin 40^{\circ} \sin 30^{\circ} + \cos 40^{\circ} \cos 30^{\circ} - \sin 40^{\circ} \sin 30^{\circ}$	✓A compound ∠ expansions
	$= 2\cos 40^{\circ}\cos 30^{\circ}$	✓A 2cos40°cos30°
		2000 10 00000
	$=2p\left(\frac{\sqrt{3}}{2}\right)$ Stanmorephysics.com	
	$=\sqrt{3}p$	✓A answer
	$= \sqrt{3}p$	(4)
5.5	$4\sin x \cos x = 3\sin^2 x$	
	$4\sin x \cos x - 3\sin^2 x = 0$	
	$\sin x (4\cos x - 3\sin x) = 0$	✓A factorisation
	$\therefore \sin x = 0 \qquad \text{or} \qquad 4\cos x = 3\sin x$	✓CA both equations
	sin r 4	
	$x = 0^{\circ} + k.180^{\circ}$ or $\frac{\sin x}{\cos x} = \frac{7}{3}$	$\checkmark A x = 0^{\circ} + k.180^{\circ}$
	tan x = 4	\checkmark CA $\tan x = \frac{4}{3}$
	$\tan x = \frac{1}{3}$	3
	$x = 53,13^{\circ} + k.180^{\circ}, \ k \in \mathbb{Z}$	
	For $x \in (-180^\circ; 180^\circ]$:	✓A 0°;180°
	$x = 0^{\circ}$; 180° or $x = -126,87^{\circ}$; 53,13°	✓CA -126,87°; 53,13°
		(6)
5.6.1	$\tan \theta = m$	
	$r = \sqrt{m^2 + 1}$ [Pythagoras] $\sqrt{m^2 + 1}$	\checkmark A $r = \sqrt{m^2 + 1}$
	$\sin 2\theta = 2\sin \theta \cos \theta$	✓ A double angle expansion
	$=2\left(\frac{m}{\sqrt{m^2+1}}\right)\left(\frac{1}{\sqrt{m^2+1}}\right)$	✓ A substitution into double angle expansion
	$=\frac{2m}{m^2+1}$	90000
	m^2+1	(3)

Marking Guideline

_		Target
5.6.2	$\frac{\left(m+1\right)^2}{m^2+1}$	
	$=\frac{m^2+2m+1}{m^2+1}$	
	$2m m^2 + 1$	
	$m^2 + 1 m^2 + 1$ $= \sin 2\theta + 1$	\checkmark A $\sin 2\theta + 1$
	maximum value of $\sin 2\theta$ is 1	\checkmark A max. value of $\sin 2\theta$
	Maximum value of $\frac{\left(m+1\right)^2}{m^2+1} = 1+1=2$	✓A answer
		(3)
	以 其位	[34]

QUESTION 6

6.1.1	a=1	✓A answer
	Stanmorephysics.com	(1)
6.1.2	$b=\frac{1}{2}$	✓A answer
		(1)
6.1.3	Q(68,53°; 0,68)	✓ A x-coordinate
		✓A y-coordinate
6.1.4	C(-1, L) = 2 - i - 2 $C(1, 2 - i - 2)$	$\checkmark A - \cos 2x $ (2)
0.1.4	$f(x+k) = 2\sin^2 x - 1 = -(1-2\sin^2 x) = -\cos 2x$	- A - cos 2x
	$\therefore f(x+k)$ is obtained by shifting $f(x)$ 45° to the right.	
	$\therefore k = -45^{\circ}$	✓A answer
		(2)
6.2	$x.\sqrt{g(x)} - f(x) > 0$	
	$\therefore x > 0$ and $\sqrt{g(x) - f(x)} > 0$	
	Allswer only.	
	$\therefore g(x) - f(x) > 0$ Full marks	8.00
	$\therefore g(x) > f(x)$	\checkmark A $g(x) > f(x)$
	$68,53^{\circ} < x \le 90^{\circ}$ OR $x \in (68,53^{\circ};90^{\circ}]$	✓CA ✓A answer
	The second secon	(3)
		[9]

