

PROVINCIAL ASSESSMENT

GRADE 11

PHYSICAL SCIENCE P1 NOVEMBER 2024

MARKS: 150

TIME: 3 hours

This question paper consists of 12 pages and 2 data sheets.

INSTRUCTIONS AND INFORMATION

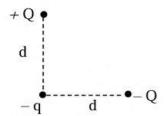
- Write your name on the ANSWER BOOK.
- 2. This question paper consists of 9 questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line open between two subquestions, for e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 B.

DOOL	\ , e.y	. 1.11 D.	
1.1	Which ONE of the following is not a SCALAR quantity?		
	Α	Time	
	В	Speed	
	С	Mass	
	D	Weight	(2)
1.2	The	tendency of an object to resist a change in motion is called	
	Α	acceleration.	
	В	inertia.	
	С	momentum.	
	D	velocity.	(2)
1.3		following two forces act on an object. A 150 N horizontal force to the t and a 120 N vertical force acting upwards.	
	The	magnitude of the resultant force acting on the object is	
	Α	270 N	
	В	192,09 N	
	С	90 N	
	D	30 N	(2)

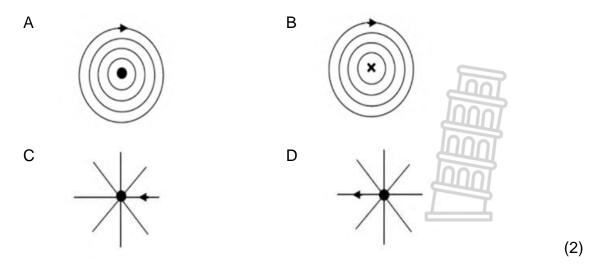
- 1.4 Two spheres of masses **M** and **m** experiences a gravitational force of **F** when the distance between their centres is **r**. The distance is now HALVED. The new gravitational force between them after the distance is halved is ...
 - $A \frac{1}{2} F$
 - B 2 F
 - C 4F
 - D $\frac{1}{4}$ F (2)
- 1.5 A person stands on a bathroom scale that is calibrated in Newton, in a stationary elevator. The reading on the bathroom scale is *w*. The elevator now accelerates downwards. How will the reading on the bathroom scale change?

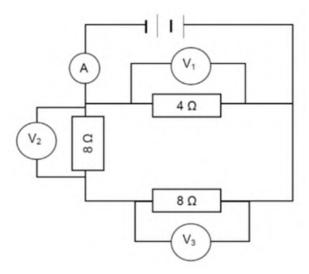

It will ...

- A not change.
- B increase.
- C decrease.
- D be zero. (2)
- 1.6 **P**, **Q** and **R** are three charged spheres. When **P** and **Q** are brought near each other, they experience an attractive force. When **Q** and **R** are brought near each other, they experience a repulsive force.

Which ONE of the following statements is true about the charges?

- A **P** and **R** have charges with the same sign.
- B P, Q and R have equal charges.
- C P and R have charges with opposite signs.
- D \mathbf{P} , \mathbf{Q} and \mathbf{R} have the same sign. (2)

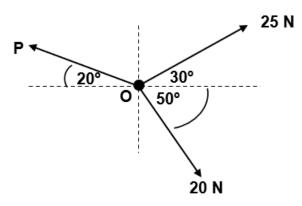

1.7 Two charges, +Q and -Q, are placed a distance d from a negative charge -q. The charges, +Q and -Q, are located along lines that are perpendicular to each other, as shown in the diagram below.


Which ONE of the following arrows CORRECTLY shows the direction of the net force acting on charge -q due to the presence of charges **+Q** and **-Q**?

1.8 Which ONE of the sketches below represent the correct magnetic field pattern around a straight current-carrying conductor?

1.9 In the circuit diagram below, the battery has negligible internal resistance. The resistance of the ammeter and the wires may also be ignored. The reading on voltmeter V₃ is equal to ...

