Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

PREPARATORY EXAMINATION

SEPTEMBER 2025

Stanmorephysics.com

Stanmorephysics.com

MARKS: 150

TIME: 3 hours

This question paper consists of 12 pages and a 15-page SPECIAL ANSWER BOOK.

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of FIVE questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. You may use an approved calculator (non-programmable and non-graphical), unlessstated otherwise.
- 4. Show ALL calculations clearly.
- 5. Round off ALL final answers appropriately according to the given context, unless stated otherwise.
- 6. Indicate units of measurement, where applicable.
- 7. Maps and Diagrams are NOT necessarily drawn to scale unless stated otherwise.
- 8. Write neatly and legibly.

Stanmorephysics.com

QUESTION 1

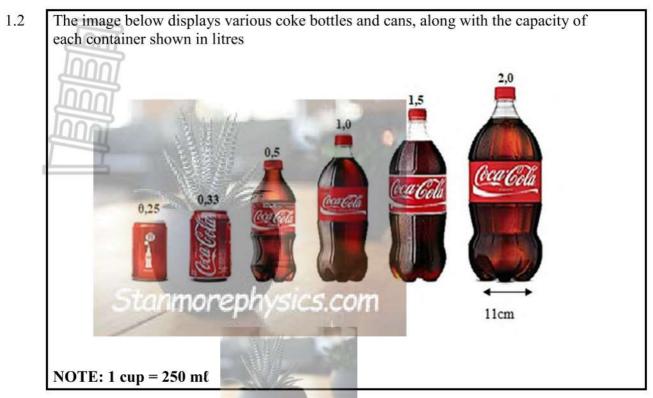
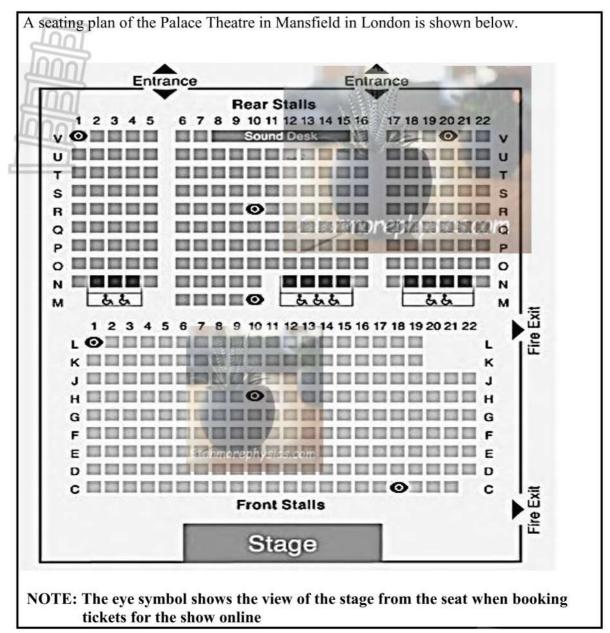

1.1 TABLE 1 below contains a list of explanations and definitions of concepts used in Mathematical Literacy.

TABLE 1: EXPLANATIONS AND DEFINITIONS OF CONCEPTS

A	The ratio that represents the measured distance and the actual distance
В	The aerial view of the arrangement of rooms
C	The amount of space a 3D object occupies
D	The side view of the outside of a building
Е	The likelihood of an event taking place
F	A statement about a future event based on historical data
G	Total distance of the outline of a shape.
Н	The maximum amount of space available to hold solids, liquids and gases.

Use TABLE 1 above to write down the letter (A - H) of explanation or definition of EACH of the following concepts next to the question numbers (1.1.1 to 1.1.5) in the ANSWER BOOK, e.g. 1.1.5 J.

1.1.1	Volume.	Stanmorephysics.com	(2)
1.1.2	Scale.		(2)
1.1.3	Perimeter.		(2)
1.1.4	Floor plan.		(2)
1.1.5	Probability.		(2)



[Source:www.lovemedia.net]

Use the image and information above to answer the following questions.

- 1.2.1 Convert 0,33 litres to $m\ell$. (2)
- 1.2.2 Determine the number of 250 mℓ cups of Coke contained in a 1.5-litre bottle. (3)
- 1.2.3 Determine the radius of the 2 litre bottle with a diameter of 11 cm. (2)
- 1.2.4 Choose **A**, **B** or **C**, the most correct formula below that can be used to calculate the volume of coke in a can.
 - A Volume = $2 \times 3,142 \times \text{height}$
 - B Volume = $3,142 \times \text{radius}^2 \times \text{height}$
 - C Volume = $3{,}142 \times \text{height}$ (2)

1.3

[Adapted source: /www.mansfield.gov.uk/palacetheatre]

Use the seating plan above to answer the following questions.

- 1.3.1 Determine the total number of seats available for people with disabilities. (2)
- 1.3.2 Jabu is seated 6 rows away from the front stalls. The eye symbol is on his left. Identify the row and seat number he is seated at. (2)
- 1.3.3 Determine the number of seats that can be used for viewing the show in Row V. (2)
- 1.3.4 The show starts at 19:00, runs for 2 hours, with two 15-minute breaks.

