

CURRICULUM GRADE 10 -12 DIRECTORATE

NCS (CAPS) SUPPORT

PHYSICAL SCIENCES: PAPER 1 & 2

GRADE 12

2025

VERTICAL PROJECTILE MOTION SOLUTIONS

MULTIPLE CHOICE QUESTIONS

1.1	BVV	(2)
30.075	41111101	\-/

1.3
$$D \checkmark \checkmark$$
 (2)
1.4 $A \checkmark \checkmark$ (2)

LONG QUESTIONS

QUESTION 1

1.1 9,8 m·s⁻²
$$\checkmark$$
 (1)

1.2.1
$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

2=
$$v_i(0,125)$$
+ $\frac{1}{2}(9,8)(0,125)^2$

$$v_i = 15,39 \text{ m.s}^{-1}$$

$$v_f^2 = v_i^2 + 2a\Delta y$$

$$(15,39)^2 = (0)^2 + 2(9,8)(\Delta y) \checkmark$$

$$\Delta y = 12,08 \text{ m}$$

1.2.2
$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

14,08
$$\checkmark$$
 = 0(\triangle t)+ $\frac{1}{2}$ (9,8)(\triangle t)² \checkmark

$$\Delta t = 1,7 \text{ s} \checkmark \tag{4}$$

1.2.3
$$v_f = v_i + a\Delta t \checkmark$$

1.3

Initial velocity = 0 m⋅s⁻¹ ✓ Final velocity = answer to 1.2.3

Final time = answer to 1.2.2 ✓

Shape: Straight line ✓

(4) [17]

(5)

(3)

QUESTION 2

- 2.1 An object which has been given an initial velocity and then it moves under the influence of the gravitational force only. ✓✓ (2)
- 2.2 Distance = area under graph OR ½bh ✓

=
$$\frac{1}{2} \times 0.8 \checkmark \times 7.84 \checkmark$$

= 3.14 m \checkmark (4)

- 2.3 0,2 seconds ✓ (1)
- 2.4 $F_{net} = \frac{\Delta p}{\Delta t}$ $F_{net} = \frac{m\Delta v}{\Delta t} \checkmark$ $F_{net} = \frac{0,175(1,53 7,84) \checkmark}{0,2 \checkmark}$ = -5,52 N $= 5,52 \text{ N upwards} \checkmark$
- 2.5 $v_f = v_i + a\Delta t \checkmark$ 0 = 1,53 + (9,8)(0,7) $= 8,39 \text{ m·s}^{-1} \checkmark$
 - $a = \frac{y_2 y_1}{x_2 x_1} \checkmark$ $9.8 = \frac{y_f 1.53}{1.7 1} \checkmark$ $V_f = 8.39 \text{ m·s}^{-1} \checkmark$ (3)

(4)

2.6 Equal to \checkmark (3) $V_f = 8,39 \text{ m·s}^{-1} \checkmark \tag{3}$ (1) [15]

QUESTION 3

3.1 **BALL B**

 $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $12 = 18 \Delta t + \frac{1}{2} (-9.8) \Delta t^2 \checkmark$ $\Delta t = 0.88 \text{ s or } 2.8 \text{ s}$

Select $\Delta t = 0.88$ s since Ball B is moving upwards when they meet at P

BALL A

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

 $-3 \checkmark = v_i (0,88+1,5\checkmark) + \frac{1}{2} (-9,8)(0,88+1,5)^2$ \checkmark
 $v_i = 10,4 \text{ m} \cdot \text{s}^{-1} \text{ upwards} \checkmark$ (6)

QUESTION 4

4.3.1
$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$15 = 3.4(\Delta t) + \frac{1}{2} (9.8)(\Delta t)^2 \checkmark$$

$$\Delta t = 1.44 \text{ s} \checkmark$$

$$\Delta t = 1,44 \text{ s} \checkmark$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= 3,4(1,44) + \frac{1}{2}(0)(1,44)^2 \checkmark$$

$$= 4,896 \text{ m}$$
(3)

Height =
$$15 - 4,896 \checkmark$$

= $10,1 \text{ m} \checkmark$ (4)

[14]

4.4
$$v_f = v_i + a\Delta t \checkmark$$

 $0 = -7.2 + (9.8) \Delta t \checkmark$
 $\Delta t = 0.73 \text{ s}$
 $t_3 = 1.44 + 0.2 + 0.73 \checkmark$
 $= 2.37 \text{ s}\checkmark$ (4)

QUESTION 5

5.1.1
$$v_1^2 = v_1^2 + 2a\Delta y \checkmark$$

 $(0\checkmark)^2 = v_1^2 + 2(-9,8)(\frac{1}{4}H) \checkmark$
 $v_1 = \sqrt{4,9H} \checkmark$
5.1.2 $v_1 = v_1 + a\Delta t \checkmark$ (4)

$$0 = v_i + (-9,8)(2,33 - T \checkmark) \checkmark$$
(3)

5.2
$$\sqrt{4.9H} = 22.834 - 9.8T \checkmark$$
 $\sqrt{4.9H} = 22.834 - 9.8T ?$
 $\sqrt{4.9H} = 22.834 - 9.8T ?$
 $\sqrt{4.9H} = 24.834 - 9.8T ?$
 $\sqrt{4.9H} = 4.95 ?$
 $\sqrt{4.9H} = 22.834 - 9.8T ?$
 $\sqrt{4.9H} = 4.95 ?$

(6) [**14**]

 $\Delta t = 0.49 \text{ s}$

 $= 2.95 s \checkmark$

 $t = 1,97 + 2 \times 0,49 \checkmark$

SOLUTIONS – WORK, ENERGY & POWER QUESTION 1

- 1.1 B √√ (2)
- 1.2 C // (2)
- 1.3 A $\checkmark\checkmark$ (2)
- 1.4 B √√ (2) [8]

QUESTION 2

- 2.1 Backwards/behind him√ (1)
- 2.1.2 Newton's third Law of ✓ motion When one body exerts a force on a second body, the second body exerts a force of equal magnitude ✓ in the opposite direction on the first body. ✓
 (3)
- 2.3 Whet = $\Delta K \checkmark$ Wg + Wf = ΔK

 $Fg\Delta x\cos\theta + f\Delta x\cos\theta = \Delta K$

 $(57)(9,8)(4)\cos 180^{\circ} \checkmark + 40 \triangle x \cos 180^{\circ} \checkmark = 0 - \frac{1}{2}(57)(6^{2}) \checkmark$

$$\Delta x = -30,21 \text{ m}$$

Sin $\theta = \frac{4}{30.21}$

$$\theta = 7.61^{\circ} \checkmark \tag{5}$$

2.4 Wnet = $\Delta K \checkmark$ WT + Wg + Wf = ΔK

 $(80)(5)(4)\cos 0^{\circ} \checkmark + (15)(5)\cos 180^{\circ} \checkmark =$

 $(4)(9,8)\sin 30^{\circ}(5) - (4)(9,8)(0) \checkmark + \frac{1}{2}(4)v_{f}^{2} - \frac{1}{2}(4)(3)^{2} \checkmark$

 $vf = 11,07 \text{ m} \cdot \text{s}^{-1} \checkmark$ (6) [15]

QUESTION 3

3.1 The net work done on an object by a force is equal to the change in the object's kinetic energy. √√(2)

3.2

Fg √	ted labels W/Fw/weight/mg / gravitational force
F _f √	(Kinetic) friction / f/fk
Fn 🗸	Fnormal/Normal/N

(3)

3.3 $W_{\text{net}} = (W_{\text{Fnormal}}) + W_{\text{friction}} + W_{\text{Fgravity}} \checkmark$ $W_{\text{net}} = (0) + \mu_k N.\Delta x.\cos\theta + mg.\Delta x.\cos\theta$

 $W_{net}=0+(0.42)(850)(9.8)(\cos 30^{\circ})\checkmark(200)(\cos 180^{\circ})\checkmark(850)(9.8)(200)(\cos 60^{\circ})\checkmark$

W_{net} = (- 605 975,2955) + 833 000

 $W_{net} = 227 024, 7045 \text{ (or } 227 024, 7) \text{ J} \checkmark$

(5)

- 5.4 Some of the ball's mechanical energy is transferred to the block. ✓ ✓
- 5.5 The net/total work done on an object is equal to the change in the object's kinetic energy. ✓ ✓
- 5.6 $W_{nc} = \Delta E K + \Delta U \checkmark$ $W_{nc} = \Delta E_K + \Delta E_P$ $W_f = \frac{1}{2} (2)(2^2 4,95^2) \checkmark + (2)(9,8)(0,5 0) \checkmark$ $= -10,7 \text{ J} \checkmark$

QUESTION 6 [22]

- 6.1 A force is non-conservative if the work it does/done on an object which is moving between two points depends on the path taken. ✓ ✓
- 6.2 Whet = $\Delta K \checkmark$ mgsin $\theta \Delta x \cos \theta + W_f + W_F = \frac{1}{2} \text{ mv}_f^2 - \frac{1}{2} \text{ mv}_i^2$ (20)(9,8)(sin18°)(15,6)cos180° \checkmark + (13,5)(15,6)cos180°) + (96,8)(15,6)cos0° \checkmark = $\frac{1}{2}$ (20)(v_f² - 0)² \checkmark

 $v_f = 5,96 \text{ m} \cdot \text{s}^{-1} \checkmark$ (5)

(2)

6.3 $P_{\text{ave}} = Fv_{\text{ave}} \checkmark$ $= 96.8(\frac{(0)+(5.96)}{2})$ $= 288.46 \text{ W} \checkmark$ (3)

(3) (4)

Upwards as positive

[17]

QUESTION 7

A force for which the work done in moving an object between two points 7.1 depends on the path taken.

(2)

7.2

(3)

- The net workdone on an object is equal to the change in the object's kinetic 7.3 enegy. ✓ ✓
 - (2)

7.4.1 $W_{nc} = \Delta E_K + \Delta E_P \checkmark$

$$W_f = \Delta E_K + \Delta E_P$$

 $W_f = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 + mgh_2 - mgh_1$

$$2.5 \times \frac{5}{\sin 10} \cos 180^{\circ} \checkmark = \frac{1}{2} \times 2 \times v_f^2 - 1.5^2 \checkmark + 2 \times 9.8 \times 0 - 2 \times 9.8 \times 5 \checkmark$$

$$vf = 5.32 \text{ m.s}^{-1} \checkmark$$
 (5)

7.4.2 $f_k = \mu_k N$

 $2,5 = \mu k \times 2 \times 9,8\cos 10^{\circ}$

$$\mu k = 0,13$$

$$W_f = \Delta E_k + \Delta E_p$$

 $W_f = W_f = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 + mgh_2 - mgh_1$

$$0.13 (2 \times 9.8) \times \cos 180^{\circ} \checkmark = \frac{1}{2} \times 2 \times 0^{2} \frac{1}{2} \times 2 \times 5.32^{2} \checkmark + 0$$

$$\Delta x = 11,11 \text{ m} \checkmark \tag{5}$$

[14]

SOLUTIONS

CHEMICAL EQUILIBRIUM

QUESTION 1

- 1.1 B√√
- 1.2 C√√
- 1.3 C√√
- 1.4 D√√
- 1.5 B√√
- 1.6 A√√
- 1.7 A√√
- 1.8 A√√
- 1.9 B√√
- 1.10 C√√

[20]

(2)

QUESTION 2

2.1 (6 moles of) H2 was added.