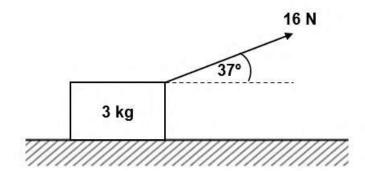
- A V₁
- $V_1 V_2$ В
- С 2 V₁


D
$$\frac{1}{2} V_1$$
 (2)

- 1.10 Power can be defined as ...
 - Α the rate at which energy is transformed in an electric circuit.
 - В work done per unit charge.
 - С the rate of flow of charge.
 - D the product of voltage and resistance.

QUESTION 2 (Start on a new page.)

The free-body diagram below shows 3 forces that are acting simultaneously on an object.



- 2.1 Define the term *vector quantity*. (2)
- 2.2 Calculate the magnitude of the vertical component of the force 25 N. (3)
- 2.3 Calculate the magnitude of the horizontal component of the force 20 N. (3)
- 2.4 Determine the magnitude of the force \mathbf{P} if the F_x net is 15,49 N. (6)
- 2.5 Calculate the net resultant force of the vertical components. (F_y net). (6) [20]

QUESTION 3 (Start on a new page.)

A 3 kg block is pulled to the right on a rough horizontal plane by a 16 N force which makes an angle of 37° to the horizontal, as shown in the diagram below.

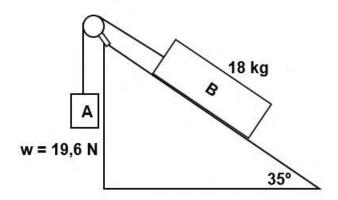
The block moves at a constant speed.

- 3.1 Define the term *acceleration*. (2)
- 3.2 What is the magnitude of the acceleration of the block? (1)
- 3.3 Calculate the magnitude of the kinetic frictional force. (3)
- 3.4 Draw a labelled force diagram showing all forces acting on the 3 kg block. (4)
- 3.5 Calculate the value of the kinetic frictional coefficient of the surface. (5)

The angle between the 16 N force and the horizontal is now increased.

3.6 What effect will this change have to the answer calculated in QUESTION 3.3?

Choose from INCREASE, DECREASE or REMAIN THE SAME. Support your answer.


(3)

[18]

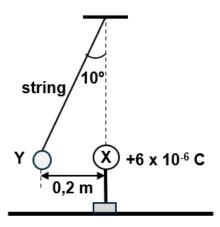
QUESTION 4 (Start on a new page.)

Two blocks **A** and **B** are connected by a light inextensible string are held stationary as shown in the diagram below. Block **A** has a weight of 19,6 N and block **B** has a mass of 18 kg. The kinetic frictional force on block **B** is 20 N.

Upon release, block **A** starts to accelerate upwards and block **B** accelerates down the smooth slope of angle 35° to the horizontal.

- 4.1 State Newton's Third Law of Motion in words. (2)
- 4.2 Draw a labelled free-body diagram showing all forces acting on block **B**. (4)
- 4.3 Calculate the magnitude of the acceleration of the two blocks. (7)
- 4.4 Determine the tension in the string connecting the blocks. (2) [15]

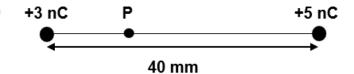
QUESTION 5 (Start on a new page.)


An object resting on the surface of Planet **Z** experiences a gravitational acceleration of 7,4 m.s⁻². Planet **Z** has a mass of 4 x 10¹⁸ kg.

- 5.1 State the universal Law of Gravitation in words. (2)
- 5.2 Calculate the radius of Planet **Z**. (4)
- 5.3 Determine the gravitational force exerted on the object by planet **Z** if the object's mass is 100 kg. (4)
- 5.4 How will the Force calculated in QUESTION 5.3 compare to the force that the object exerts on Planet **Z**? Choose from HIGHER THAN, LOWER THAN OR EQUAL TO. (1) [11]

QUESTION 6 (Start on a new page.)

A small sphere, \mathbf{Y} , carrying an unknown charge, is suspended at the end of a light inextensible string which is attached to a fixed point. Another sphere, \mathbf{X} , carrying a charge of +6 x 10⁻⁶ C, placed on an insulated stand, is brought close to sphere \mathbf{Y} .


Sphere **Y** experiences an electrostatic force from sphere **X** and comes to rest 0,2 m away from sphere **X**, with the string at an angle of 20° with the vertical, as shown in the diagram below.