 Determine the time the show will end. Write the answer in 12-hour time format. (3)

[28]

QUESTION 2

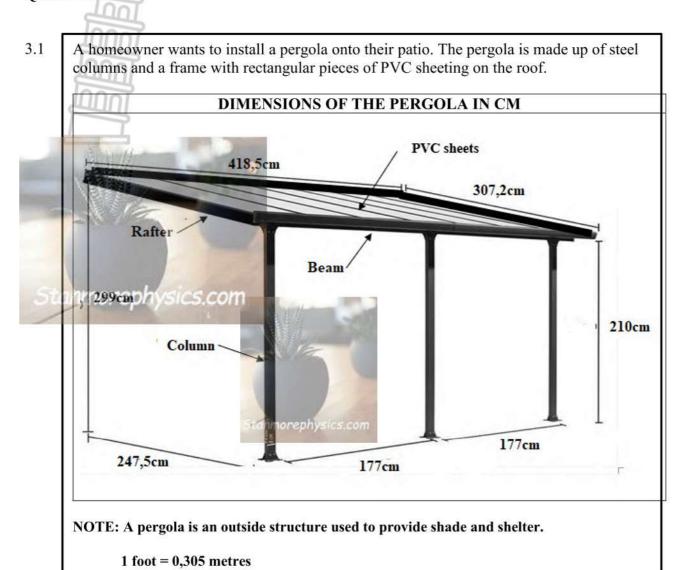
2.1 The Durban International Conference Centre (ICC) and the Durban Exhibition Centre (DEC) host various local and international events. The parking shown on the map is used by both Centres. ANNEXURE A in the ANSWER BOOK shows the map of the ICC and the DEC.

Use ANNEXURE A and the information above to answer the following questions.

- 2.1.1 State the importance of the key on the map in this context. (2)
- 2.1.2 Using the landmarks on the map, describe the relative position of the DEC. (2)
- 2.1.3 Name the main road that gives access to the ICC underground parking. (2)
- 2.1.4 Identify the compass direction of Sahara Stadium from the ICC. (2)
- 2.1.5 The total length of the ICC is approximately 300 metres. Determine the scale used on the map. (4)
- 2.1.6 Determine the probability, as a percentage, that a visitor to the ICC uses the North Plaza Parking. (4)
- 2.2 The Two Oceans Half marathon in Cape Town starts in Newlands and ends in Rondebosch. ANNEXURE B in the ANSWER BOOK shows a route map and elevation map of the half marathon.

Use ANNEXURE B and the information above to answer the following questions.

2.2.1 Calculate a runner's speed in km per hour if the race must be completed in 3 hours 30 minutes.


You may use the formula.

$$Distance = speed \times time$$
 (2)

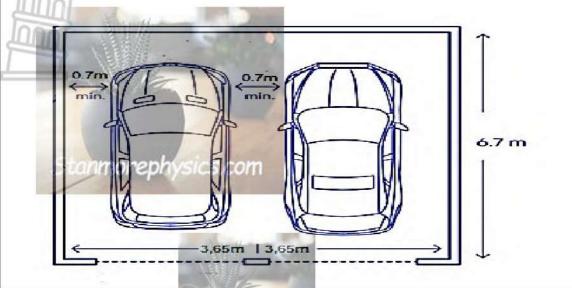
- 2.2.2 Determine the altitude of the runner at the finish of the race. (3)
- 2.2.3 Last year's winner finished in 01:04:00. Determine the winner's average pace in minutes per kilometre. (2)
- 2.2.4 A runner stated that between the 5km and 15km mark, the altitude increased by 10m per km. Show by calculation if this is correct. (3)
- 2.2.5 14 934 of the 16 000 runners finished the race in 2024. Predict the number of runners in 2025 that are likely to finish the race if the entries increase to 17500. (4)
- 2.2.6 Explain the importance of attaching an elevation map to the route map. (3)

[33]

QUESTION 3

[Adapted source:www.pinterest.com]

Use the diagram and the information above to answer the following questions.


3.1.1 Determine the total length of metal in metres required to make the frame of the pergola.

You may use the formula:

$$Perimeter = 2 (L + B)$$
 (5)

- 3.1.2 The metal piping is sold in lengths of 20 feet. Determine the number of lengths that must be bought. (4)
- 3.1.3 Calculate the number of PVC sheets required to cover the roof of the pergola, if one sheets measures 60cm by 310cm. The sheets overlap each other by 5cm to prevent water from seeping through. (4)

3.2 The floorplan of a double garage is seen below. The owner of the garage wants to tile the garage. The image below displays the garage's internal dimensions, without including the thickness of the walls. The minimum clearance between the cars and the side walls, as well as the space between the two parked cars, is 0.7 metres.

[Adapted source:www.pinterest.com]

Use the image and the information above to answer the questions that follow.

- 3.2.1 Determine the width of a car in the garage. Assume the width is the same for both cars. (5)
- 3.2.2 Calculate the area of the double garage.

You may use the formula:

$$Area = length \times breadth \tag{3}$$

3.2.3 The garage will be tiled using a 50 cm by 50cm tile. Determine the number of boxes of tiles that must be bought if there are 8 tiles in a box. (6)

Copyright Reserved Please Turn Over

[27]

QUESTION 4

The half circle table below is used in a classroom. The teacher sits in the centre and the children sit around the table.

DIMENSIONS OF HALF CIRCLE CLASSROOM TABLE IN INCHES

76"

D

76"

[Adapted source www.pinterest. com]

Use the image and the information above to answer the following questions.