2.2

Criteria

t₀ to t₁ all correct and constant√

- At t₁, H₂ increases to 9✓
- Between t₁ and t₂, H₂ gets to 8√, HI gets to 8√, I₂ gets to 2√
- t₂ to t₃ all constant√

Note: If the transitions from t₁ to t₂ are incorrectly shown, take off max 1 mark. (6)

- 2.3 The reaction that removes H₂ or decreases [H₂] is favoured√
 - i.e. the forward reaction is favoured√
 - The amounts of (H₂ and) I₂ decrease ✓
 - and the amount of HI increases√

2.4 [HI]² ✓ correct Kc expression $K_c =$ $[H_2][I_2]$

Divide all moles by 2 to get concentration√

Before t₁

2.5

$$K_c = \frac{3^2}{(1,5)(1,5)} = 4$$

Before t₁ $K_c = 4^2 = 4$

- Substitute (concentration values) × 2√
- Same correct answer (4) √
- Kc does not change ∴ not a temperature change ✓
- (5)No change to number of moles at t₃√√ (2)
- 2.6 tanmorephysics.com

- t₀ − t₁ rates equal√
- At t₁, rate of forward increases√
- t₂ − t₃ both rates equal and higher than between t₀ and t₁√
- At t₃ both rates decrease by same amount√
- Then continue equal and lower√

(5)

(4)

[25]

QUESTION 3

3.5.1

3.1	False√	(1))
	1 0100	. ,	/

3.2 The rate of the forward reaction
$$\checkmark$$
 (2)

3.4 A temperature increase causes an endothermic reaction to be favoured because it will absorb heat and thereby reduce the temperature

The graph shows that the reverse reaction is favoured.

(3)

(3)

The forward reaction is exothermic√

The system favours the reaction towards more gas moles. ✓ The forward reaction is favoured√ (3)

Concentration of AB decreases and concentration of A and B₂ increase√

3.5.2 Both rates decrease sharply at ts. Indicate that forward is favoured (Forward rate decreases less.) At to, both rates are equal and lower than before. Reaction Rate Time (minutes)

3.6.1
$$K_c = \frac{[A]^2[B_2]}{[AB]^2} \checkmark \checkmark$$
 (2)

3.6.2 1,56 ×
$$10^{-3} \checkmark = (0,05)^{2}(0,025) \checkmark$$
[AB]²
[AB] = 0,2 mol·dm⁻³ (2)

3.6.3

R(ratio)	2AB(g)	=	2A(g)	+	B ₂ (g)	
I(initial)	X		0		0	
C(change)	-0,05		+0,05		+0,025	
E(equilibrium)	0,2		0,05		0,025	=

$$X - 0.05 = 0.2$$

 $X = [AB]_{initial} = 0.25 \text{ mol·dm}^{-3} \checkmark \checkmark$ (3)

QUESTION 4

- 4.1 (2)That there is a much larger amount of reactants than products ✓ ✓
- 4.2 Internal combustion engines have extremely high temperatures√
 - Le Châtelier's principle predicts the system will respond in order to decrease the temperature
 - Thus, the forward reaction is (initially) favoured as it is endothermic and thus consumes heat√

 Increasing the amount of nitrogen monoxide√ 	(4)
	(2)
Increase✓✓	(2)
$K_c = [NO]^2 \checkmark$	
[O ₂] [N ₂]	(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
7) +23	
$4.5 \times 10^{-3} - x$ $4.5 \times 10^{-3} - x$ $2x$	
$\begin{bmatrix} 1 & \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{2}} & \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{2}} \end{bmatrix}$	
$K_c = \underline{[NO]^2} \checkmark $ $[O_2] [N_2]$	
$1,11 \times 10^{-5} = \frac{\left(\frac{2x}{0.2}\right)^2}{\left(\frac{4.5 \times 10^{-3} - x}{0.2}\right)\left(\frac{4.5 \times 10^{-3} - x}{0.2}\right)}$	
$X = 7,45 \times 10^{-6} \text{mol·dm}^{-3}$	(6)
$2NO + O_2 \checkmark \rightleftharpoons 2NO_2 \checkmark \checkmark (balancing)$	(3)
Le Châtelier's principle predicts the system will respond in order to increase the pressure	
Decreasing the amount of NO ₂	
Causing the brown colour to fade	(4)
	[24]
ION 5	
When the equilibrium in a closed system is disturbed, the system will reinstate a new equilibrium by favouring the reaction that will oppose the disturbance.	(2)
Adding more CH₄ will increase the concentration of CH₄√	
	(0)
S AND ACCOUNT ON A MANAGEMENT WHEN A	(3)
	(3)
	6.0 (6.0)
The reaction is in (dynamic/chemical) equilibrium√/ the rates of the forward and reverse reactions are equal√	(2)
	Remains the same \checkmark Increase \checkmark $K_0 = \frac{ NO ^2}{ O_2 } / O_2 N_2 $ $R_0 = \frac{1}{ O_2 } / O_2 N_2 $ $R_0 = \frac{1}{ O_2 } / N_2 + \frac{1}{ O_2 } \frac{2NO}{ O_2 } / N_2 $ $R_0 = \frac{1}{ O_2 } / N_2 + \frac{1}{ O_3 } N_3 +$

5.3.2 MARKING CRITERIA:

- Mole at equilibrium 0,6√ a)
- Use mole ratio 1 : 1 : 1 : 3√ b)
- c) Subtract CH₄, H₂O and add H₂√
- d) Divide by 2 dm³√
- Correct Kc expression (formulae in square brackets) ✓ e)
- f) Substitution of concentrations into correct Kc expression√
- Final answer (range 1,82 1,83) ✓ g) Option with concentration can also be used.

	CH ₄	+ H ₂ O	СО	H ₂
Initial amount (moles)	1,4	1,2	0	0
Change in amount (moles)	0,6	0,6	0,6	1,8√ ratio
Equilibrium amount (moles)	0,8	0,6	0,6	1,8√
Concentration at equilibrium	0,4	0,3	0,3	0,9✓

Kc = [CO]
$$[H_2]^3 \checkmark$$

[CH4] $[H2O]$
 $(0,4)(0,3)$
= 1,82 \checkmark

No Kc expression, correct substitution: Max. 6/7

No square brackets: Max. 6/7 Wrong Kc expression: Max 4/7

[17]

(7)

QUESTION 6

6.1 A system that is isolated from its surroundings. A system where substances cannot leave/escape the container.√√ (2)

6.2 CALCULATIONS USING NUMBER OF MOLES

Marking criteria

- a) Change $n(H_2)$ = equilibrium $n(H_2)$ = 0,02
- b) **USING** ratio HI:H₂:I₂ = 2:1:1
- c) Equilibrium mole of l₂ = Change mole l₂ ✓
- d) Divide 0,02 by 5 AND multiplying 0,0316 by 5 ✓
- e) Correct K_c expression (formulae in square brackets) ✓
- f) Substitution of K_c 0,016
- g) Substitution of concentrations into K_c expression ✓
- h) Initial mole of HI = Equilibrium + Change = 0,198 mol ✓

	HI	H ₂	12
Initial amount (moles)	0,198✓		0
Change in amount (moles)	0, 04	0,02	0,02√
Equilibrium amount (moles)	0,158	0,02√	0,02
Concentration at equilibrium	0,0316	0,004	0,004

Kc =
$$[l_2]$$
 $[H_2]$ $(H_1)^2$
 0.016 \checkmark = $(0.004)^2$ $(H_1)^2$
 $(H_1)^2$ $(H_1)^2$

[HI] = $0.0396 \text{ mol.dm}^{-3}$

$$n(HI) = 5 \times 0.0316$$

= 0.198 mol

= 0.198 mol√ (8) 6.3.1 Decreases√ (1)

6.3.1 Remains the same (1)

6.4 Endothermic√

- K_c decreases with a decrease in temperature ✓
- Reverse reaction is favoured/concentration of reactants increases/ concentration of products decreases/yield decreases √

Decrease in temperature favours an exothermic reaction ✓

[16]

QUESTION 7

- 7.1.1 Increases ✓ (1)
 7.1.2 Forward ✓ (1)
- 7.1.3 Reactants and products are all in the (same) gaseous phase ✓√ (2)
 7.1.4 Increase in temperature increases K_C. ✓
 Increase in K_C indicates that the forward reaction has been favoured. ✓
 Increase in temperature favours the endothermic reaction. ✓ (4)

Therefore, the forward reaction is endothermic. ✓

7.1.5 Add a catalyst. ✓ Decrease pressure OR Increases the volume of the container. ✓ (2)

7	2
1	4

	2SO ₂	O ₂	2SO ₃
Initial mol	8	у	0
Mol reacted	-2x	-x	+2x ✓
Mol at equil.	2	y-3 ✓	6
[] at equil.	1	<u>y-3</u> 2	3 √ (÷2)

Kc =
$$[SO_3]^2 \checkmark$$
 correct Kc expression
 $[SO_2]^2 [O_2]$
 $(3)^2$
9 = $(1)^2 (y-3) \checkmark$ correct substitution

(6)[16]

QUESTION 8

y = 5 mol ✓

- 8.1.1 The reaction is in a state of dynamic equilibrium/ Rate of the forward reaction (2)equals the rate of the reverse reaction.
- 8.1.2 (1) Less than√
- tanmorephysics.com 8.1.3 t₁ ✓
 - (2)the concentration of N₂ (g) was increased√
- When an equilibrium in a closed system is disturbed, the system will re-instate a 8.1.4 (2)new equilibrium by favouring the reaction that will oppose the disturbance ✓✓
- 8.1.5 (1) Temperature ✓
- 8.1.6 **INCREASED**√

According to the graph the concentration of the reactants increases OR the concentration of the products decrease.√

Therefore the reverse reaction / endothermic reaction is favoured. ✓ (According to Le Chatelier's Principle) an increase in temperature favours the endothermic reaction√

(4)

8.1.7 Marking criteria

- At t₁, forward reaction is favoured (vertical upward climb of solid line) ✓
- At t2, forward reaction is favoured (vertical upward climb of solid line) √
- At t3, reverse reaction is favoured (vertical upward climb of broken line) Vertical upward increase in rates at t₂, t₃ and t₄. ✓
- (5)Equilibrium rate at t₄ .> equilibrium rate at t₃ > equilibrium rate at t₂√√

8.2

	AO ₂	A ₂ O ₃	O ₂
Initial concentration	2	0	0
Change concentration	-4x = - 0.2√	+2x = +0.1√	+x = +0.05√
Equilibrium	1.8	0.1	0.05√
concentration			
(mol.dm ⁻³)	ohysics.com		

At equilibrium, AO₂, is 10% decomposed.

10% of 2 = 0.2 (6)

[23]

QUESTION 9

9.1 The stage in a chemical reaction when the rate of the forward equals the rate of the reverse reaction. ✓✓ (2)

9.3

OPTION 1

$$[A] = \frac{8^{\checkmark}}{3} = 2,67 \text{ mol·dm}^{-3}$$

$$[B] = \frac{4^{\checkmark}}{3} = 1,33 \text{ mol·dm}^{-3}$$

$$[C] = \frac{12}{3} = 4 \text{ mol·dm}^{-3}$$

$$K_{c} = \frac{[C]^{3}}{[A]^{2}[B]} \checkmark = \frac{(4)^{3}}{(2,67)^{2}(1,33)} \checkmark = 6,75 \checkmark$$

OPTION 2

1007	Α	В	C
Initial quantity (mol)	16	8	0
Change (mol)	8	4	12
Quantity at equilibrium (mol)	8 🗸	4 ✓	12 ✓
Equilibrium concentration (mol·dm ⁻³)	8	4	12
Equilibrium concentration (morum*)	3	3	3

Divide by 3 dm³ ✓

$$K_c = \frac{[C]^3}{[A]^2[B]} \checkmark = \frac{(4)^3}{(2.67)^2(1.33)} = 6.75 \checkmark$$

(7)

- 9.4 Endothermic ✓
 - (an increase in temperature) favours the reverse reaction.√
 - An increase in the temperature favours an endothermic reaction.