- 6.1 What is the nature of the charge on sphere Y? Choose from POSITIVE or NEGATIVE. (1)
 6.2 Draw an electric field pattern that exist between the two spheres. (3)
 6.3 Sphere X exerts a force of 3,09 N on sphere Y.
 - 6.3.1 State Coulomb's law in words. (2)
 - 6.3.2 Calculate the magnitude of the charge on sphere Y. (4)
 - 6.3.3 Draw a labelled free body diagram showing all forces acting on sphere **Y**. (3)
 - 6.3.4 Determine the magnitude of the tension in the string. (3)
 - 6.3.5 Calculate the mass of sphere **Y**. (4) [20]

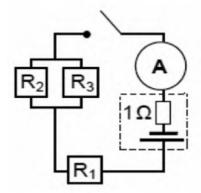
QUESTION 7 (Start on a new page.)

Two point charges of +3 nC and +5 nC, are fixed 40 mm apart. Point **P** lies 12 mm away from the +3 nC charge.

- 7.1 Which charge produces the strongest electric field strength at point **P**?

 Choose from +3 nC or +5 Nc

 (1)
- 7.2 Explain your answer in QUESTION 7.1. (2)
- 7.3 Define the term *electric field at a point.* (2)
- 7.4 Determine the net electric field at point **P** from the 2 charges. (6) [11]


QUESTION 8 (Start on a new page.)

A coil with 300 windings and a surface area of 4×10^{-4} m³ is rotated at constant speed in a constant magnetic field of 1,5 T. An emf of 2,5 V is induced in the coil.

- 8.1 State Farraday's Law of Electromagnetic Induction in words. (2)
- 8.2 Calculate:
 - 8.2.1 Change in magnetic flux if the angle of the coil relative to the magnetic field changes from 0° to 90° (3)
 - 8.2.2 Time it takes the coil to rotate from 0° to 90° (4)
- 8.3 By what factor will the induced emf change if a coil with 150 windings is used under the same conditions? Give a reason for the answer. (2)
- 8.4 Mention TWO ways in which the induced EMF can be reduced. (2) [13]

QUESTION 9 (Start on a new page.)

9.1 In the electric circuit diagram below, the battery has and EMF of 6 V and an internal resistance of 1 Ω . The total external resistance of the circuit is 9 Ω .

- 9.1.1 Define the term *EMF*. (2)
- 9.1.2 What is the reading on the ammeter when the switch is open? (1)

The switch is now closed.

- 9.1.3 Calculate the current passing through resistor R₁. (4)
- 9.1.4 The power dissipated in resistor R_1 is 1,8 W. The resistance of resistor R_3 is 4 times that of resistor R_2 .

Calculate the resistance of R_2 . (6)

- 9.1.5 Resistor R₂ is now removed. How will this change affect the lost volts? Choose from INCREASE, DECREASE or REMAIN THE SAME?
 (1)
- 9.1.6 Explain the answer on question 9.1.5. (3)
- 9.2 A hairdryer operates at a potential difference of 250 V and a current of 8,5 A. It takes a learner 10 minutes to completely dry her hair. Eskom charges energy usage at R1,67 per kWh.
 - Calculate the cost of operating the hairdryer for the 10 minutes. (5) [22]

TOTAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 1 (PHYSICS)

TABLE 1: PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	G	9,8 m·s ⁻²
Gravitational constant	G	6,67 x 10 ⁻¹¹ N·m ² ·kg ⁻²
Radius of Earth	Re	6,38 m x 10 ⁶ m
Coulomb's constant	К	9,0 x 10 ⁹ N·m ² ·C ⁻²
Speed of light in a vacuum	С	3,0 x 10 ⁸ m·s ⁻¹
Charge on electron	Е	-1,6 x 10 ⁻¹⁹ C
Electron mass	m _e	9,11 x 10 ⁻³¹ kg
Mass of Earth	M	5,98 x10 ²⁴ kg

TABLE 2: FORMULAE

FORCES

F _{net} = ma	w = mg
$F = \frac{Gm_1m_2}{r^2}$	$g = G\frac{M}{r^2}$
$\mu_{k} = \frac{f_{k}}{N}$	$\mu_s = \frac{f_{s(max)}}{N}$