4.1.1 Determine the perimeter of the tabletop in inches.

You may use the formula:

NOTE: 1 inch = 2,54 cm

Circumference of the table =
$$[(2 \times 3,142 \times R) + (2 \times 3,142 \times r)] \div 2 + [D-d]$$
 (6)

4.1.2 The teacher stated that the area of the table was 1.5m².

Calculate the area of the table in m² shown above.

Verify his CLAIM by showing all calculations.

You may use the formula:

Area of a circle =
$$3,142 \times r^2$$
 (8)

[Adapted source www.behance.net]

Use the image and information above to answer the following questions.

4.2.1 Calculate the diameter of the water bottle in cm.

You may use the formula:

$$Volume = 3,142 \times r^2 \times height \tag{8}$$

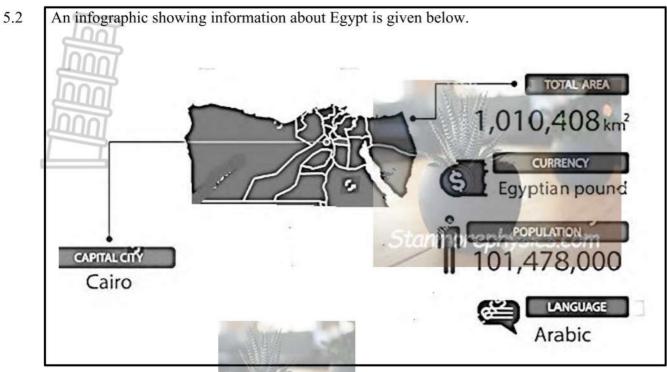
- 4.2.2 Determine the dimensions of the box if the width of the box is 2cm more than the diameter of the bottle and the height of the box is 2cm more the total height of the bottle. (4)
- 4.2.3 Determine the surface area of the box in m².

You may use the formula:

Surface Area Rectangular Prism =
$$2(L \times W) + 2(W \times H) + 2(L \times H)$$
 (5)

[31]

QUESTION 5


5.1 The Trans African Highway connects Cape Town to Cairo, the capital of Egypt. The highway is 6 335 miles or 10 228 km. ANNEXURE C in the ANSWER BOOK shows the Trans African Highway from Cairo to Cape Town.

Use ANNEXURE C and the information above to answer the following questions.

- 5.1.1 Determine the conversion factor, rounded to 3 decimal places, of miles to km. (3)
- 5.1.2 Determine the number of countries one must travel through to reach Cape Town. (2)
- 5.1.3 Identify the type of scale shown on the map. (2)
- 5.1.4 Use the scale to calculate the actual distance in km from Cape Town to Cairo. (5)
- 5.1.5 Explain why the distance calculated in Question 5.1.4 does not match the distance given above in the context. (2)
- 5.1.6 Determine the time taken in days (rounded up to the nearest day) to travel 10 228 km, if the driver travels at an average speed of 90 km/hour for 12 hours in a day. (5)
- 5.1.7 In Cairo the temperature reaches 98° F in summer. Determine the temperature in °C. Round off your answer to the nearest whole number.

You may use the formula:

$${}^{\circ}C = \frac{5}{9} ({}^{\circ}F - 32)$$
 (3)

[Source: shutterstock.com]

Use the information above to answer the following questions.

- 5.2.1 South Africa has an estimated population of approximately 64 million.Calculate the ratio of South Africa's population to Egypt's population, expressed in unit form.
- 5.2.2 Determine the number of people per km² in Egypt. (3)
- 5.2.3 South Africa has an area of 1 221 037 km². It is 1,208 times bigger than Egypt. Verify, showing ALL calculations, if the claim is correct. (3)

[31]

TOTAL MARKS: 150

Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

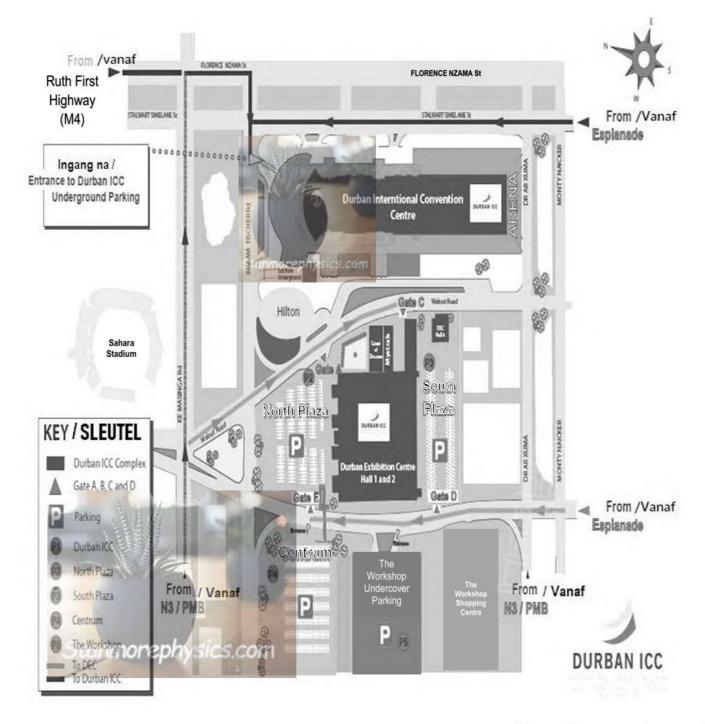
NSC Answer Book / NSS Antwoordboek

National Senior Certificate (Grade 12) / Nasionale Seniorsertifikaat (Graad 12)