(3) **[15]**

QUESTION 10

10.1

10.1.1 Remains the same

(1)

10.1.2 Decreases ✓

(1)

10.1.3 Remains the same

(1)

10.2

- When the volume is increased, the pressure decreases.
- According to Le Chatelier's principle, the system will favour the reaction that produces more moles of gas. ✓
- · The forward reaction produces more moles of gas

tanmorephysics.com

The forward reaction is favoured. ✓

(2)

- 10.3
- Mass of CO₂ reacted:
 - Δm(C) = Initial mass Equilibrium mass
 - ∘ $\Delta m(CO_2) = 14.0 \text{ g} 4.44 \text{ g} \checkmark = 9.56 \text{ g}$
- · Moles of C reacted:
 - \circ n = m/M
 - o $n(C) = 9.56 \text{ g} / 12 \text{ g} \cdot \text{mol}^{-1} \checkmark = 0.797 \text{ mol}$
- Moles of C reacted (from mole ratio C:CO₂ is 1:1):
 - o n(CO₂) reacted = 0.797 mol√
- Mass of C reacted:
 - \circ m = n × M
 - o $m(C) = 0.797 \text{ mol} \times 44 \text{ g} \cdot \text{mol}^{-1} \checkmark = 35.07 \text{ g}$
- Initial mass of C (X):
 - X = Initial mass Mass reacted
 - \times X = 41.2 35.07 \checkmark = 6.13 g \checkmark

(6)

10.4

Equilibrium moles:

- o $n(CO_2) = 6.13g / 44 g \cdot mol^{-1} = 0.139 mol$
- o n(CO) formed = $2 \times n(CO_2)$ reacted $\sqrt{= 2 \times 0.797}$ mol = 1.594 mol Equilibrium concentrations (V = 3 dm^3):
 - \circ [CO₂] = n / V = 0.139mol / 3 dm³ = 0.046 mol·dm⁻³
 - \circ [CO] = n / V = 1.594 mol / 3 dm³ = 0.53 mol·dm⁻³ ✓

OR

	CO ₂	2CO
Initial amount (moles)	0.936	0
Change in amount (moles)	0.797	1.594
Equilibrium amount (moles)	0.139	1.594
Concentration at equilibrium	0.046	0.53

Kc calculation:

$$\circ$$
 Kc = $(0.53^2 / (0.046) \checkmark$

10.5 $\gamma \checkmark \checkmark$ (2)

10.6 Remains the same√ (1)

[19]

(5)

QUESTION 11

11.1

Marking criteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark.

The underlined phrases must be in the correct context.

(2)

When the <u>equilibrium in a closed system is disturbed</u>, the system will re-instate a <u>new equilibrium by favouring the reaction that will cancel/oppose the disturbance</u>. \checkmark \checkmark

- 11.2 (Chemical) equilibrium/Concentrations of reactants and products remain constant./Rate of the forward and reverse reactions are equal. ✓ (1)
- 11.3 Exothermic√ (1)
- With an increase in temperature the endothermic reaction is favoured.√
 - The reverse reaction is favoured./ Equilibrium shifts to the left. / Reactants / [P₂Q] increases OR Products / [PQ₂] decreases.√
- 11.5 Less than√ (1)

11.6 Marking criteria

- Correct Kc expression
- Substitute 0.49 into the Kc expression
- Substitute equilibrium concentration (0.35) into the correct Kc expression
- Change in concentration/mole
 - USE ratio P₂Q : 2PQ₂ = 1 : 2
 - Substitute 2 dm3 in n = cV
- Final answer = 0.85 mol

	P ₂ Q	2PQ ₂
Initial concentration (mol.dm³)	х	0
Change in concentration(mol.dm³)	0.175√	0.35
Equilibrium concentrat <mark>io</mark> n (mol.dm³)	X- 0175√	0.35

Kc =
$$[PQ_2]^2 / [P_2Q] \checkmark \checkmark$$

 $\checkmark 0.49 = (0.35^2 / (x - 0.175) \checkmark$
X= 0425 mol.dm⁻³

$$n (P_2Q) = cV$$

= 0.425 x 2 \checkmark
= 0.85 mol \checkmark (8)

[18]

- 11.7 Pressure was decreased/ volume of the container was increased✓ (1)
- 11.8 Favours the reaction that produces more number of gas moles√ (2) [P₂Q] increased√

QUESTION 12

12.1

- 12.1.1 (The dynamic equilibrium when) the rate of the forward reaction equals the rate of the reverse reaction. $\sqrt{\sqrt{2}}$ (2 or 0)
- 12.1.2 _{x√} (1)
- 12.1.3 Decreased√ (1)
- 12.1.4 The concentrations of (all) the gases decreased./The reverse reaction was favoured. \checkmark (1)
- 12.1.5 CO(g)/carbon monoxide (1)
- 12.1.6 The concentration of Z (CO) decreased with a decrease in the concentration of X (O₂). ✓

 OR (1)

The concentration of Z (CO) increased with an increase in the concentration of X (O_2)

12.1.7 Decreased√ (1)

12.1.8 Concentration of products/Y/CO₂ increases. ✓

OR

Concentration of reactant/Z/X/CO/O₂ decreases. **OR**

The forward reaction is favoured. (3)

- The forward reaction is exothermic. √
- A decrease in temperature favours the exothermic reaction. √

12.2 <u>Marking criteria</u>

- (a) USING ratio: $n(H_2O)$: n(CO): $n(H_2)$: $n(CO_2)$ = 1:1:1:1 \checkmark
- (b) $n(CO)eq = n(CO)initial \Delta n(CO)$, $n(H_2O)eq = n(H_2O)initial \Delta n(H_2O)$,

$$n(CO_2)eq = n(CO_2)initial + \Delta n(CO_2)$$
 AND $n(H_2)eq = n(H_2)initial + \Delta n(H_2)$

- (c) Divide neq by the volume 2 dm³ √
- (d) Correct Kc expression. ✓
- (e) Substitute Kc value 4. ✓
- (f) Substitute concentrations in Kc expression. ✓
- (g) Substitute numerical values of x in n(CO)initial ∆n(CO)change √
- (h) Substitute of 28 in n = m/M √
- (i) Final answer: 6,44 g √

Range: 6,44 - 6,72 g

	со	H ₂ O	H ₂	CO ₂	(9)
Initial concentration (mol·dm ⁻³)	0,3	0,3	0,05	0,05√	
Change (mol·dm⁻³)	Х	Х	x And	x√	
Equilibrium concentration (mol·dm ⁻³)	0,3 + x	0,3 + x	0,05 - x	0,05–x ✓	

$$Kc = \underline{[CO_2][H_2]}$$

$$\text{[CO][H}_2\text{O]} \checkmark$$

$$\sqrt{4} = [(0,05-x)(0,05-x)]$$

$$[(0,3+x)(0,3+x)] \checkmark$$

$$x = -0.18 (0.183)$$

$$[CO] = 0.3 + (-0.18) \checkmark = 0.12 \text{ mol·dm}^{-3}$$

n(CO)eq = cV

=
$$(0,12)(2) \checkmark$$

= 0,24 mol
n(CO) = $\frac{m}{M}$
0,24 = $\frac{m}{28}$
m(CO)eq = 6,72 g \checkmark
OR

	CO	H ₂ O	CO_2	H ₂
Initial amount (moles)	0,6	0,6	0,1	0,1
Change in amount (moles)	X	X	x	x
Equilibrium amount (moles)	0,6 + x	0,6 + x	0,1 - x	0,1 - x√
Equilibrium concentration (mol·dm ⁻³)	oh (0,6°+ x)/2	(0.6 + x)/2	(0,1- x)/2	(0,1- x)/2 ✓
$Kc = \underline{[CO_2][H_2]}$				

$$[CO][H_2O] \checkmark \\ 4 \checkmark = \{ [(0,1-x)/2] * [(0,1-x)/2] \} \\ \{ [(0,6+x)/2] * [(0,6+x)/2] \} \checkmark \\ x = -0,37 \\ \\ n(CO)eq = 0,6 + (-0,37) \checkmark \\ = 0,23 \text{ mol} \\ \\ n(CO)eq = \frac{m}{M} \\ \\ 0,23 = \frac{m}{28} \checkmark \\ \\ m(CO)eq = 6,44 \text{ g} \checkmark \\$$

[20]

GALVANIC CELLS: SOLUTIONS

QUESTION 1

- 1.1. D √√
- 1.2. B √√

1.3. C 🗸 1.4. 1.5. [10] **QUESTION 2** 2.1 Chemical to Electrical ✓ (1) 2.2 (3) $Zn(g) \mid Zn^{2+}(aq) \mid Ag+(aq) \mid Ag(s) \checkmark \checkmark \checkmark$ 2.3 (2) The electrode where oxidation takes place. √√ 2.4 (1) Silver ions. ✓ 2.5 $Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s) \checkmark \checkmark \checkmark$ (3) 2.6 Concentration of the electrolyte 1mol.dm⁻³√ (2) Temperature 25°C / 273K √ $E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \checkmark$ 2.7 $= (0.80) - (-0.76) \checkmark\checkmark$ (4) $E_{\rm cell}^{\theta}$ = 1, 56 V \checkmark [16] **QUESTION 3** 3.1.1 Gold (III) ions√ or Au³⁺ (1) 3.1.2 (2) $2CI^{-} \rightarrow CI_{2}(g) + 2e^{-} \checkmark \checkmark$ 3.1.3 Pt (s) | Cl^{-} (aq) | Cl_{2} (g) || Au^{3+} (aq) | Au (s) $\sqrt{\sqrt{}}$ (3) $E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \checkmark$ 3.2 0, $14 = E_{cathode}^{\theta} - (1, 36) \checkmark \checkmark$ (4) $= 1,50 V \checkmark$ 3.5.1 Smaller than. √ (2) Decreases in potential difference due to internal resistance√ [12]

QUESTION 4

4.1 Temperature: 25 °C / 298 K ✓

Pressure: 101,3 kPa / 1,013 x 10⁵ Pa / 1 atm / 100 kPa ✓

Concentration: 1 mol·dm⁻³ √

4.2.1 $Cd(s) \checkmark or Cadmium$ (1)

4.2.2
$$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} \checkmark$$

$$0, 13\sqrt{=E_{\text{cathode}}^{\theta} - (-0, 4)} \sqrt{}$$

Q is Nickel √

4.3.1
$$Cd(s) \rightarrow Cd^{2+}(aq) + 2e^{-} \checkmark \checkmark$$
 (2)

4.4 Cd²⁺; Q²⁺; R₂ √nmorephysics.com

Compare Q ²⁺ & Cd ²⁺	Q ²⁺ is reduced / Cd is oxidised, therefore Q ²⁺ is a stronger oxidising agent than Cd ²⁺ ✓	
Compare R ₂ & Cd ²⁺	R₂ is reduced / Cd is oxidised, therefore R₂ is a stronger oxidising agent than Cd²+ ✓	
Compare R ₂ & Q ²⁺	The cell potential of combination II is higher than that of combination I; therefore, R₂ is a stronger oxidising agent than Q²+. ✓	(4)

[16]

(3)

(5)

QUESTION 5

5.1 Chemical energy to electrical energy. ✓ (1)

5.2 Concentration of the electrolyte 1mol.dm⁻³√

Temperature 25° C / 273K \checkmark (2)

