

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

SEPTEMBER TEST

tanmorephysics.com 2025

Stanmorephysics.com

MARKS: 75

TIME: $1\frac{1}{2}$ hours

This question paper consists of 8 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.

tanmorephysics.com

8. Write neatly and legibly.

- 1.1 Consider the sequence: 17; 15; 13; ...
 - 1.1.1 Write down the value of the next term in the sequence. (1)
 - 1.1.2 Determine the n^{th} term (T_n) of the sequence. (2)
 - 1.1.3 Which term of the sequence will be equal to -71? (2)
- 1.2 Calculate the value of x if the first three consecutive terms of a linear pattern are:

$$3x-2$$
; $4x+7$ and $2x-5$.

1.3 Consider the following number pattern:

- 1.3.1 Write down the 67th term of the pattern. (1)
- 1.3.2 Calculate the value of the 500th term of the pattern. (3)
- 1.4 Consider the sequence: $\frac{10}{8}$; $\frac{14}{13}$; $\frac{18}{18}$; $\frac{22}{23}$; $\frac{26}{28}$; $\frac{30}{33}$; ...
 - Determine the n^{th} term (T_n) of the sequence. (3)

[15]

- 2.1 Amanda invests R25 000 for 9 years into a savings account that pays 8,25% per annum compound interest.
 - 2.1.1 Calculate the accumulated value of the investment at the end of 9 years. (3)
 - 2.1.2 She leaves the money in the account for a further three years. The interest rate changes to 6% per annum simple interest. How much money will she then have saved?

(3)

2.2 South Africa's population is increasing by 2,5% per year. If the current population is 64,7 million, what was the population three years ago?

(2)

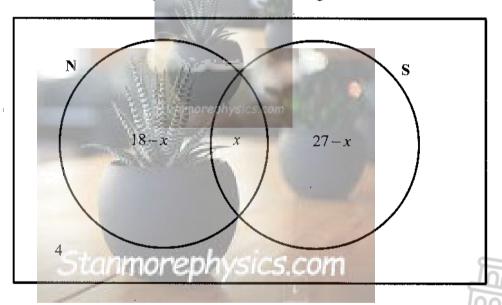
2.3 On a certain day the exchange rate between the US dollar and the South African rand is \$1 = R18,16. At the same time the exchange rate between the British pound and the South African rand is £1 = R23,52. Calculate the exchange rate between the British pound and the US dollar on that day.

(2) [10]

Stanmorephysics.com

3.1 Two events, A and B, are complementary. P(B') = 0.45.

3.1.1 Copy and complete the statement:
$$P(A) + P(B) = ...$$
 (1)


3.1.2 Write down the value of:

(a)
$$P(A \text{ and } B)$$

$$(b) P(A)$$
 (1)

- 3.2 In a certain class of 33 girls:
 - 18 play netball (N)
 - 27 play soccer (S)
 - 4 do not play netball or soccer
 - An unknown number (x) play both netball and soccer.

The information is represented in the Venn diagram below.

3.2.1 Calculate the value of x.

(3)

3.2.2 If a girl from this class is chosen at random, calculate the probability that she:

(a) does not play netball or soccer.

(1)

(b) plays only netball.

(2)

3.3 There are 120 customers at a shop in KwaZulu Natal. 111 customers bought rice (R), 74 customers bought flour (F) and 67 bought both rice and flour.

3.3.1 Represent the above information in a Venn diagram.

(4)

3.3.2 Hence, calculate P((not R) and F)

(2)

[15]

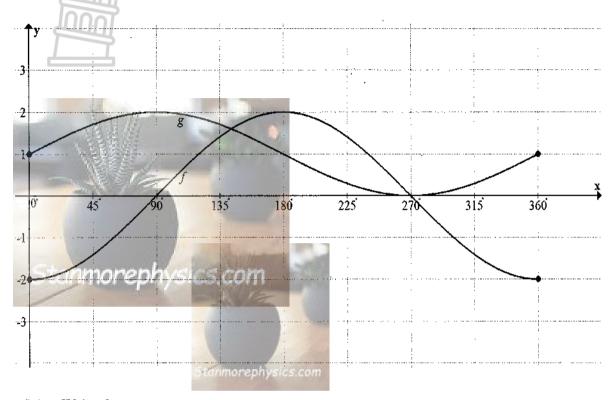
MOST

4.1 The data below represents the mass (in kg) of sixty learners participating in sports activities at a school in Newcastle.