	Ť				
SURNAME / VAN					
-		0.152			
FIRST NAMES / VOORNAME					
	A Section of the sect				
DATE / DATUM		BOOK NU BOEK NO		OF/ VAN	BOOKS/ BOEKE
GRADE /GRAAD		PAPER NUM VRAESTEL		2	
SUBJECT/VAK	MATHEMATICAL LIT	TERACY / WISKUNI	DIGE GEL	ETTERDI	HEID

MAI	RKER / NASI	ENER	MODERATO	DR'S INITI	IALS IN REL	EVANT B	LOCK/ MODI	ERATOR S	E VOORLET	TERS IN F	RELEVANTE	BLOI
Question/Vraag	Marks/ Punte	Marker's Initials /Nasiener se voorletters	Marks/ Punte	DH	Marks/ Punte	СМ	Marks/ Punte	DM	Marks/ Punte	PM	Marks/ Punte	EM
1												
2												
3												
4												
5												
		TOTAL/ TOTAAL										
							R	EAD INSTRI	JCTIONS ON TH	IE NEXT PA	GE/	

This answer book consists of 15 pages / Hierdie antwoordboek bestaan uit 15 bladsye


FOLLOW THESE INSTRUCTIONS CAREFULLY / VOLG HIERDIE INSTRUKSIES DEEGLIK

- 1. Clearly write your examination number and centre number in the space provided and attach your barcode label in the space provided. / Skryf jou eksamennommer en sentrumnommer duidelik in die gegewe spasie en plak jou strepieskode op die plek wat aangedui is.
- 2. Remember that your own name (or the name of your school) may not appear anywhere on or in this answer book. / Onthou dat jou eie naam (of die naam van jou skool) nêrens op of in hierdie antwoordboek mag verskyn nie.
- 3. Answer ALL questions in the spaces provided. / Beantwoord ALLE vrae in die gegewe spasies.
- 4. No pages may be torn from this answer book. / Geen bladsye mag uit hierdie antwoordboek geskeur word nie.
- 5. Read the instructions printed on your timetable carefully as well as any other instructions which may be given in each examination paper. / Lees die instruksies op jou eksamenrooster deeglik deur, sowel as enige ander instruksies wat in elke eksamenvraestel gegee word.
- 6. Candidates may not retain an answer book or remove it from the examination room. / Kandidate mag nie 'n antwoordboek hou of dit uit die eksamenlokaal verwyder nie.
- 7. Answers must be written in black/blue ink as distinctly as possible. / Antwoorde moet so duidelik as moontlik in swart/blou ink geskryf word.
- 8. Do not write in the margins. / Moenie in die kantlyne skryf nie.
- 9. If you require additional space for your answers: / as jy ekstra plek nodig het vir jou antwoorde:
 - 9.1 Use the additional space provided at the end of the answer book / Gebruik die ekstra plek wat aan die einde van die antwoordboek voorsien is.
 - 9.2 When answering a question in the additional space, indicate clearly the question number in the column on the left-hand side / Wanneer jy 'n vraag in die ekstra spasie beantwoord, dui die vraagnommer duidelik aan in die kolom aan die linkerkant.
- 10. Draw a neat line through any work that must not be marked / Trek 'n netjiese streep deur enige werk wat nie gemerk moet word nie.

1.1	Solution / Oplossing	Marks/ Punte
1.1.1		7 4 10 10 10 10 10 10 10 10 10 10 10 10 10
		(2)
1.1.2		
1.1.3		(2)
		(2)
1.1.4		
1.1.5		(2)
1.1.5		(2)
1.2.1		(2)
		(2)
1.2.2	Stanmorephysics.com	
1.2.3		(3)
		(2)
1.2.4		
1.3.1		(2)
		(2)
1.3.2		
1 2 2		(2)
1.3.3		
1.3.4		(2)
		(3)
		[28]

2.1 ANNEXURE/BYLAAG A

MAP SHOWING LAYOUT OF THE DURBAN INTERNATIONAL CONFERENCE CENTRE (ICC) AND DURBAN EXHIBITION CENTRE (DEC) / KAART VAN DIE UITLEG VAN DIE DURBAN INTERNASIONALE KONFERENSIESENTRUM (DIK) EN DIE DURBAN UISTALLINGSENTRUM (DUS)

[Source/Bron:www.icc.co.za]

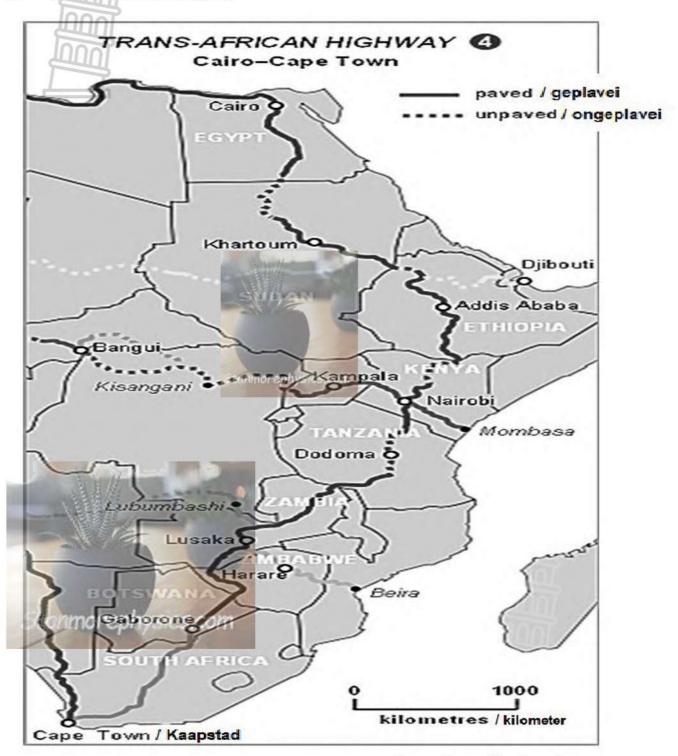
	Solution / Oplossing	Marks/ Punte
2.1.1		
2.1.2		(2)
2.1.3		(2)
2.1.4		(2)
2.1.5		(2)
	Stanmorephysics.com	
2.1.6		(4)
		(4)