5.3 Mg
$$\checkmark$$
 or Magnesium (1)

5.4 Mg (s)
$$\rightarrow$$
 Mg²⁺ + 2e⁻ \checkmark (2)

5.5
$$n_{Mg} = \frac{m}{M} = \frac{0.96}{24} \checkmark = 0, 04 \text{ mol}$$

$$n_{Fe} = n_{Mg} \times \frac{2}{3} \checkmark$$

$$= 0, 027 \text{ mol } \checkmark$$

$$= 1, 51g \checkmark \qquad (5)$$
5.6
$$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} \checkmark$$

$$= (-0, 04) \cdot (-2, 37) \checkmark \checkmark$$

$$= 2, 33V \checkmark$$

$$Yes\checkmark, Bulb will light up.$$
5.7 Increase.
$$\checkmark$$

$$An increase in the concentration of Magnesium ions (Mg^{2}) will favour the reverse reaction (the reaction that decreases the Mg^{2} concentration).
$$\checkmark$$

$$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} \checkmark$$

$$= (-0, 04) \cdot (-2, 37) \checkmark \checkmark$$

$$= 2, 33V \checkmark$$

$$Yes\checkmark, Bulb will light up.$$
6.1.1 Increase.
$$\checkmark$$

$$An increase in the concentration of Magnesium ions (Mg^{2}) will favour the reverse reaction (the reaction that decreases the Mg^{2} concentration).
$$\checkmark$$

$$(2)$$

$$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} \lor$$

$$= (-1.2)$$

$$Aluminium is a strong reducing agent/stronger reducing agent
$$\checkmark$$

$$(2)$$
6.1.2 Aluminium is a strong reducing agent/stronger reducing agent
$$\checkmark$$

$$(3)$$
6.2.1 Aluminium
$$\checkmark$$

$$(4)$$
6.2.2 Al(s) Al^{3} (1 mol · dm⁻³) $|| Cu^{2}$ (1 mol · dm⁻³) $|| Cu(s) \checkmark \checkmark \checkmark$

$$= 0.34 - (-1.66) \checkmark \checkmark = 2.00V \checkmark$$

$$(4)$$
6.2.4 zero $V / 0V \checkmark$ The circuit is open
$$\checkmark$$

$$(2)$$$$$$$$

		[17]
ELEC	TROLYTIC CELLS: SOLUTIONS	
	STION 1	
1.1.	$A \checkmark \checkmark$	
1.2.	C √√	
1.3. ^l	C //	
1.4.	D √√	
1.5.	C √√	
1.6.	C √√	
		[12]
	STION 2	(0)
2.1	Oxidation is a loss of electrons $\checkmark\checkmark$	(2)
2.2	A ✓ Cr³+ ions moves Towards A ✓	
	Or Reduction is taking place Or Oxidation is taking place at B, B is positive, so A must be negative.	(2)
2.3	Cr ³⁺ (aq) + $3e^{-} \rightarrow Cr(s) \checkmark \checkmark$	(2)
2.4	Cr is a stronger reducing agent than Ag (Silver) √√	(-)
	Or Ag ⁺ is a stronger oxidizing agent.	(2)
		[8]
QUES	STION 3	
3.1.1	Battery √ or Power source	(1)
3.1.2	Chlorine √	(1)
3.1.3	$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq) \checkmark \checkmark$	(2)
3.1.4	Cl⁻ √ (or NaCl)	(1)
3.2	$[H_3 O^+] > 1 \times 10^{-7} $	(0)
	Solution is alkaline √	(2)
3.3	Cu²+ is a stronger oxidizing agent √than Na+ and will be reduced√ to Cu √	(3)
QUES	STION 4	[10]
4.1	A cell in which electrical energy is converted into chemical energy ✓✓	(2)
4.2	B√	(1)
4.3.1	$n (Cu) = \frac{m}{M}$	
	$=\frac{32}{635}$	
	63.5 = 0.504 mol of Cu √	(2)
4.3.2	n (Cu): n (e ⁻) = 1: 2 Therefore; n (e ⁻) = 0.504x 2 = 1.008 mol \checkmark	(2)
	n (Cu) = $\frac{N}{n}$	

1.008 =
$$\frac{N}{6.92 \times 10^{23}}$$
 ✓ N = 6.088 x 10²³ electrons

 $\vec{n} = \frac{Q}{q}$

8.068x10²³ = $\frac{Q}{1.6 \times 10^{-19}}$ ✓ Q = 97090,56 C ✓ Q = 1 x Δt

97090,56 = 1 (3600) ✓ (6)

1 = 26,97 A ✓ (3)

4.4 Cu²⁺ is a stronger oxidizing agent ✓ than Zn²⁺.

Cu²⁺ is reduced ✓ to Cu. ✓ (3)

[14]

QUESTION 5

5.1 DC ✓ (1)

5.2 Cathode ✓ (2)

Cu²⁺ (aq) + 2e⁻ → Cu ✓ (2)

5.3 Cu²⁺ is a stronger oxidising agent ✓ than Zn²⁺ ions ✓; therefore Zn²⁺ ions will not be reduced (to Zn). ✓ (2)

5.4.1 (Chlorine) gas/ bubbles is/ are formed. ✓ (2)

5.4.2 Decreases ✓ (2)

ELECTRODYNAMICS: SOLUTIONS

MULTIPLE CHOICE SOLUTIONS

1.1 C✓ (2)

1.2 D✓ (2)

1.3 A✓ (2)

QUESTION 1

1.1 Generator ✓ (2)

1.2 Coil✓ (1)

1.3 Good conductor of electricity✓ (1)

1.4 A to B✓ (2)

A to B√√

1.5.1
$$f = \frac{1}{T} \checkmark$$
 (3) $f = \frac{1}{0.02} \checkmark$

= 50Hz \checkmark Type equation here.

1.5.2
$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$$
$$V_{rms} = \frac{250}{\sqrt{2}}$$

$$= 176.78V$$

$$I_{\text{rms}} = \frac{Imax}{\sqrt{2}}$$
$$= \frac{2}{\sqrt{2}}$$

$$P_{av} = V_{rms} I_{rms} \checkmark$$

= (176.78)(1.41) \checkmark
= 249.26W \checkmark

QUESTION 2

(5)

2.4 From X to Y
$$\checkmark$$
 (1)

2.5.3
$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$$

$$V_{rms} = \frac{120}{\sqrt{2}}$$

$$= 60\sqrt{2} V$$

$$P_{av} = V_{rms}I_{rms} \checkmark$$
(4)

$$= (60\sqrt{2})(1.41) \checkmark$$
$$= 101.82W\checkmark$$

[13]

QUESTION 3

- 3.1.1 X√
- 3.1.2 Change the direction of the magnetic field (turn magnet upside down). (1) Change the direction of the current (turn the battery around). ✓
- 3.1.3 Increase the strength of the magnetic field (use stronger magnet). ✓ Increase (2) the current in the conductor. ✓

Increase the thickness of the magnet to increase the length of the magnetic field.

(Any of the above)

- 3.2.1 The AC potential difference ✓ which dissipates/produces the same amount of energy as an equivalent DC potential difference. ✓
- 3.2.2 AC-slip rings ✓

DC- commutator ✓ (2)

3.2.3
$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$$
$$V_{rms} = \frac{460}{\sqrt{2}}$$
$$= 325.27 V$$

3.2.4
$$I_{rms} = \frac{V_{rms}}{R} \checkmark$$
$$= \frac{325,27\checkmark}{40\checkmark}$$
$$= 8,13A\checkmark$$

(4)

[11]

QUESTION 4

$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark \tag{3}$$

$$V_{rms} = \frac{320}{\sqrt{2}} \checkmark$$

$$= 220.62 V \checkmark$$

$$4.4.1 \quad P_{av} = \frac{V_{rms}^2}{R} \qquad \checkmark$$

$$= \frac{(220.62)^2}{40} \checkmark$$

$$= 1216.83 W \checkmark$$
(3)

$$4.4.2 I_{max} = \frac{v_{max}}{R} \checkmark$$

$$= \frac{320}{40} \checkmark \checkmark$$

$$= 7.8A \checkmark$$

$$(4)$$

QUESTION 5

[12]

5.1.3 (carbon) brush
$$\sqrt{}$$
 (2)

5.2.2
$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$$

$$200 = \frac{V_{max}}{\sqrt{2}} \checkmark$$

$$V_{max} = 282.82V \checkmark$$
(3)

[12]

PHOTOELECTRIC EFFECT: SOLUTIONS

QUESTION 1

1.1 D
$$\checkmark$$
 (2)
1.2 C \checkmark (2)
1.3 D \checkmark (2)
1.4 A \checkmark (2)
1.5 D \checkmark (2)
1.6 A \checkmark (2)
1.6 A \checkmark (2)
1.7 Description 2

2.1. Metal (cathode)/ work function/threshold frequency/
1 (1)
2.1. (maximum) kinetic energy/
2 (1)
2.2 Photoelectric effect/
2.3 The minimum energy that an electron in the metal needs to be emitted from the metal surface. \checkmark (2)
2.4. $W_0 = hf_0 \checkmark$ (2)
2.5 Increases/
$$(6.63 \times 10^{-34})(1.75 \times 10^{15}) \checkmark = 1.16 \times 10^{-18} f/\checkmark = 1.16 \times 10^{-1$$

(4)

 $n = 7.5 \times 10^{17}$ (electrons)

number of photons = n = 7,5 x 10^{17} \checkmark

3.5 Increases √

> More photons strike the surface of the metal per unit time/ at a higher rate ✓ hence more (photo) electrons ejected per unit time√ (resulting in increased current).

(3)

[14]

QUESTION 4

The minimum energy (of incident photons) that can eject electrons from a 4.1 metal/surface. √√

(1)

- 4.2 1√√
- 4.3. $E_{k(max)} = \frac{1}{2} m v_{max}^2 \checkmark$ 1

 $2,99 \times 10^{-19} = (\frac{1}{2}(9.11 \times 10^{-31})v_{max}^2 \sqrt{}$ $v^2_{max} = 8.10 \times 10^5 \ m. \, s^{-1} \checkmark$

(3)

- $E = W_0 + E_{K(MAX)} \sqrt{}$ 4.3.
- 2 $E = (3.68 \times 10^{-19}) + 2,99 \times 10^{-19}$

 $E = 6.67 \times 10^{-19} J \sqrt{stanmore physics.com}$ (4)

4.4 Remain the same <

The energy of the incident photon is not changing√

(2)

[13]

QUESTION 5

The minimum energy (of incident photons) that can eject electrons from a 5.1 metal/surface. </

(2)

 $E = \frac{hc}{\lambda} \checkmark$ 5.2

$$\mathsf{E} = \frac{(6.63 \times 10^{-34})(3 \times 10^8)}{400 \times 10^{-9}} \checkmark$$

$$E=4,97 \times 10^{-19} J \checkmark$$

(3)

5.3 $E = W_0 + E_{K(MAX)} \checkmark$

$$4.97 \times 10^{-19} \checkmark = (2.46 \times 10^{-19}) + \frac{1}{2} (9.11 \times 10^{-31}) v_{max}^2 \checkmark$$

$$v_{(max)}$$
= 742322,57 m.s⁻¹ \checkmark

(4)

5.4 No√

The work function of platinum is higher than the energy of the photon√

(2) [11]

QUESTION 6

6.1.1 E=hf √ (4)

E=(6.63×10⁻⁹⁴)(2.8×10⁻¹⁶)
$$\checkmark$$
E=1.86×10⁻¹⁷ J \checkmark
E>W₀ electrons will be ejected \checkmark

6.1.2 $F = KQ_1Q_2 \ (0.0)^2$
 $Q_2 = 5.56 \times 10^{-9} \ (0.0)^2$
 $Q_2 = 5$

E√

1.2.1 1.2.2	Butanal 🗸	(2)
	4,4-dimethylpent-2-yne ✓ ✓ ✓	(3)
1.3.1	Compounds with the same molecular formula, ✓ but different functional groups/homologous series. ✓	(2)
1.3.2	A and C√	(1)
1.4.1	H₂SO₄/Sulphuric acid ✓	(1)
1.4.2	Esterification/Condensation√	(1)
1.4.3		. ,
	H C C O C C H	(2)
1.4.4	Propan-1-ol ✓✓	(2) [17]
	STION 2	(0)
2.1.	Organic compou <mark>nds that consist of h</mark> ydrogen and carbon only.✓✓	(2)
2.2.1	C and E✓	(1)
2.2.2	D and H✓✓	(2)
2.2.32.3.1	A√ Stahmorephysics.com	(1)
	H H H H OR/OF H H H H H H H H H H H H H H H H H H H	
		(2)
2.3.2	C_nH_{2n+2} \checkmark	(1)
2.3.3		
		(2)
2.4.1	3-othylhov-3-ong ///	(3)
2.4.1	3-ethylhex-3-ene √√√ 2,5-dichloro-2,4-dimethylhexane √√√	(3)
2.4.3	•	(2)
2.4.3	2,2-dimethyl / propanal /	(3)
2.0	$C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O \checkmark \checkmark \checkmark$	(3) [22]