Mass (in kg)	Frequency	Midpoint	Midpoint × Frequency
30 ≤ m < 40	9	a	315
$40 \le m < 50$	17	45	765
50 ≤ m < 60	13	55	ь
$60 \le m < 70$	7	65	455
$70 \le m < 80$	С	75	675
80≤m<90	5	85	425

4.1.1	Determine the value of a , b , and c .	(3)

- 4.1.2 Use the table above to calculate the estimated mean mass. (2)
- 4.1.3 Identify the modal interval. (1)
- 4.1.4 Determine the interval containing the median. (1)
- 4.2 The ordered data below shows the number of ice-creams sold at a tuckshop, during break time, over TEN DAYS in summer.


p=		0.75							
. 30	33	33	х	43	45	55	61	78	80

- 4.2.1 Determine the median of the number of ice-creams sold. (1)
- 4.2.2 Calculate the interquartile range (IQR). (3)
- 4.2.3 If the mean number of ice-creams sold is 49.5, determine the value of x. (3)

[14]

Copyright reserved Please Turn Over

In the diagram below, the graphs of $f(x) = -2\cos x$ and $g(x) = \sin x + 1$ is drawn for the interval $0^{\circ} \le x \le 360^{\circ}$.

5.1 Write down:

(a) the amplitude of
$$f$$
. (1)

(b) the period of
$$g$$
. (1)

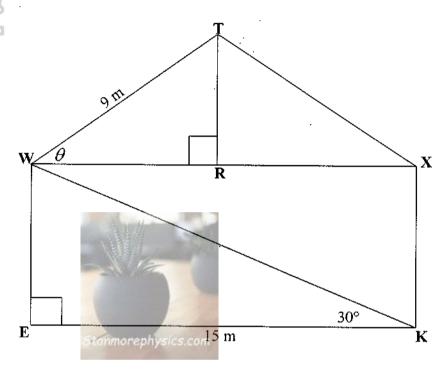
(c) the minimum value of
$$g(x)-1$$
. (1)

5.2 Determine the value of
$$f(180^\circ) - g(180^\circ)$$
. (2)

5.3 For which value(s) of x will
$$g(x) \times f(x) \le 0$$
? (3)

5.4 Determine the range of
$$h(x)$$
 if $h(x) = -g(x) + 3$. (3)

[11]


Copyright reserved Please Turn Over

Downloaded from Stanmacephysics.com

QUESTION 6

An architectural design of the front view of a house is given below. The length of the house is to be 15 metres. An exterior stairway leading to the roof is to form an angle of elevation of 30° with the ground level. The slanted part of the roof must be 9 metres in length.

 θ is an angle of elevation of T from W and WT = TX.

- 6.1 Calculate the length of the wall (WE). Leave the answer in simplest surd form. (2)
- 6.2 Determine the size of θ , correct to TWO decimal places. (3)
- 6.3 Calculate the area of triangle WTX. (5)

TOTAL: 75 MARKS

Downloaded from Stanmorephysics.com

FINAL

KWAZULU-NATAL PROVINCE

EDUCATIONREPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS
SEPTEMBER 2025

MARKING GUIDELINE

MARKS: 75

This marking guideline consists of 7 pages.

Copyright reserved Please turn over

Consid	der the sequence: 17	; 15 ; 13 ;		
1.1.1	$T_4 = 11$		✓ A answer	
				(1)
1.1.2	$T_n = -2n + 19$	$\mathbf{OR} \qquad \mathbf{T}_n = 19 - 2n$	✓A -2n	
4			√A +19	
				(2)
1.1.3	-71 = -2n + 19		✓CA equating	
	-90 = -2n			
	n=45			
	$\therefore T_{45} = -71$		\checkmark CA answer $(n \in \mathbb{N})$	
				(2)
1.2	4x + 7 - (3x - 2) = 2	x-5-(4x+7)	✓ A equating 1 st diff.	
	x+9 = -2x-12	1-		
	3x = -21		✓ CA simplification	
	$\therefore x = -7$		✓ CA answer	(3)
1.3.1	$T_{67} = 9$	norephysics.com	✓ A answer	(3)
	167	iorephysics.com	71 diiswei	(1)
1.3.2	$T_n = 3n + 2$		\checkmark A $3n+2$	(-)
	$T_{250} = 3(250) + 2$		✓CA subst $n = 250$	
	$T_{500} = 752$		✓CA answer	
	300			(3)
1.4	Numerator: $T_k = 4k$	+6	✓ A numerator	
	Denominator: $T_p = 3$	5p+3	✓ A denominator	
	$T_n = \frac{4n+6}{5n+3}$			
	$\int_{0}^{\infty} n^{2} dt = 5n + 3$	Answer Only: Full Marks.	✓CA answer	(2)
			John	(3)
			1000	[15]