2.2 ANNEXURE/BYLAAG B

ROUTE AND ELEVATION MAP OF THE TWO OCEANS HALF MARATHON / ROETE EN HOOGTEKAART VAN DIE TWEE OSEANE HALFMARATHON

[Source/Bron: www.logdown.com]

S	Solution / Oplossing	Marks/ Punte
2.2.1		
ħ		(2)
2.2.2		
		(3)
2.2.3		(2)
2.2.4		
		(3)
2.2.5	Stanmorephysics.com	
		(4)
2.2.6		
i i		(3)
		[33]


	Solution / Oplossing	Marks/ Punte
3.1.1		runce
		(5)
3.1.2	Stanmorephysics.com	
3.1.3		(4)
		(4)

Solution / C	plossing	Marks Punte
	And the second second	(5
	Stanmorephysics.com	
		(3
		(6
L		[31

Solution /	Oplossing	Marks/ Punte
4.1.1		
HIII		(5)
4.1.2		
		(8)
4.2.1		
	No. of the control of	
	Stanmorephysics.com	(0)
4.2.2		(8)
-		
		(4)

4.2.3	Marks/ Punte
	Tunce
	왕
A STATE OF THE STA	
	(6)
	[24]
Stanmorephysics.com	[31]

5.1 ANNEXURE/BYLAAG C

[Source/Bron:wikipedia.org]

	Solution / Oplossing	Marks/ Punte
5.1.1		
Ì		
		(3)
5.1.2		(2)
5.1.3		(2)
		(2)
5.1.4		
	Stanmorephysics.com	
5.1.5		(5)
		(2)
5.1.6		
		3
		(5)
5.1.7		(5)
		(3)

Solutio	ı / Oplossing	Marks/ Punte
5.2.1		
		(3)
5.2.2		
	3/1/3	(3)
5.2.3		
	Stanmorephysics.com	
		(3)
		0.50.50
		[29]

Mathematican Annual Company Stands of the St

Additional space / Ekstra spasie	Marks/ Punte
	Punte
DOOL	
44101	
	12
	12
Stanmorephysics.com	
	3

TOTAL MARKS: / TOTAAL PUNTE: 150

Downloaded from Stanmorephysics.com FINAL

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

MARKING GUIDELINES

PREPARATORY EXAMINATION

SEPTEMBER 2025 more physics.com

MARKS: 150

SYMBOL	EXPLANATION
MA	Method with accuracy
MCA	Method with consistent accuracy
CA	Consistent Accuracy
A	Accuracy (Answer)
C	Conversion
S	Simplification
RT	Reading from a table/ graph/ diagram/map
SF	Correct substitution in a formula
О	Opinion/ reason/deduction/example/Explanation
R	Rounding off
F	deriving a formula
AO	Answer only
P	Penalty e.g. for units, incorrect rounding off etc.
NPR	No penalty for correct rounding
NPU	No penalty for omitting unit, but wrong unit is penalised
RCA	Rounding with consistent accuracy

This marking guideline consists of 12 pages

NOTES:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution,
- mark the crossed out (cancelled) version.
- Consistent accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra item presented.

QUEST	QUESTION 1[28 MARKS] ANSWER ONLY FULL MARKS				
Quest.	Solution	Explanation		T & L	
1.1.1	C✓✓RT	2RT correct answer	(2)	M L1 E	
1.1.2	A✓✓RT	2RT correct answer	(2)	MP L1 E	
1.1.3	G✓✓RT	2RT correct answer	(2)	M L1 E	
1.1.4	B√√RT Stanmorephysics.com	2RT correct answer	(2)	MP L1 E	
1.1.5	E✓✓RT	2RT correct answer	(2)	P L1 E	
1.2.1	Number of $m\ell = 0.33 \times 1000 \checkmark MA$ = 330 $\checkmark A$	1MA multiplying by 1000 1A correct answer	(2)	M L1 E	
1.2.2	Number of cups = $(1,5 \times 1000) \div 250 \checkmark MA$ = $6 \checkmark A$ OR $\checkmark MA$	1MA multiplying by 1000 1MA dividing by 250 1A correct answer OR	(-)	M L1 E	
	Number of cups = $1.5 \div (250 \div 1000) \checkmark MA$ Stann $\overline{0}6 \checkmark A hysics.com$	1MA dividing 250 by 1000 1MA dividing 0,25 1A correct answer	(3)		
1.2.3	Radius = 11 ÷ 2✓MA	1MA dividing by 2	(3)	MP	
	= 5,5 cm√A	1A correct answer	(2)	L1 E	
1.2.4	B✓✓A	2A correct answer	(2)	MP L1 E	