QUEST	FION 3	
3.1	A bond or an atom or a group of atoms that determine(s) the physical and	
	chemical properties of a group of organic compounds. √√	(2)
3.2.1	E√	(1)
3.2.2	A	(1)
3.2.3	C√	(1)
3.3	EQUAL TO√	
_	Compound E and ethyl methanoate are functional isomers / structural isomers / have the same molecular formula / same number and type of atoms/same number of C, H and O atoms. $\checkmark\checkmark$	(3)
0.4.4		(0)
3.4.1	H - C - H O H $H - C - H O H $ $A = A + A + A + A + A + A + A + A + A +$	(2)
3.4.2	Propanoic acid $\sqrt{\checkmark}$	(2)
3.4.3 3.5	4-methylhex-2-yne √√√ephysics.com	(3)
	H − C C − H Whole structure	
3.6	$C_7H_{12} + 10 O_2 \checkmark \rightarrow 7 CO_2 + 6 H_2O \checkmark Bal. \checkmark$	(2) (3)
011505		[20]
QUES 1 4.1.	IDDAT	
4.1.	Compounds with one or more multiple bondsbetween C atoms in the hydrocarbon chain 🗸	(2)
4.2.1	D/	(1)
4.2.2	2,4-dimethyhexane√√√	(3)
4.2.3	Propan-2-ol	(2)
4.2.4		(2)
4.2.5	Hept-1-ene√√	(3)
4.2.5	2C ₈ H ₁₈ + 25O ₂ √ → 16CO ₂ + 18H ₂ O√ Balancing√ Compounds with the same molecular formula but different functional	(3)
T.U. I	groups/homologous series 🗸 🗸	(2)

4.3.2 (4)С Н 0 1,09 0,18 2-(1,09+0,18)Mass =0,73√ $n = \frac{m}{M}$ Moles $n = \frac{1}{M}$ $n = \frac{n}{M}$ =0,046=0,0908=0,182 Simplest ratio 4 Empirical formula C2H4OV $M(C_2H_4O) \times n = 88 \text{ (g.mol}^{-1})$

4n = 88

n = 2

Molecular formula of compound X: C₄H₈O₂ √

(6)[25]

QUESTION 5

- The pressure exerted by a vapour at equilibrium with its liquid in a closed 5.1 (2)system.√✓
- 5.2.1 (1) 146 (kPa) √√
- Comparing compound C/2,2-dimethylpropane with compounds A/pentane and 5.2.2 B/2-methylbutane
 - Structure: Compound C is more branched than compounds A and B/Shorter chain length/most compact most spherical/smallest surface area (over which intermolecular forces act). ✓
 - Intermolecular forces: Compound C has weaker/less intermolecular forces/Van der Waals forces/London forces than A and B. ✓
 - Energy: Lesser energy needed to overcome or break intermolecular forces/Van (3)der Waals force in compound C than A and B. ✓
- (1) 5.3.1 E/butanal ✓
- Compound D/Propanoic acid has hydrogen bonding (dipoledipole and London 5.3.2 forces) between molecules. √

	• Compound E/Butanal has dipoledipole forces (and London forces) between molecules.√	
	• Intermolecular forces between molecules of compound D/propanoic acid are	
	stronger than intermolecular forces between molecules of compound E/butanal.√	
	 More energy is needed to overcome/break intermolecular forces between molecules of compound D/propanoic acid than in compound E/butanal √ 	(4)
4	The second of th	[11]
	TION 6	
6.1	The temperature at which the vapour pressure of a substance equals atmospheric/external pressure. $\checkmark\checkmark$	(2)
6.2	C√	(1)
6.3	A/CH ₃ CH ₂ CH ₂ Cl /1-chlorobutane	
	Structure: Longer chain length/larger surface area (over which intermolecular	
	forces act). ✓	
	• Intermolecular forces: Stronger/more intermolecular forces/Van der Waals	
	forces/London forces/dipole-dipole forces.√	
	• Energy: More energy needed to overcome or break intermolecular forces/Van der Waals forces/dipole-dipole forces. ✓	
	OR	
	B/CH ₃ CH(CH ₃)C <mark>H₂Cℓ/1-chloro-2-met</mark> hylpropane	
	• Structure: Shorter chain length / branched / compact / more spherical / smaller	
	surface area (over which intermolecular forces act). ✓	
	• Intermolecular forces: Weaker/less intermolecular forces/Van der Waals	
	forces/London forces/ dipole-dipole forces. ✓	
	• Energy: Less energy needed to overcome or break intermolecular forces/Van der Waals forces/dipole-dipole forces.√	
0.4.4		(3)
6.4.1	75 (°C) √√	(2)
6.4.2	• Intermolecular forces: C (CH ₃ CH ₂ CH ₂ CH ₂ OH/butanol) has stronger intermolecular forces than D (CH ₃ CH ₂ CH ₂ CHO/butanal). ✓	(2)
	• Energy: More energy needed to overcome or break intermolecular forces. ✓	
	Accept: Boiling point of C will be more (in relation to C and D/118°C vs 75°C).	
6.5	Decreases √	(1) [10]
QUFS	TION 7	
7.1.1	The temperature at which the vapour pressure of a substance / liquid equals the	
	atmospheric pressure√√	(2)
7.1.2	All are primary alcohols √	(1)
7.1.3	London forces/dispersion forces/induced-dipole forces ✓	(1)
7.1.4	Pentan-1-ol √√	(2)
7.2.1	Compound C/ propanoic acid √	(1)
7.2.2	Compound A/butanone has dipole-dipole forces √ (and London forces / dispersion forces/induced-dipole forces)	

	Compound B/butan-1-ol and C/propanoic acid has hydrogen bonds ✓ (and London forces/dispersion forces/induced-dipole forces) Compound B/butan-1-ol has one site for hydrogen bonding and C/propanoic acid has two sites for hydrogen bonding ✓ Strength of the intermolecular forces increases from compound A / butanone to compound B / butan-1-ol to compound C / propanoic acid ✓ More energy is needed to overcome the intermolecular forces in compound C / propanoic acid than compounds A/ butanone and B/butan-1-ol ✓	(5) [12]		
QUES	TION 8			
8.1.	The temperature at which the vapour pressure of a liquid equals the atmospheric pressure $\checkmark\checkmark$			
8.2.1	Molecular size/ Surface area / Chain length√	(1)		
8.2.2	Functional group / Homologous series√	(1)		
8.3	London forces / induced dipole forces / dispersion forces √	(1)		
8.4	129 °C √	(1)		
8.5	 2-methylbutan-1-ol has a larger molar mass/molecular size than butan-1-ol √ London forces/induced dipole forces/dispersion forces of 2-methylbutan-1-ol is stronger than that butan-1ol √ The boiling point will higher than that of butan-1-ol 2-methyl butan-1-ol has a shorter chain length than pentan-1-ol√ 			
	 London forces of 2-methyl butan-1-ol is weaker than that of pentan-1-ol √ The boiling point will be lower than that of pentan-1-ol 	(4)		
8.6.1	The pressure exerted by a vapour at equilibrium with its liquid in a closed system. ✓✓	(2)		
8.6.2	Q√	(1)		
8.6.3	 Propan-1-ol has hydrogen bonds √(and London forces/induced dipole forces/dispersion forces Propanal has dipole-dipole forces √(and London/induced dipole forces/dispersion forces Hydrogen bonds are stronger than dipole-dipole forces √ The stronger the intermolecular forces the lower the vapour pressure 	(4)		
	THUL			

[17]

QUESTION 9

- 9.1. The chemical process/reaction in which longer chain hydrocarbon/alkane (2) molecules/are broken down to shorter (more useful) molecules. ✓√
- 9.2 Primary ✓
 The halogen/bromine/functional group (-X) is bonded to a C atom that is bonded (2) to one other C atom.√

9.3.1

- 9.3.2 $C_8H_{18} \checkmark$ (1)
- 9.4.1 Br₂/Bromine√ (1)
- 9.4.2 Substitution \checkmark (1)
- 9.4.3 UV/(Sun)light/Heat √ (1)
- 9.5 Dehydrohalogenation/Dehydrobromination (1)

QUESTION 12

√ whole structure

REACTION RATE: SOLUTIONS

Question 1

- 1.1 C 🗸
- 1.2 C 🗸
- 1.3 D 🗸
- 1.4 A 🗸
- 1.5 B √√

(2) (2) (2) (2) (2) (2)

LONG QUESTIONS

Question 1

1.1 Exothermic √ΔH < 0/Energy is released √

1.2 Rate = $-\frac{\Delta m}{\Delta t}$

[10]

(2)

(2)

2.1.3

24.8-208.2=32.6(KJ) \sqrt{\sqrt{}}

- 2.2.1 Decrease √ (1)
- 2.2.2 Remains the same \checkmark (1)
- 2.2.3 Remains the same√ (1)
- 2.3.1 Concentration √ (1)
- 2.3.2 More particles per unit Volume √, more effective collision per unit time√, (3) higher reaction rate√

2.3.3
$$rate = \frac{\Delta V}{\Delta t} \sqrt{40} = \frac{\Delta v}{(2.6)(60)} \checkmark = 6240cm^{3} \ n = \frac{V}{V_{m}} = \frac{6240}{27000} \checkmark$$

$$n(Al) = \frac{2}{3}(0.23) \checkmark = 0.15 \text{ mol} \quad 0.15 = \frac{m}{27} \checkmark \text{ %purity} = \frac{4.05}{5}(100) \checkmark$$

$$= 81\% \checkmark$$
(6)

Question 3

3.5

- 3.1 Change in concentration of reactant or product per (unit) time. $\checkmark\checkmark$ (2)
- 3.2 Surface area (1)
- 3.3 Higher kinetic energy , higher speed ✓. More molecules with enough energy ✓. More effective collision per unit time ✓. Rate of reaction also increase ✓

3.4.1
$$n = m/_{M} \checkmark = \frac{5}{84} \checkmark \text{ n(CO}_{2}) = n(MgCO_{3}) \checkmark = 0.06 \text{ mol}$$

$$0.06 = m/_{M} \checkmark 0.5 \checkmark = \frac{5}{2.64} \land t = 5.29 \text{ min} \checkmark$$

$$0.06 = \frac{m}{44} \lor 0.5 \checkmark = \frac{2.64}{\Delta t} \Delta t = 5.28 \, min \checkmark$$

$$1.4.2 \qquad n = \frac{V}{V_m} \lor 0.06 = \frac{1.5}{V_m} \quad V_m = 25 \, dm^{-3} \checkmark$$

$$(6)$$

(2) **[17]**

[18]

Question 4 4.1 B (4) Catalyst provides an alternative path of lower activation energy√, more particles with enough energy to react or higher than activation energy. more collision per unit time √ 4.2 Y. √√ (2)4.3 0.56dm³ or 560(cm³)√√ (2)4.3.1 4.3.2 $n = \frac{V}{V_m} \checkmark = \frac{560}{24000} \checkmark n(H_2O) = 2n(O_2) \quad n = 2(0.023) \checkmark = (0.046)(18)$ (4) 4.4.1 Zero √ (1) 4.4.2 (1) Greater √ $n = \frac{m}{M}$ $n(O_2) = \frac{0.9}{32} \checkmark = 0,028 \text{mol}$ M 32 4.6 n(H₂O₂)=2n(O₂) = 2(0.028) $\sqrt{0.056}$ 2.1 × 10⁻³ = $\frac{0.056 - 0}{\Delta t}$ $\Delta t = 26.67$ (5)[15] **Question 5** (1) 5.1 Temperature √ 5.2 Change in concentration of reactant or product per (unit) time. $\checkmark\checkmark$ (2)5.3 14 (min) √ (1) 5.4.1 Graph B √(Experiment 3) has the highest (acid) concentration/more (2)particles/higher number of moles. ✓ 5.4.2 Graph C √(Experiment 5) is at highest temperature/more particles with (2)sufficient kinetic energy/HCℓ is at 35° C ✓ 5.5.1 Speeds up the reaction/Increases the reaction rate/ Provides alternate (2)pathway/Lowers the (net) activation energy. ✓ 5.5.2 (1) Equal to √ $n(Zn) = \frac{m}{M} = \frac{1.5}{65} \checkmark = 0.023 \text{ mol}$ 5.3 (4) Rate = $-\frac{\Delta n}{\Delta t} = -\frac{(0-0.023)}{(14-0)} \checkmark \checkmark = 1,65 \times 10^{-3} \text{ mol.min}^{-1} \checkmark$ [15] **Question 6** 6.1.1 (1) Temperature √ 6.1.2 (1) Reaction rate √ 6.2 Larger surface area. √ More particles with enough energy and collide with correct orrientation. ✓ (3)More effictive collisions per unit time. ✓ 6.3 C <