Mathematics/P2 lownloaded from Stanmore Paysics.com Marking Guideline

QUESTION 7

7.	$\hat{DBC} = 30^{\circ}$ [alternate $\angle s$; lines]	
	$\frac{h}{BC} = \tan 30^{\circ}$	$\checkmark A \frac{h}{BC} = \tan 30^{\circ}$
	IDDAT	
	$BC = \frac{h}{\tan 30^{\circ}} = \frac{h}{\frac{1}{\sqrt{3}}} = \sqrt{3}h$	\checkmark A BC = $\sqrt{3}h$
	$\hat{ACB} = 180^{\circ} - (90^{\circ} - \beta + 90^{\circ} - \beta) = 2\beta$	\checkmark A $\hat{ACB} = 2\beta$
	$\frac{AB}{\sin A\hat{C}B} = \frac{BC}{\sin A}$	
	$\frac{AB}{\sin 2\beta} = \frac{\sqrt{3}h}{\sin (90^\circ - \beta)}$	✓A substitution in sine rule
	$AB = \frac{\sqrt{3}h.\sin 2\beta}{\sin(90^{\circ} - \beta)}$	✓ A AB subject of formula
	=	$\checkmark A \sin 2\beta = 2\sin \beta \cos \beta$
	$=\frac{\sqrt{3h.2\sin\beta\cos\beta}}{\cos\beta}$	\checkmark A $\sin(90^{\circ} - \beta) = \cos\beta$
	$=2\sqrt{3}.h\sin\beta$	(7)
	OR	OR
	$D\hat{B}C = 30^{\circ}$ [alternate $\angle s$; lines]	
	$\frac{h}{BC} = \tan 30^{\circ}$	\checkmark A $\frac{h}{BC} = \tan 30^{\circ}$
	$BC = \frac{h}{\tan 30^\circ} = \frac{h}{\frac{1}{\sqrt{3}}} = \sqrt{3}h$	\checkmark A BC = $\sqrt{3}h$
	$\hat{ACB} = 180^{\circ} - (90^{\circ} - \beta + 90^{\circ} - \beta) = 2\beta$	\checkmark A $\hat{ACB} = 2\beta$
	$AC = BC$ [$\angle s$ opp. = sides]	
	$AB^{2} = AC^{2} + BC^{2} - 2AB.BC.\cos A\hat{C}B$	
	$= \left(\sqrt{3}h\right)^2 + \left(\sqrt{3}h\right)^2 - 2\left(\sqrt{3}h\right)^2 \cdot \left(\sqrt{3}h\right)^2 \cdot \cos 2\beta$	✓A substitution in cosine rule
	$=6h^2-6h^2.\cos 2\beta$	✓A factorisation
	$=6h^2\left(1-\cos 2\beta\right)$	A factorisation
	$=6h^2\left[1-\left(1+2\sin^2\beta\right)\right]$	$\checkmark A \cos 2\beta = 1 - 2\sin^2 \beta$
	$=12h^2\sin^2\beta$	$\checkmark A = 12h^2 \sin^2 \beta$
	$\therefore AB = 2\sqrt{3} \cdot h \sin \beta$	(7) [7]