1.3.1	11 seats√√RT	2RT correct answer	(2)	M
	LOOT			L1
	1000	Accept 7		E
1.3.2	H9 ✓✓RT	2RT correct answer	(2)	M
	lnnni			L1
				E
1.3.3	14 seats ✓ RT	2RT correct answer		M
			(2)	L1
				E
1.3.4	✓MA	1MA adding time		M
	Time the show will end = $19:00 + 2$ hours $+(15$ mins $\times 2)$			L1
				E
	= 21:30 ✓ A	1A correct answer		
	= 9:30pm✓A	1A correct time and format	(3)	
			[28]	

Mathematical Literacy/P2 **Stanmorephysics.com** NSC-Marking Guidelines

Quest.	Solution	Explanation	T&L
2.1.1	The key to the map makes it easy to read, locate roads, landmarks and navigate. OR It explains the meaning of the symbols and labels, helping the reader identify landmarks and roads accurately. O	2O correct explanation (2)	MP L1 E
2.1.2	Between Hilton Hotel and the Workshop ✓ RT Stanmorephyson.com Opposite Hilton Hotel and the Workshop ✓ RT OR Between the ICC and the Workshop ✓ ✓ RT OR	2RT correct answer	MP L1 E
	Opposite Sahara Stadium, next to the Hilton Hotel ✓ RT OR Annorephysics.com Between North Plaza and South Plaza parking Areas ✓ RT	(2)	
2.1.3	Braam Fischer Road✓✓RT	2RT correct answer (2)	MP L1 E
2.1.4	North West✓✓A	2A correct answer (2)	MP L1 E
2.1.5	6,7cm ✓ A 6,7 cm = 300 m ✓ A 6,7cm = 30 000 cm ✓ C	1A measuring accurately 1A concept of scale correct order 1C Conversion 1S Simplification Accept leeway of 1mm or 0,1 cm	MP L3 E
	1: 4 477,61√S	NPR (4)	
2.1.6	$P(\text{North Plaza}) = \frac{1}{5} \times 100\% \checkmark \text{MA}$ $\checkmark \text{A}$	1A numerator 1A denominator 1MA multiply by 100%	P L2 M
	= 20% √ CA	1CA correct answer (4)	

2.2.1	Time = 3,5 hours		MP L2	
	$Speed = \frac{21,1km}{3,5} \checkmark SF$	1SF substitution	M	
	= 6,03 km/hour ✓CA	1CA answer (2	2)	
2.2.2	✓✓RT 100m✓ A	2RT correct answer 1A units	MP L1 E	
2.2.3	Time = 64 minutes	13 (A - 1) - 11 (A 1 21 1	MP L2	
	Average Pace = $\frac{64 \text{ minutes}}{21,1 \text{ km}} \checkmark \text{MA}$ = 3,03 minutes/km \checkmark CA	1MA dividing 64 by 21,1 1CA answer (2	M (2)	
2.2.4	Altitude at 5km = 75m Altitude at 15km = 175m		MP L4 M	
	Change in Altitude = 175m -75m ✓ MA = 100m	1MA subtracting heights		
	Altitude increase per km = 100 ÷ 10 ✓ MCA = 10m/km	1MCA dividing by 10		
	Statement is CORRECT ✓ O	10 Conclusion (:	3)	
2.2.5	Predicted finishers for $2025 = \frac{14934}{16000} \checkmark A \times 17500 \checkmark MA$	1A numerator 1A denominator 1MA multiply by 17 500	P L2 E	
	= 16 334 √ A	1A correct answer (4	4)	
2.2.6	OR Helps to prepare runners by knowing the steep climbs/descents to decide if the route matches their fitness level.	3O correct explanation	MP L2 M	
	OR Identifying steep/dangerous areas to avoid accidents. ✓ ✓ ✓ O	(:	3)	
		[3	3]	

Quest.	Solution	Explanation		T &L
3.1.1	Perimeter of the frame = $2(418.5 \text{ cm} + 307.2 \text{ cm})\checkmark$ SF	1SF correct substitution	8	M L2
	= 1451,4 cm ✓ A	1A correct answer		M
	= 1451.4 cm ÷ 100 ✓ C	1C Conversion 1CA answer		
	=14,514√CA m√A	1A for unit	(5)	
3.1.2	Convert to metres = 20×0.305 = $6.1 \text{m} \checkmark \text{A}$	CA from 3.1.1 1A correct answer		M L3 M
	✓MA			
	Number of lengths required = $14,514 \text{ m} + (3 \times 2,1 \text{ m})$	1MA multiplying 3 by 2,1		
	= 20,814m ÷ 6,1 ✓ MCA	1MCA dividing by 6,1		
	= 3,41 = 4 \(\sigma R\)	1R rounding	(4)	
3.1.3	Stanmor PMA:s.com	1MA subtracting 5		M
	Number of PVC sheets = $418.5 \text{ cm} \div (60 \text{cm} - 5 \text{cm}) \checkmark \text{MCA}$	from 60		L3
	= 7,6 ✓ CA	1MCA dividing by 55 1CA correct answer		D
	= 8 ✓ R	TCA correct answer		
		1R rounding		
		Colombia con conserva de 1880 de Astrola de Colombia d	(4)	