Exp 1 and 2

Reaction in Exp 1 is faster than Exp 2 due to higher concentration of the acid. ✓ The gradient in Exp 1 is steeper than in Exp 2√ Exp 1,3 and 4 Reaction in Exp 3 is faster than Exp 1 due to higher temperature. Reaction in Exp 4 is faster than Exp 1 due to higher temperature/larger surface area. ✓ (6)Therefore, the gradient of graphs of Exp 3 and 4 is steeper than in Exp 1 √ $n(CO_2) = V = 4.5 \checkmark = 0.18 \text{ mol}$ V_m 25,7 $n(CaCO_3) = n(CO_2) = 0.18 \text{ mol } \checkmark$ $n(CaCO_3) = \underline{m}$ (5) **Question 7** (2)Change in concentration of products / reactants perunit time √√ (1) Temperature ✓ Stanmorephysics.com (1) Rate of reaction / volume of gas formed per unit time ✓ (4) High temp / high concentration √ more effective collision/more molecules with enough energy,√ more collision per unit time √ Exp 1 is faster than exp 2 due higher concemtration√ steeper gradient √ (4) Exp 4 faster than exp 1 due to higher temp√√ Final C $n = \frac{V}{V_m} = \frac{4.5}{25.7} \checkmark = 0.18 \ mol$ N(CO₂)=0.18 mol \checkmark 0.18 = $\frac{m}{100} \checkmark$ m = 18g (5) M=28-18=7.00q**DOPPLER EFFECT: SOLUTIONS** (2)(2)

MULTIPLE CHOICE QUESTIONS

1 Α 2 В 3 Α D 4

(2)(2)

C 5

(2)(2)

QUESTION 1

6.4

7.1

7.2.1

7.2.2

7.3

7.4

7.5

- 1.1.1 (1) Radar cameras-used identify/scanning over speeding cars.√
- 1.1.2 (1) Burglar alarms. ✓

- 1.1.3 Sonar technology– used to locate objects under water. ✓ (1)
- 1.2 Directly proportional√ (1)
- 1.3 $f_{l} = \left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \checkmark$ $\frac{f_{L}}{f_{S}} = \left(\frac{v \pm v_{L}}{v_{S}}\right)$ (5)

$$1.06 \checkmark \checkmark = \frac{340 + v_L}{340} \checkmark$$

$$v_L = 20.4 m. \, s^{-1} \checkmark$$

1.4

 Graph is a straight line starting from origin (2)

(6)

• Gradient of B is greater than gradient of A

QUESTION 2

2.1 As the ambulance is moving away from the scene/detector, the wavelength become longer resulting in less waves reaching detector per unit time hence the frequency decreases.

2.2
$$f_{l} = (\frac{v \pm v_{L}}{v \pm v_{S}}) f_{s} \checkmark$$
 (5)
 $0.9 f_{s} = (\frac{340}{340 + v_{S}}) f_{s} \checkmark$
 $340 = 306 + v_{s} \checkmark$
 $v_{s} = 37,78 \text{ m.s}^{-1} \checkmark$

2.3

- 2.3.1 Red shift- shift in spectra of a distant galaxies towards longer wavelengths, towards the red end of the spectrum.✓✓
- 2.3.2 The shift is to a longer wavelength (lower frequency), therefore the star is moving away from the earth. ✓
- 2.3.3 A greater shift shows that the distant star is moving away at a greater speed (2) than a nearby star.✓✓

QUESTION 3

3.1 Ambulance approaching :

$$f_{l} = \left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{s} \checkmark$$

$$450 = \frac{340 + 0}{340 - v_{s}} f_{S}$$

 $450(340-v_S)\sqrt{=340f_S}$ (i) $\sqrt{}$

Ambulance moving away

$$385 = \frac{340 - 0}{340 + v_s} f_S$$

$$450(340-v_S)=385(340+v_S)$$

$$v_S = 26.46 m. s^{-1} \checkmark$$

$$3.2 450(340-v_S)=340f_S (2)$$

$$f_S = 414.98 \, Hz$$

QUESTION 4

4.3 (Fire engine)

$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \checkmark$$

$$850 \checkmark = \frac{v + 0}{v + 20} \checkmark (900) \checkmark \text{stanmore physics.com}$$
(6)

(ambulance)

$$1030 = \frac{340}{340 - v_S} (920) \checkmark$$

$$v_S = 36,31 \text{ m.s}^{-1} \checkmark$$

4.4 When a distant star emits light, its spectrum can be observed on earth√. The (4) spectral lines for certain elements do not correspond to that of the same elements when the light source is stationery√. The shift in the spectral lines (towards red)√ implies that the frequency observed is lower than actual frequency. Hence the star is moving away from the earth or earth is expanding√.

QUESTION 5

5.1 Doppler effect√. It is the change in frequency (or pitch) of the sound detected (3)by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation√√.

$$5.2 \qquad \lambda = \frac{V}{f} \checkmark \tag{3}$$

λ=0,0113 m ✓

5.3 Increases (1)

5.4 Incident waves Reflected waves (6)
$$f_{L} = \frac{\sqrt{v \pm v_{L}}}{v \pm v_{s}} f_{s} \checkmark 29 \ 500 \ \checkmark = (\frac{340}{340 + v})(\frac{340 - v}{340})(30 \ 000) \checkmark$$

$$f_{L} = \frac{340 - v_{L}}{340} \ \checkmark (30 \ 000) \checkmark v = 2,86 \ \text{m.s}^{-1} \ \checkmark (\text{away from the device})$$

QUESTION 6

- 6.1 The change in frequency (or pitch) of the sound detected by a listener (2) because the sound source and the listener have different velocities relative to the medium of sound propagation.✓✓
- 6.2 $\lambda = \frac{v}{f}$ $\lambda = \frac{340}{5000}$ $\lambda = 0,068 \, m$ (3)
- 6.3 Shift 1 Shift 2 (6) $f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$ $f_{L} = \frac{340 + v}{340} \checkmark (5\ 000) \checkmark$ $v = 3,46 \text{ m.s}^{-1} \checkmark \text{ towards the source}$
- 6.4 To measure heartbeat of the unborn foetus in the womb. (2)

 To measure blood flow rate.

QUESTION 7

tanmorephysics.com

7.2
$$14 \times 10^{-4} \text{ s} \checkmark \checkmark$$
 (2)

7.3
$$f = \frac{1}{T} \checkmark$$

$$f = \frac{1}{14 \times 10^{-4}} \checkmark$$
(3)

f=714,29 Hz
$$\checkmark$$
7.4 $f_L = \frac{v \pm v_L}{v \pm v_s} f_s \checkmark$

$$(714,29) \checkmark = (\frac{340}{340 - v_s}) \checkmark (600) \checkmark$$

$$v_S = 54,40 \text{ m. } s^{-1} \checkmark (\text{accept } 54,28 \text{ to } 54,40)$$

QUESTION 8

f=1 000 Hz √

- 8.1 Away from√. Observed frequency lower.√ (2)
- 8.2 $v=f\lambda \checkmark$ (3) 340=f (0,34) \checkmark

8.3
$$f_L = \frac{v \pm v_L}{v \pm v_s} f_s \quad \checkmark$$
 Distance= $v\Delta t$ (6)

950
$$\checkmark = \frac{340 - v_L}{340 + 0} \checkmark (1000) \checkmark$$
 Distance=(17)(10) \checkmark $v_L = 17 \text{ m.s}^{-1}$ Distance=170 m \checkmark

QUESTION 9

9.2
$$f_L = 954.3 + (954.3 \times \frac{3.25}{100})$$
 (2)

$$9.3 f_L = \frac{v \pm v_L}{v \pm v_s} f_s \checkmark (4)$$

$$985,31 \checkmark = \frac{v+0}{v-10,6} \checkmark (954,3) \checkmark$$

$$v = 336,80 \text{ m.s}^{-1} \checkmark$$

9.5 For a constant velocity or speed of sound, if the frequency increases, then the wavelength decreases.

QUESTION 10

10.1
$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$$
 OR $v = \frac{d}{t} = \frac{300}{10} \checkmark = 30 \text{m.s}^{-1} \checkmark$ (2)
 $v_i = 30 \text{ m.s}^{-1} \checkmark$

- 10.2 The change in frequency (or pitch) (of the sound) detected by a listener because the source and the listener have different velocities relative to the medium of sound propagation. (2)
- 10.3 Car/source (just) passes observer. (1)

10.4
$$f_L = \frac{v \pm v_L}{v \pm v_s} f_s \checkmark$$

$$932 \checkmark = \frac{340}{340 - 30} f_s \checkmark$$

$$\therefore f_s = 849,76 \text{ Hz} \checkmark$$
(4)

10.5 **ANY TWO:** Doppler / Blood flow meter/Measuring the heartbeat of a foetus/Radar/Sonar/Used to determine whether stars are receding or approaching earth.✓✓

ACIDS AND BASE: SOLUTIONS

MULTIPLE CHOICE QUESTIONS

F	0.50	b) SO ₄ ²⁻ √			
#	2.5.3.	Ampholyte√		(1	
	2.5.4.	H ₂ O√		(1	
2.6.	2.6.1.	A substance that produces hydroxide	e ions in solution. ✓✓	(2	
	2.6.2.	CaSO₄ ✓		(1	
	2.6.3.	Water ✓		(1	
	tion 3			[23 (1	
3.1.	3.1.1.	HSO₄⁻√ (do not accept : hydrogen sulphate ion)			
	3.1.2.	CN-✓		(1	
3.2.	3.2.1.	$Na_2CO_3.10H_2O + 2HC\ell \checkmark \rightarrow 2NaCl + 2HC\ell \checkmark \rightarrow 2NaCl + 2HC\ell \checkmark \rightarrow 2HC\ell \lor 2HC$	+ 11H ₂ O +CO ₂ ✓ √bal	(3	
	3.2.2.	Methyl orange ✓		(1	
3.2.3. Strong acid is titrated with a weak base √√/ he equivalence point is pH range (3 – 4,4) / Low pH / Acidic solution after titration end poin ONE answer will be correct					
	3.2.4.	Dada Vallaus ((2	
	3.2.5.	Red to Yellow ✓		(1	
		Option 1: $cHC\ell = = \frac{n}{v} \checkmark$ $= 0.1 \times \frac{24.8}{1000}$ $= 2.48 \times 10^{-3} \text{ mol HC}\ell \checkmark$ $1 \text{ mol Na}_2CO_3 \text{ reacts with 2 mol HC}\ell$ $n \text{ (Na}_2CO_3) \text{ in 500 cm}^3: \checkmark$ $= \frac{2.48 \times 10^{-3}}{2} \times 500/25 \checkmark$ $= 2.48 \times 10^{-3} \text{ mol Na}_2CO_3$ $n = Mm$ $m = nM$ $= 2.48 \times 10^{-3} \times 286 \text{ gmol}^{-1}$ $= 7.092 \text{ g} \checkmark$	Option 2 $caVa = na$ CbVb nb $(0,1)(24,5x10^{-3}) = 2$ (Cb(25x10 ⁻³) 1 Cb = 0,0496 mol·dm-3 \checkmark C = Vn $n = (0,0496)(0,5) \checkmark$ $= 0,0248 \text{ mol Na}_2\text{CO}_3 \checkmark$ $n = Mm$ $m = nM = (0,0248) (286) = 7,093 \text{ g}$ Na $_2\text{CO}_3 \checkmark \checkmark$ Marking guidelines: Calculate $n(HC\ell) \checkmark$ Use formula $C = n/V \checkmark$ Use ratio, 1:2 \checkmark Calculate $n(HC\ell) \checkmark$		
	3.2.6.	Positive marking from question above $\%$ Na ₂ CO ₃ in commercial washing so $=\frac{7,092}{7,6}X$ 100 \checkmark		(3	