Mathematics/P2 loaded from Stanmorephysics.com

Marking Guideline

QUESTION 8

8.1	$\hat{A}_2 = \hat{C} = 26^{\circ}$ [alternate $\angle s$; AB EC]	✓S ✓R or ✓S
	$\hat{E}_2 = \hat{A}_2 = 26^\circ$ [\angle s in the same segment]	✓S ✓R or ✓S
	$\hat{B}_1 = \hat{E}_2 = 26^{\circ}$ [alternate $\angle s$; AB EC] or [$\angle s$ in the same segment]	✓S ✓R or ✓S
	$\hat{B}_2 = \hat{E}_2 = 26^{\circ}$ [\angle s opp. = sides]	✓S ✓R or ✓S
	Any 3 of the 4 angles mentioned above may be awarded marks. Two of the three angles, will be awarded 2	A manimum of 5 marks to be
	marks each: ✓S ✓R The other angle will be awarded only 1 mark: ✓S	A maximum of 5 marks to be awarded; as explained in the text box.
		(5)
8.2	$\hat{O}_1 = 2 \times \hat{E}_2$ [\angle at the centre = 2 × \angle at the circumference]	✓S/R
	= 52° Stanmorephysics.com	✓answer
	OR	\mathbf{OR} (2)
	$\hat{E}_2 = \hat{B}_2$ [\angle s opp. = radii]	
	$\hat{O}_1 = \hat{B}_2 + \hat{E}_2$ [ext. \angle of $\triangle OBE$]	✓S/R
	= 52°	✓ answer (2)
8.3	$\hat{A}_1 = 90^{\circ}$ [\angle in a semicircle]	✓S/R
	$BAE = 90^{\circ} + 26^{\circ} = 116^{\circ}$	
	$\hat{BDE} = 180^{\circ} - 116^{\circ} = 64^{\circ}$ [opp. $\angle s$ of a cyclic quad.]	✓ S ✓R
	OR	OR (3)
	$\hat{EOB} = 128^{\circ}$ [\(\setminus \text{ on a straight line} \)] or [\(\setminus \text{ of } \Delta \)]	✓S/R
	$\hat{BDE} = 64^{\circ}$ [\angle at the centre = 2 × \angle at the circumference]	$\checkmark S \checkmark R$ (3)
		[10]

QUESTION 9

Mathematics/P2 Normal Stanmore Physics.com

Marking Guideline

9.2.3	Δ KQM $\parallel \Delta$ LPM	[∠∠∠]	✓S
	$\therefore \frac{KQ}{LP} = \frac{QM}{PM}$	$[\parallel\mid \Delta s]$	✓S
	$51,2 = \frac{8}{2}$		✓CA answer
	32 5		(3)
			[14]

QUESTION 10

10.1.1	$\hat{B}_3 = 90^{\circ}$ [\angle in a semicircle]	✓ S/R
	$\therefore \hat{G}_1 = 90^{\circ}$ [corresponding \angle s; AO BC]	✓S
	$\therefore BG = GE$ [line from centre \perp to chord]	√R
		(3)
10.1.2	Let $\hat{\mathbf{B}}_4 = x$	
	$\hat{E} = \hat{B}_4 = x$ [tan-chord theorem]	✓S ✓R
	Also: $\hat{A} = \hat{B}_4 = x$ [corresponding \angle s; AO BC]	✓S
	$\hat{\mathbf{A}} = \hat{E}$	
	∴ AEOB is a cyclic quadrilateral [converse: ∠s in the same	✓R
10.1.2	segment]	(4)
10.1.3	In $\triangle OEG$ and $\triangle BAG$:	22
	1. $\hat{A} = \hat{E}$ [proved above]	✓S
	2. $\hat{G}_1 = \hat{G}_3$ [vertically opposite $\angle s$]	✓S
	3. $\hat{O}_2 = \hat{ABG}$ [sum of $\angle s$ in \triangle OR $\angle s$ in the same segment]	
	$\therefore \triangle OEG \parallel \triangle BAG \ [\angle; \angle; \angle]$	✓R
7	1	(3)
10.2	$OG = \frac{1}{2}BC = 5$ units [midpoint theorem]	✓S/R
	$\frac{OG}{DG} = \frac{EG}{AG}$ [similar Δs]	√S
	BG AG	15
	$\therefore BG.EG = OG.AG$	✓S
	$EG^{2} = OG.AG \qquad [BG = GE]$ $= 5 \times 35$	✓S
	$=3 \times 33$ =175	
	: EG = $\sqrt{175}$ = $5\sqrt{7}$ = 13,23 units	
	$EO^2 = EG^2 + GO^2$ [Pythagoras]	✓S/R
	$ \begin{array}{l} Stanmore place \\ = (\sqrt{175})^2 c. s. com \\ + 5^2 \end{array} $	STORY OF STORY
	= 200	✓CA substitution
	$EO = \sqrt{200} = 10\sqrt{2} = 14,14 \text{ units}$	(C)
	LO - \(\frac{7}{200} - \frac{10}{10} \frac{7}{2} - \frac{14}{14} \text{, 14 utilits}	✓CA answer (7)
		[17]
		[1/]

TOTAL: 150