3.2.1	Total length of the garage = $3,65 \text{ m} + 3,65 \text{m} = 7,3 \text{ m} \checkmark \text{A}$	1A for width of the garage		M
	1000	1A for width of spaces		L3 M
	Spaces between the cars = 3×0.7 m = 2.1 m \checkmark A	Trior width or spaces		-11-
	TITUD			
	Width of the car = $7.3 \text{ m} - 2.1 \text{ m}$			
	width of the car $= 7.5 \text{ m} = 2.1 \text{ m}$	1A correct answer		
	= 5,2 m✓ A			
		1MCA dividing by 2		
	= 5,2m ÷ 2 ✓ MCA	1CA answer		
	= 2,6m √ CA	1C/1 answer	(5)	
	N-4 5222 - PASZ		.551	
3.2.2	✓MA	1MA adding correct		M
	Area of garage = $(3,65m + 3,65m) \times 6,7m \checkmark SF$	values		L2 M
	$=48.91 \text{m}^2 \checkmark \text{A}$	1SF substitution		
		1A answer	(3)	
3.2.3		CA from Q3.2.2	(3)	M
	✓C	NAMES AND ADDRESS OF THE PARTY		L4
	Convert to metres = $50 \div 100$ to more physics.com	1C dividing by 100		M
	= 0.5 m			
	Mary and a second second	8 82		
	Area of 1 tile = 0,5 m × 0,5 m = 0,25 m ² \checkmark A	1A area of tile		
	Number of tiles = $48.91 \text{ m}^2 \div 0.25 \text{ m}^2 \checkmark MCA$	1MCA for dividing		
	= 195,64 √ CA	1CA answer		
		TOTT WILLS WOT		
	Number of boxes = 195,64 ÷8 ✓ MCA			
	- 24 46	1MCA dividing by 8		
	= 24,46			
	=25 √ R	1R Rounding		
			(6)	
	+	-	[27]	
	3	1		

QUESTION 4 [31 MARKS]				
Quest.	Solution	Explanation	T &L	
4.1.1	Diameter of Big Circle = 76" Radius of big circle = 76" ≠2 = 38" ✓A	1A correct answer	M L4 M	
	✓ MA	1MA subtracting 48	910	
	diameter of small circle = 76"-24"-24" = 28" ✓ A	1A correct answer		
	radius of small circle = 28" ÷2= 14" ✓A	1A correct answer		
	Circumference of table $= [(2 \times 3,142 \times 38") + (2 \times 3,142 \times 14")] \div 2 + (76" - 28") \checkmark SF$	1SF substitution		
	$= [(2 \times 3,142 \times 36) + (2 \times 3,142 \times 14)] + 2 + (76 - 26) \times 31$ $= 211,384" \checkmark CA$	1CA correct Answer		
	Diameter of Big Circle = 76"	OR		
	Radius of big circle = 76" ÷2 = 38" ✓ A	1A correct answer		
	diameter of small circle = (76" ÷2) -24" = 28" ✓ A	1MA dividing by 2 and subtracting 24		
	radius of small circle = 28" ÷2= 14" ✓A	1A correct answer 1A correct answer		
	Circumference of table			
	= $[(2 \times 3,142 \times 38") + (2 \times 3,142 \times 14")] \div 2 + (76" - 28") \checkmark SF$	1SF substitution		
	= 211,384" ✓ CA	1CA correct Answer (6)		

Radius of Big Circle = $38" \times 2,54 \checkmark C$	CA from Q4.1.1	M
= 96,52 cm Radius of small circle = 14" × 2,54 $= 35,56 cm$	1C Conversion	L4 D
Area = area of big circle – area of small circle		
Area of big circle = $3,142 \times (96,52 \text{cm})^2 \checkmark \text{ SF}$ = $29,271,2188768 \text{ cm}^2$	1SF substitution	
Area of small circle = $3,142 \times (35,56 \text{cm})^2$ \checkmark SF	1SF substitution	
=3973,1017312cm ²		
Area = (area of big circle – area of small circle) \div 2 \checkmark MCA =(29 271,2188768 cm ² -3973,1017312cm ²) \div 2 \checkmark MA	1MCA for subtracting	
= 12 649,06 cm ² Stanmorephysics.com	1MA for dividing by 2	
Convert to $m^2 = 12 649,06 \div 100^2 \checkmark C$ = 1,26 \checkmark CA	1C for conversion 1CA answer	
Claim is INCORRECT✓O	10 Opinion	
OR	OR	
Radius of Big Circle = 38 " × $2,54$ \checkmark C = $96,52$ cm ÷ 100 \checkmark C = $0,9652$ m	1C Conversion 1C Conversion	
Radius of small circle = $14" \times 2,54$		
= 35,56 cm ÷ 100 =0.3556m		
Area = area of big circle – area of small circle		
Area of big circle = $3,142 \times (0,9652\text{m})^2 \checkmark \text{SF}$	1SF Substitution	
$= 2,9271218877 \text{ m}^2$		
Area of small circle = $3,142 \times (0.3556 \text{m})^2$ \checkmark SF	1SF substitution	
$= 0.3973101731 \text{m}^2$		