(3)

```
= 93,32 % ✓
                   If answer of 7,093 g is used then the answer is 93,33 %
Question 4
        4.1.
                                                                                                                      (2)
                   An acid is a proton donor. ✓✓
                   NaOH →Na<sup>+</sup> + OH<sup>-</sup>
        4.2.
                                                                                                                      (1)
                   0,75 mol.dm<sup>-3</sup> (NaOH) gives 0,75 mol.dm<sup>-3</sup> OH<sup>-</sup> (Ratio 1:1) ✓
         4.3.
                    OPTION 1
                                                                OPTION 2
                                                                [H^+][OH^-] = 10^{-14}
                    pOH = -log [OH^{-}]
                                                                [H^+][0,75] = 10^{-14} \checkmark
                    POH = - log[0,75] \checkmark
                                                               [H^+] = 1,3333 \times 10^{-14} \,\text{mol.dm}^{-3}
                    POH = 0,1249
                    pH + POH = 14
                                                                pH = -log [OH^{-}]
                    pH+ 0,1249 = 14 \checkmark
                                                                pH = -\log[1,3333 \times 10^{-14}] \checkmark
                                                                [H = 13,88 ✓
                    pH = 13.88 \checkmark
                    Ninitial (HCl)
                                                                                                                      (9)
                    c = \frac{n}{V} \checkmark
                    N_{initial} = cV
                            =(0,5)(0,075)
                            = 0.0375 \text{ moles}
                    For the reaction between HCl (excess) and NaOH
                    N(NaOH) reacted n = cV
                                            n = 0.75 \times 0.022 \checkmark
                                            n = 0.0165 \text{ moles}
                       n(NaOH) : n(HC\ell) = 1 : 1
                    n<sub>excess</sub> (HCℓ) = 0,0165 moles (Ratio) √
                    n<sub>reacted</sub> (HCl) = with CaCO<sub>3</sub>
                                  n = 0.0375 - 0.0165 \checkmark
                    n = 0.021 \text{ moles} \checkmark
                    use ratio:
                    n(reacted)(CaCO_3) = 0.0105 mol \checkmark
                        m = n \times M
                        m = (0.0105)(100) \checkmark
                        m = 1,05 g
                        % CaCO_3 = \frac{1,05}{5} \times 100 \checkmark
                        = 21 % √
Question 5
```

- 5.1. Signature 5.1.1. A substance that produces hydronium ion in solution. $\checkmark\checkmark$ (2)
 - 5.1.2. An acid that donate 2one proton per molecule. ✓✓

(2)

```
5.1.3.
                    Strong acid. ✓ It ionise completely in solution. ✓
                                                                                                                           (2)
                        a) Kw=[H_3O^+][OH^-] \checkmark
                                                                                                                          (3)
         5.1.4.
                             1x10^{-14} = [H_3O^+][1x10^{-11}]
                             [H_3O^+]=0,001mol.dm<sup>-3</sup>\checkmark
                        b) pH=-log[H<sub>3</sub>O<sup>+</sup>]\checkmark
                                                                                                                           (3)
                            pH=-log 0,001√
                              pH=3√
5.2.
        5.2.1. CO_3^{2-} + H_2O \checkmark \rightarrow HCO_3^{-} + OH^- \checkmark \checkmark bal.
                                                                                                                           (3)
         5.2.2. HCO<sub>3</sub>- √
                                                                                                                           (1)
Question 6
         6.1.
                                                                                                                           (3)
                    pH=-log[H_3O^+]\sqrt{}
                    2=-log [H<sub>3</sub>O<sup>+</sup>]√
                    [H<sub>3</sub>O<sup>+</sup>]=10<sup>-2</sup> mol.dm<sup>-3</sup> \sqrt{
         6.2.
                    n(HCℓ)= cV√
                                                                                                                           (7)
                    n=(0.03)(0,200)=0.006mol\checkmark
                            tanmorephysics.com
                    HCl: NaOH 1:1 and pH is 2 ∴ H<sub>3</sub>O<sup>+</sup> is excess
                    ∴n H<sub>3</sub>O<sup>+</sup>(final solution)=0,01)(0,150+0,200) = 0,01mol\checkmark
                    N(reacted)=0,006-0,0035=0,0025mol
                    NaOH: HCℓ 1:2√
                    ∴n(initial NaOH)=0,0025mol
                   c = \frac{n}{V} c = \frac{0,0025}{0,150} \checkmark
                    C=0,0167mol.dm<sup>-3</sup>
Question 7
7.1.
                                                                                                                           (2)
                    HSO<sub>4</sub>⁻ ✓✓
         7.2.1. A substance that produces hydronium ions in solution. ✓ ✓
                                                                                                                           (2)
         7.2.2.
                                                                                                                           (2)
                    pH=-log[H_3O^+]\checkmark
                    pH=-log (0,1) ✓
                    pH=1
         7.3.3. NaOH n=cV
                                                                                                                           (7)
                    n=(0,1) \times (0,2) \checkmark
                    n=0,02mol
```



```
in 20\text{cm}^3 \dots = \frac{0.02 \text{ mol}}{250} \text{ X } 200\text{cm}^3 = 0.0016 \text{ mol} \checkmark
```

Ba(OH)₂ Let [Ba(OH)₂]=x n=(x)(0,05)n=0,05x mol

Ba(OH)₂: [OH^{-]} 1:2√ : in $250 \text{cm}^3 [\text{OH}^-] = 0.1 \text{xmol} / 250 \text{cm}^3 \times 20 \text{cm}^3 = 0.008 \text{x mol} \checkmark$ Total n of OH⁻= $0.0016 + 0.008x \text{ mol}\sqrt{}$

n H₃O⁺ from HCℓ = (0,1)(30/1000) = 0,003mol \checkmark

at neutralisation moles of OH-in 20cm3 = moles of H3O+ from HCl 0,0016+0,008x = 0,003x=0,175 mol.dm⁻³√

Question 8

8.3.

8.1.2. HSO₃⁻ ✓

8.1.1. A substance that can act as either acid or base. ✓ ✓

tanmorephysics.com (1)

(2)

(2)

(9)

8.1.3. H₂SO₃, HSO₃-√√ and H₂O, H₃O ⁺ ✓ ✓

Is most suitable for a solution with a pH = $7\sqrt{}$

Bromothymol blue ✓

8.4.1. n(NaOH) = cV $= (1,2)(0,2) \checkmark$ = 0,24 mol ✓

(2)

8.4.2. POSITIVE MARKING FROM QUESTION 8.4.1 Therefore $(4 \times 0.040239 \text{ mol}) = 0.160956 \text{ mol in } 200 \text{ cm}^3 \checkmark (d)$ $nused(HNO^3) = ninital(HNO_3) - n excess(HNO_3)$ n used(HNO₃) = $0.24 - 0.160956 \checkmark \checkmark (e)$ $nused(HNO_3) = 0,079 mol$

> m n(KOH) = M $m 0.079044 = 56 \checkmark (f)$ m = 4,426464 g

4,426464

%purity =
$$13 \times 100(g) \checkmark$$

= 34,05% \checkmark (h)

Question 9

- 9.1. Ionise incompletely in solution to form a low concentration oh hydronium ions. \checkmark (2)
- 9.2. H₂O /H₃O+ and H₂C₂O₄ / HCO₄-
- 9.3. Oxalic acid can donate two protons (H⁺) during its ionisation in an aqueous solutions/It ionises to form 2 protons. ✓ ✓
- 9.4. A substance that can <u>act as either an acid or a base</u>.+ Accept: a substance√√
 - 9.5.1.

$$c = \frac{m}{MV} \checkmark$$
= 2.25
$$90(0, 25) \checkmark$$
C=0,1 mol.dm⁻³ \(\cdot \)

9.5.3. Phenolphthalein√ is a suitable indicator for the titration of oxalic acid and sodium hydroxide because the reaction involves a strong base (NaOH) and a weak acid (H₂C₂O₄). The endpoint of the titration occurs when the pH is greater than 7. ✓

OR

Because the salt of the titration will undergo hydrolysis and form a basic salt solution ✓

(4)

9.6.1.
$$c = \frac{m}{MV} \checkmark$$

 $0.2 \checkmark = m/(58)(0.5) \checkmark$
 $m = 5.8 g \checkmark$

9.6.2. [OH⁻] =2(O.20) ✓ (2)

$$[OH^{-}] = 0.4 \text{ mol.dm}^{-3} \checkmark$$

9.6.3. $[H_3O^{+}][OH^{-}] = 1 \times 10^{-14} \checkmark$
 $[H_3O^{+}](0.4) = 1 \times 10^{-14} \checkmark$
 $[H_3O^{+}] = 2.5 \times 10^{-14}$

pH=($[2,5 \times 10^{-14})$ \checkmark

pH = 13.60 ✓ NO, NOT SUITABLE for consumption

MOMENTUM AND IMPULSE: SOLUTIONS

MULTIPLE CHOICE

1.3
$$A\checkmark\checkmark$$
 (2)

LONG QUESTIONS **QUESTION 2**

2.1 In an isolated system the total (linear) momentum is conserved/remains constant√√

 $\sum pi = \sum pf$ MAVIA + MBVIB = MAVIA + MBVIB 2.2

$$0 \checkmark = (3,2)(-0,4) + (2,6)v_f \checkmark$$

$$vf = 0.49 \text{ m} \cdot \text{s}^{-1}$$

$$V = \frac{\Delta x}{\Delta t}$$

$$0.49 = \frac{\Delta x}{1.3} \checkmark = 0.64 \text{ m.s}^{-1}$$
 porephysics.com

2.3 Fnet∆t = Δp√

Fnet
$$\Delta t = m(vf - vi)$$
 (3)
 $(4,2)\Delta t = 2,6(0,49 - 0)\checkmark$
 $\Delta t = 0,3 s\checkmark$

2.4 LESS THAN ✓

> Final momentum/change in momentum/impulse remains constant.√ If mass/inertia increases, velocity decreases/velocity inversely proportional to mass √

> > [13]

(3)

[8]

QUESTION 3

3.1 The total mechanical energy/sum of gravitational potential energy and kinetic (2)energy, in an isolated system remains constant/is conserved. ✓ ✓

3.2

Total Emech(top) = Total Emech(bottom)
$$\checkmark$$

(Ep + Ek)_{top}= (Ep + Ek)_{bottom}
(mgh + ½mv2)top= (mgh + ½mv2)bottom
(2)(9,8)(1,5) + 0 \checkmark = 0 + ½(2)v2 \checkmark (4)

3.3.1
$$\Delta p = mvf - mvi \vee$$
Finet $\Delta t = \Delta p$

$$= 2(5,42 - 0) \vee$$

$$= 10.84 \text{ kg·m·s·}^{-1} \text{ right} \vee$$
3.3.2
$$10.84 \text{ kg·m·s·}^{-1} \text{ left /opposite direction} \vee$$
3.4 $\Delta pA = mvf - mvi$

$$\sum p_i = \sum pf$$

$$10.84 = 1,5(vf - 0) \vee \text{ OR} \qquad 0 = 1,5vf + (2)(5,42) \vee$$

$$vf = -7,23 \text{ m·s·}^{-1} \qquad v = 7,23 \text{ m·s·}^{-1} \vee$$

$$v = 7,23 \text{ m·s·}^{-1} \qquad v = 7,23 \text{ m·s·}^{-1} \vee$$
4.1 In an isolated system the total (linear) momentum is conserved/remains constant. $\vee \vee$ (accept closed system)
4.2.1 $\sum p_i = \sum pf \vee$

$$mAv_{Ai} + mBv_{Bi} = (mA + mB)v_i \\ (7,2)(0,4) + (0) = (7,2 + 5,3)vf \vee$$

$$v = 0,23 \text{ m·s·}^{-1} \vee$$
4.2.2 $2 \text{ Fret}\Delta t = \Delta p \vee$
Finet $\Delta t = m(vf - v)$ Enige een
Finet $(0,02) = 7,2(0,23 - 0,4) \vee$
Finet $= 61,2 \text{ N}$

$$00.95 \text{ N to/tot } 61,2 \text{ N}$$

$$00.45(9) + 0,20(0) \vee = (0,45 + 0,20)v \vee$$

$$v = 6,23 \text{ m·s}^{-1} \vee$$
OPTION 2
$$\Delta p_{bail} = -\Delta p_{cont} \vee$$

$$0,45(v - 9) \vee = -0,2(v - 0) \vee$$

$$v = 6,23 \text{ m·s}^{-1} \vee$$

$$0.45(v - 9) \vee = -0,2(v - 0) \vee$$

$$v = 6,23 \text{ m·s}^{-1} \vee$$

$$0.45(v - 9) \vee = -0,2(v - 0) \vee$$

$$v = 6,23 \text{ m·s}^{-1} \vee$$

$$0.45(v - 9) \vee = -0,2(v - 0) \vee$$

$$v = 6,23 \text{ m·s}^{-1} \vee$$

$$0.45(v - 9) \vee = -0,2(v - 0) \vee$$

$$v = 6,23 \text{ m·s}^{-1} \vee$$

$$0.45(v - 9) \vee = -0,2(v - 0) \vee$$

$$v = 6,23 \text{ m·s}^{-1} \vee$$

$$v = 0.25(v - 0) \vee$$

(4)