2.1.1	$\mathbf{A} \mathbf{D}(1, \cdot)^n$	/ A formula	
2.1.1	$\mathbf{A} = \mathbf{P} \big(1 + i \big)^n$	✓A formula	
	$A = 25000 (1 + 0.0825)^{9}$	✓ A substitution	
	A = R51025,96	✓ CA answer	
1		011 was 11 01	
	OR		
	$(r)^n$		
	$A = P \left(1 + \frac{r}{100} \right)^n$		
	$A = 25000 \left(1 + \frac{8,25}{100} \right)^9$		
	$A = 25000 \left(1 + \frac{3320}{100} \right)$		
	A = R51025,96		(3)
2.1.2	A = P(1+in)	✓A formula	(0)
	A = 51025, 96[1 + (0,06)(3)]	✓CA substitution	
	A = R 60210,63	✓CA answer	
	OR		
	$A = P\left(1 + \frac{nr}{100}\right)$ tanmore physics.com		
	$A = 51025, 96 \left(1 + \frac{(6)(3)}{100} \right)$		
	A = R 60210,63		
	OR		
	T		
	$I = p \times i \times n$		
	$=51025,96\times0,06\times3$		
	= R9184,67	LOOT	
	$\therefore \mathbf{A} = P + I$	TOOL	
100	= 51025,96+9184,67	Innni	
	= R60210,63		(2)
2.2	$P = 64700000(1+0,025)^{-3}$	✓A substitution	(3)
2.2	P = 60080381 people	✓ CA answer	
	OR		
	$64700000 = P[1 + (0,025)]^3$		
	P = 60080381 people		
	Penalise 1 mark if $P \notin \mathbb{N}$		
			(2)

Mathematical ded from Stanmorephysics.com CAPS – Grade 10 Marking Guideline Common Test September 2025

	Truthing curetime		
2.3	£1 = R23,52 × $\frac{$1}{R18,16}$	✓A product	
	£1=\$1,30	✓CA answer	
9	OR		
4	$$1 = R18,16 \times \frac{£1}{R23,52}$		
	\$1=£0,77		(2)
			(2)
			[10]

3.1.1	P(A) + P(B) = 1	✓A 1	(1)
3.1.2(a)	P(A and B) = 0 Stanmorephysics.com	✓A 0	(1)
3.1.2(b)	P(A) = 0.45	✓A answer	(1)
3.2.1	18-x+x+27-x+4=33 $49-x=33$ $x=16$	✓A equation ✓CA simplification ✓CA answer $(x \in \mathbb{N})$	
	OR $18 - x + x + 27 - x + 4 = 33$ $49 - x = 33$ $x = 16$		(3)
3.2.2(a)	$P(none) = \frac{4}{33}$	✓A answer	(1)
3.2.2(b)	$P(N only) = \frac{2}{33}$	✓CA 2 ✓CA answer	
			(2)

Manufaced from Stanmorephysics.com CAPS - Grade 10

Common Test September 2025

CAPS – Grade 10 Marking Guideline

Warking Guidenne	1	, ,
3.3.1 R	✓A 44	
$\begin{array}{c c} & & & \\ \hline & &$	✓A 67	
	✓A 7	
2	✓A 2	
Stanmorephysics.com		(4)
3.3.2 $P((\text{not R}) \text{ and F}) = \frac{7}{120}$	√CA 7	
120	✓A 120 (denom)	
	, , , ,	(2)
Mary Harrison Company		[15]