Mathematical Literacy/P2 **Stanmorephysics.com** NSC-Marking Guidelines

	Stanmorepizijsies.com	(5)	
	Stanmor= 0.12 m ² \checkmark CAcom	1CA answer	
	= $1162,72 \text{ cm}^2 \checkmark \text{CA}$ Convert to $\text{m}^2 = 1162,72 \text{ cm}^2 \div 100^2 \checkmark \text{C}$	1CA answer 1C dividing by 10 000	
	$(24\text{cm}) + 2(10,02\text{cm} \times 24\text{cm}) \checkmark \text{SF}$	1SF substitution	
	2(10,02cm × 10,02cm) + 2(10,02cm ×	1SF correct substitution	
	✓SF		L3 M
4.2.3	Surface Area Rectangular Prism =	(4) CA from Q4.2.2	M
	= 24cm√CA	1CA answer	
	Height =19cm+3cm +2cm ✓MCA	1MCA adding 5cm	
	=10,02cm✓CA	1CA answer	L
4.2.2	Width = 8,02cm +2cm ✓MCA	CA Q4.2.1 1MCA adding 2	M L2 E
	= 8,02cm√CA	1CA answer (8)	
	20	1MCA multiply by 2	
	Diameter = 4,01cm ×2 ✓ MCA	1CA answer	
	4,01 cm = r ✓ CA	1MCA square root	
	$\sqrt{16,08} = r^2 \checkmark MCA$	formula	
	960 cm ³ ÷ (3,142 ×19 cm) = r^2 ✓ MA	1MA changing subject of the	
	$960 \text{cm}^3 = 3.142 \times \text{r}^2 \times 19 \checkmark \text{SF}$	1SF correct substitution	
	Convert to $cm^3 = 0.96 \times 1000 \checkmark MA$ = 960 cm ³	1MA multiplying by 1000	
4.2.1	Number of litres = 32×0.03 = $0.96\ell \checkmark A$	1A for correct litres	M L3 D
		(8)	
		10 Opinion	
	= 1,26 ✓ CA Claim is INCORRECT ✓ O	1CA answer	
	$= (2,9271218877 \text{ m}^2 - 0,3973101731\text{m}^2) \div 2 \checkmark \text{MA}$	1MA dividing by 2	
	✓MCA	1MCA subtracting	

QUEST	TION 5 [31 MARKS]		
Quest.	Solution	Explanation	T&L
5.1.1	6335miles:10 228km✓ RT ✓ R 0,619: 1✓S OR	1RT for both correct values 1S simplifying 1R Rounding	MP L1 D
		OR	
	6335miles:10 228km✓ RT ✓ R	1RT for both correct values	
	1: 1,615 ✓S	1S simplifying 1R Rounding	
5.1.0	0		3)
5.1.2	9 countries ✓✓ RT	2RT correct answer	MP L1 2) E
5.1.3	Bar/Line/Linear/graphic scale ✓ ✓ A	2A correct answer	MP L1 2) E
5.1.4	Scale 4,4 cm = 1000 km ✓ A	1A measuring scale	MP
	Distance on map = 17,2 cm \checkmark A Stanmore physics.com \checkmark MA \checkmark MCA	1A measuring distance	L3 M
	Actual Distance: = $(17.2 \text{ cm} \times 1000) \div 4.4$	1MA multiplying by 1000	5
	= 3 909,09km ✓CA	1MCA dividing by	
		4,41CA answer	
	OR	OR	
	Scale 44 mm = 1000 km ✓ A	1A measuring scale	
	Distance on map = 172 mm ✓A	1A measuring distance	
	\checkmark MA \checkmark MCA Actual Distance: = (172 mm × 1 000) ÷ 44	1MA multiplying by 1000	
	= 3 909,09km ✓CA	1MCA dividing by 44	
		1CA answer	
		Accept leeway of 1mm or 0	,1
		cm NPR	5)
	The distance measured on the map is an	2O correct explanation	MP
	approximation or straight-line measurement while the real road distance is longer due to bends, detours and route variations. ✓✓O		L4 E 2)

Mathematical Literacy/P2 Downloaded from Stanmolephysics.com

5.1.6	Time = 10 228 km ÷ 90 km/hour ✓ MA	1MA dividing by 90	MP
	= 113,64 hours ✓ A	1A correct answer	L3 M
	Time in days = 113,64 ÷ 12 ✓ MCA	1MCA dividing by 12	
	= 9,47 days ✓ CA	1CA answer	
	Stanmorephysics.com	1R rounding (5)	
5.1.7	${}^{0}C = \frac{5}{9} (98^{0}F - 32) \checkmark SF$	1SF substitution	MP L2
	=36,67°C ✓A	1A correct answer	M
	=37°C ✓R	1R rounding (3)	
5.2.1	✓ C 64 000 000: 101 478 000 ✓ A ✓ S	1C conversion 1A correct values and order	MP L2 M
	1:1,58559375	1S Simplification	IVI
		NPR (3)	
5.2.2	Stanmorephysics.com ✓RT	1RT correct value	MP
	Number of people per km ² = $101 478 000 \div 1010 408 \checkmark MA$ = $100,4326965$ = $100 \checkmark A$	1MA dividing by 1 010 408 1A correct answer	L2 M
		(3)	
5.2.3	✓MA Number of times bigger = 1 221 037km ÷ 1 010 408 ✓ RT	1MA dividing	MP L4
	= 1,208	1RT correct value	M
	The claim is CORRECT ✓O	10 Opinion	
		(3)	
		[31]	2.0

TOTAL MARKS: 150