(87)vim+0 $\checkmark = (87+22)(2,4)$ \checkmark

 $v_{im} = 3.01 \text{ m.s}^{-1} \checkmark$ 6.2 Option 2 Option1 $\Delta K = K(after) - K(before)$ $K(before) = \frac{1}{2}mv^2$ = $\frac{1}{2}$ mv²(after) - $\frac{1}{2}$ mv²(before) \checkmark $= \frac{1}{2}(87)(3,01)2 + 0$ $=\frac{1}{2}(109)(2,4)2\sqrt{-(\frac{1}{2}(87)(3,01)2)}$ = 394,11 J < **+**0) ✓ $= (391,5 \text{ if } 3 \text{ m} \cdot \text{s} - 1)$ = 313,92 - 394,11 $K(after/na) = \frac{1}{2}mv2$ = - 80,19 J ✓ $= \frac{1}{2}(109)(2,4)2$ = 313,92 J ✓ Collision is inelastic / No ✓ Collision is inelastic / No ✓ (6)6.3 Wnet = ∆Ek√ Fnet $\Delta x \cos \theta \sqrt{= \frac{1}{2} m(vf^2 - vi^2)}$ (5) Fnet(2)(-1) $\sqrt{=\frac{1}{2}(87+22)(0^2-2,4^2)}$ Fnet = 156,96N√ [15] **QUESTION 7** itanmorephysics.com 7.1 (2)Isolated system is a system on which the resultant/net external force is zero. ✓ ✓ 7.2 $p = mv \checkmark$ (3) $24 = m (480) \checkmark$ $m = 0.05 \text{ kg} \checkmark$ 7.3 Fnet∆t = Δ p✓ Fnet $(0,01)\sqrt{} = (0,05)(80) - 24\sqrt{}$ (5) Fnet = -2000 NFnet = 2 000 N√ west√ [10] **QUESTION 8** 8.1 (1) West ✓ 8.2 (Newton's) Third Law (of Motion) ✓ (3)When object A exerts a force on object B, object B exerts a force equal in magnitude on object A ✓, but opposite in direction. ✓ 8.3 $\Sigma p_i = \Sigma p_f \checkmark$ $0 \checkmark = (60)v_f + (5)(4) \checkmark$ (5) $∴ V_f = -0.33 \checkmark$ ∴ $v_f = 0.33 \text{ m} \cdot \text{s}^{-1} \checkmark$

8.4.2 Increases, Δp package increases, thus Δp boy increases.

• For the same mass of the, v will be greater. ✓

[13]

QUESTION 9

(2)

(3)

$$\Delta p = 0 \checkmark$$

9.2
$$\mathsf{F}_{\mathsf{net}} = \frac{\Delta p}{\Delta t} = 0 \checkmark$$

OR
$$\Delta p = 0 \checkmark \Delta v = 0$$

$$∴a = 0 ∴ Fnet = ma \checkmark$$
 (2)

9.3

OPTION 1

$$F_{net}\Delta t = \Delta p \checkmark$$

∴ Fnet Δ t = 170 N·s / kg·m·s⁻¹ ✓

OPTION 2

$$\mathsf{F}_{\mathsf{net}} = \frac{\Delta p}{\Delta t} \checkmark$$

$$=\frac{-120-50}{50-20}$$

∴Fnet = -5,67

= -170

∴ Fnet Δ t = 170 N·s / kg·m·s⁻¹ ✓

9.4

OPTION 1

$$-120 + 70 \checkmark = 50 + p_{Bf} \checkmark$$

$$p_{Bf} = -100$$

∴ $p_{Bf} = 100 \text{ kg} \cdot \text{m} \cdot \text{s}^{-1} \checkmark \text{west} \checkmark$

OPTION 2

$$\Delta p_A = -\Delta p_B \checkmark$$

$$50 - (-120) \checkmark = -(p_{Bf} - 70) \checkmark$$

 $p_{Bf} = -100$

∴ $p_{Bf} = 100 \text{ kg·m·s}^{-1} \text{ west}\sqrt{}$

(5)

[12]

QUESTION 10

- 10.1 Impulse is the product of the (net/average) force and the time during which the force acts. ✓ √(2)
- 10.2 Fnet $\Delta t = \Delta p \checkmark$

$$= m(vf - vi)$$
 (3)

 $= 0.15(3.62 - (-6.2)) \checkmark$

= 1,473 N·s / kg·m·s⁻¹ ✓ upward

10.3
$$(U + K)top = (U + K)bottom \checkmark \checkmark$$

$$mgh_{f} + \frac{1}{2} m^{2} v_{f} = mgh_{i} + \frac{1}{2} m^{2} v_{i} (0,15)(9,8)h + 0 \checkmark$$

$$= 0 + \frac{1}{2}(0,15)(6,2)^{2} \checkmark$$

$$\therefore h = 1,96 m \checkmark$$

$$\frac{1.96}{3} = 0,65 \text{ m Yes/Meets requirements} \checkmark$$
(5)
[10]

ELECTRIC CIRCUITS: SOLUTIONS

MULTIPLE CHOICE QUESTIONS

1.1
$$A \checkmark \checkmark$$
 (2)

$$1.1 \quad C \checkmark \checkmark \tag{2}$$

LONG QUESTIONS

QUESTION 2

- 2.1.1 The potential difference across a conductor is directly proportional to the current in the conductor at constant temperature. ✓✓ (2)
- 2.1.2 Graph X, ✓
 Graph X is a straight line, therefore potential difference is directly proportional to current. ✓
 (2)
- 2.2.1 $\frac{1}{R_{P}} = \frac{1}{R_{10}} + \frac{1}{R_{15}}$ $= \frac{1}{10} + \frac{1}{15} \checkmark$ $= 6 \Omega$

$$∴$$
R=(10+6+2) \checkmark
= 18 Ω

"Lost" volts decreases ✓

$$R = \frac{V}{I} \checkmark$$

$$18 = \frac{6}{I} \checkmark$$

$$I = 0,33 \text{ A} \checkmark$$

$$(5)$$

2.2.2 Decrease ✓

The total resistance of the circuit increases. ✓ (2)

(3)

- 2.2.3 Increase ✓ (1)
- 2.2.4 The total resistance in the external circuit increases ✓
 Current decreases ✓

[15] **QUESTION 3** The potential difference across a conductor is directly proportional to the 3.1.1 current in the conductor at constant temperature. < (2) 3.1.2 Diagram 1: Diagram 2: $R_X = \frac{V}{I}$ $= \frac{4}{0.67} \checkmark$ $R_Y = \frac{V}{I} \checkmark$ $V_Y = \varepsilon - V_X$ =6-4 =2 V $R_Y = \frac{V}{I}$ $3=\frac{2}{1}\checkmark$ $I_{Y} = 0.67 A$ 3.2.1 12,6 V ✓ 3.2.2 ε=I(R+r) √ =(2,48)(5) < (5) $12,6 \checkmark = 1(5+0,08)$ =12,4 V < I=2,48 A 3.2.3 Decrease ✓ Resistance decreases and I_T increases \checkmark V_{int} will increase and V_{ext} will decrease (with emf constant) \checkmark (4) (According to $P = \frac{V^2}{R}$), power will decrease \checkmark [18] **QUESTION 4** 4.1 (2) 3,11 J of energy is transferred per one coulomb of charge ✓✓ 4.2.1 **OPTION 1 OPTION 2** V=IR₂ ✓ $V_{ext} = V_{4\Omega} + V_{R2} \checkmark$ 1,6=0,2R₂ ✓ =0,2(4)\sqrt{+1,6\sqrt{}} =2,4 V \sqrt{ $R_2=8 \Omega$ V=IR (4) =0.2(4+8) \checkmark =2,4 V ✓ 4.2.2 **OPTION 1 OPTION 2** V=IR 2,4=I(2) ✓ I=1,2 A $R_{P} = 1,71 \Omega$ I_{Tot}=1,2+2 ✓ V_P=IR =1,4 A ✓

2,4=I(1,71) ✓

(3)

I = 2,18 A

r=1,5 Ω ✓

6.2.4

Increase ✓

Total resistance in circuit increase and the total current decrease ✓ V_{internal} will decrease. ✓

Therefore: V_{external} will increase because emf stays constant ✓

[24]

(2)

(4)

QUESTION 7

- 7.1.1 The potential difference across a conductor is directly proportional to the current in the conductor at constant temperature. ✓✓
- 7.1.2 $\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \checkmark$ $\frac{1}{R_{P}} = \frac{1}{(7+6)} \checkmark + \frac{1}{(4+6)} \checkmark$ $R_{P} = 5.65 \Omega \checkmark$ (4)
- 7.1.3 **OPTION 1**

OPTION 2

$$R_{T} = \frac{V_{T}}{I} \checkmark$$

$$15 = I(5,65+0,45) \checkmark$$

$$I = 2,46 \text{ A} \checkmark$$

$$(5,65+0,45) = \frac{15}{I} \checkmark$$

$$I = 2,46 \text{ A} \checkmark$$

$$(3)$$

OPTION 1 OPTION 2 7.1.4 $0,45 = \frac{V}{2,46} \checkmark \qquad \qquad 5,56 = \frac{V}{2,46} \checkmark$ $V_{int} = 1,11 V \qquad V_{ext} = 13,89$ $0,45 = \frac{V}{2,46}$ V_{ext}=13,89 V V_{int}=1,11 V V_{ext}=13,89 V $V_T = V_{ext} + V_{int}$ 15=V_{ext}+1,11 V_{ext} =13,89 V Current through **Current through Current through Current through** 7 Ω and 6 Ω 4 Ω and 6 Ω 7 Ω and 6 Ω 4 Ω and 6 Ω $13 = \frac{13,89}{1}$ $10 = \frac{13,89}{1}$ $13 = \frac{13,89}{1}$ I=1,39 A I=1,07 A I=1,39 A I=1,07 A **Potential Potential Potential Potential** difference across difference across difference across difference across 7Ω 4Ω 6Ω $R_{6\Omega} = \frac{V(B)}{I}$ $R_{7\Omega} = \frac{V(A)}{I}$ $R_{4\Omega} = \frac{V}{I}$ $4 = \frac{V}{1.39} \checkmark$ $R_{6\Omega} = \frac{V}{1.39} \checkmark$ $6 = \frac{V}{1.07} \checkmark$ V=6,42 V V=7,49 V V=5,56 V V=8,34 V

- 7.2 Increases ✓ (1)
- 7.3 Total resistance increases and total current decreases. ✓

V lost decreases ✓

7.4 Cost=energy×tariff 300√=(P×8×30)×2,59 √ P=482,625 W√

No. of bulbs=
$$\frac{482,625}{80}$$
 \checkmark =6 \checkmark

(5)

[24]