4.1.1	a = 35 (also accept $a = 57, 2$)	√A	
	1 715	√A	
	b = /15 $c = 9$ Stanmore physics.com	√A	
	(–)	' A	(3)
4.1.2	Estimated mean = $\frac{3350}{60}$ (also accept $\frac{3550}{60}$)	✓CA substitution	(3)
	=55,83 (=59,17)	✓CA answer	
	Answer Only: Full Marks.		
	Miswel Only. I all Marks.		(2)
4.1.3	$40 \le m < 50$	✓CA answer	
			(1)
4.1.4	$50 \le m < 60$	✓CA answer	
		44	(1)
			, ,
4.2.1	Median = $\frac{43 + 45}{2}$		
Stann	iorephy≤445.com	✓A answer	
/		· 11 diiswei	(1)
4.2.2	IQR =61-33	✓A Q ₃	(1)
	= 28		
		✓A Q ₁	
		✓CA answer	
			(3)

Manamaded from Stanmorephysics.com CAPS – Grade 10 Marking Guideline

Common Test September 2025

4.2.3	30+33+33+x+43+45+55+61+78+80 = 49,5	✓A sum divided by 10	
	10	✓ A equating to 49,5	
	495 = 458 + x		
	x = 37	✓CA answer	
1			(3)
\$			[14]

5 1(0)	amplituda — 2	/ A	
5.1(a)	amplitude $= 2$	✓A answer	445
F 1 (1-)	rapid 2600		(1)
5.1(b)	period = 360°	✓ A answer	
5.1 ()	Martha		(1)
5.1(c)	minimum value = -1	✓ A answer	
			(1)
5.2	$f(180^\circ) = 2$	\checkmark A $f(180^\circ) = 2$	
	$g(180^{\circ}) = 1$		
	$f(180^{\circ}) - g(180^{\circ}) = 1$	✓CA answer	
	Similar Conversion Conversion	(based on $f(180^{\circ})$)	
	Answer Only: Full Marks.		
			(2)
5.3	$0^{\circ} \le x \le 90^{\circ} \text{ or } 270^{\circ} \le x \le 360^{\circ}$	\checkmark A $0^{\circ} \le x \le 90^{\circ}$	
		\checkmark A 270° ≤ <i>x</i> ≤ 360°	1000
		✓ A both have correct	
	OR	notation	200
	OK	OR	
	$x \in [0^\circ; 90^\circ] \cup [270^\circ; 360^\circ]$	\checkmark A $x \in [0^\circ; 90^\circ]$	-
		✓A ∪[270°; 360°]	1
	St	✓ A both have correct	n
		notation	(3)
5.4	$h(x) = -\left(\sin x + 1\right) + 3$	THOO!	
	$h(x) = -\sin x - 1 + 3$		
	$h(x) = -\sin x + 2$	\checkmark A $h(x) = -\sin x + 2$	
	$\therefore 1 \leq y \leq 3$	✓CA interval	
	OR Answer Only: Full Marks.	✓A notation	
	$y \in [1;3]$		
			(3)
			[11]

6.1	$\tan 30^{\circ} = \frac{\text{WE}}{15}$	WE	
	$15 \tan 30^\circ = WE$	\checkmark A $\tan 30^\circ = \frac{\text{WE}}{15}$	
	$5\sqrt{3} \text{ m} = \text{WE}$ (accept WE = 8,66 m)	✓A answer	(2)
6.2	WR = 7,5 m	✓A length of WR	(2)
	$\cos \theta = \frac{WR}{WT}$ $\cos \theta = \frac{7.5}{9}$		
5tan	more $\frac{1}{7.5}$ ics.com		
	9	✓CA substitution	
	$\theta = 33,56^{\circ}$	✓CA answer	
			(3)
6.3	$TR^2 = 9^2 - 7.5^2$ Pythag	✓A correct sub Pythag	(5)
	$TR = \frac{3\sqrt{11}}{2}$	✓CA length of TR	
	Area = $\frac{1}{2}b.h$	✓A formula	
	Area = $\frac{1}{2}b.h$ = $\frac{1}{2}(15)\left(\frac{3\sqrt{11}}{2}\right)$	✓CA subst	
	$=37,31 \text{ m}^2$	✓CA answer	
			(5)
			[10]
			[[ŦV]

TOTAL: 75 MARKS