ELECTROSTATICS

$F = \frac{kQ_1Q_2}{r^2}$	$(k = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2})$	$E = \frac{F}{q}$
$E = \frac{kQ}{r^2}$	$(k = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2})$	$n = \frac{Q}{e}$

ELECTROMAGNETISM

$\varepsilon = -N \frac{\Delta \Phi}{}$	Φ = BA cos θ
Δt	

ELECTRIC CIRCUITS

$R = \frac{V}{I}$	emf (\mathcal{E}) = $\mathbf{I}(R + r)$
$R_s = R_1 + R_2 + \dots$	$q = I\Delta t$
$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$	
W = Vq	$P = \frac{W}{\Delta t}$
$W = VI\Delta t$	P = VI
$W = I^2 R \Delta t$	$P = I^2R$
$W = \frac{V^2 \Delta t}{R}$	$P = \frac{V^2}{R}$

Downloaded from Stanmorephysics.com

education

Department:
Education
North West Provincial Government
REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT PROVINSIALE ASSESSERING

GRADE/GRAAD 11

PHYSICAL SCIENCES P1
FISIESE WETENSKAPPE V1
NOVEMBER 2024
MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 10 pages. *Hierdie nasienriglyne bestaan uit 10 bladsye.*

QUESTION 1/VRAAG 1

1.1 D (2)

1.2 B ✓✓ (2)

1.3 B ✓✓ (2)

1.4 C ✓✓ (2)

1.5 C ✓✓ (2)

1.6 A ✓✓ (2)

1.7 C ✓✓ (2)

1.8 B ✓✓ (2)

1.9 D ✓✓ (2)

1.10 A ✓✓ (2) **[20]**

QUESTION 2/VRAAG 2

2.1 A physical quantity that has both magnitude and direction. ✓ ✓
'n Fisiese hoeveelheid met grootte en eenheid, maar geen rigting nie. (2)

2.2	Option 1/Opsie 1	Option 2/Opsie 2	
	$F_y = F \sin \theta$	$F_y = F \cos (90^{\circ} - \theta)$	
	$F_y = 25 \checkmark \sin 30^\circ \checkmark$	$F_y = 25 \checkmark \frac{\cos{(60^{\circ})}}{10000000000000000000000000000000000$	
	= 12,5 N√	= 12,5 N√	
		·	(3)

2.3	Option 1/Opsie 1	Option 2/Opsie 2	
	$F_x = F \cos \theta$	$F_{x} = F \cos (90^{\circ} - \theta)$	
	$F_{x} = 20\checkmark \cos 50^{\circ} \checkmark$	$F_x = 20 \checkmark \sin (40^{\circ}) \checkmark$	
	= 12,86 N√	= 12,86 N√	
	·	·	(3)
			\

2.4
$$F_{x(net)} = F_{x(20N)} + F_{x(25N)} - F_{x(P)}$$

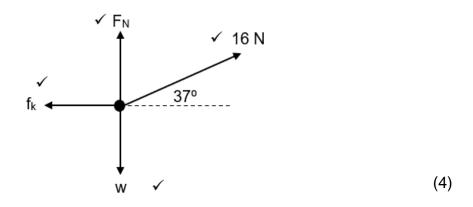
 $15,49 \checkmark = 12,86 + 25 \cos 30^{\circ} \checkmark - F_{x(P)} \checkmark$
 $F_{x(P)} = 19,02 \text{ N} \checkmark$
 $Cos\ 20 = 19,02 \text{ /F} \checkmark$
 $F = 20,24 \text{ N} \checkmark$ (6)

2.5	Option 1/Opsie 1	Option 2/Opsie 2	
	$F_{y(p)} = F \sin \theta$	$F_{y(p)} = F \cos \theta$	
	$F_{y(p)} = 20,24 \sin 20^{\circ} \checkmark$	$F_{y(p)} = 20,24 \cos 70^{\circ} \checkmark$	
	= 6,92 N	= 6,92 N	
	$F_{y(20 N)} = F \sin \theta$	$F_{y(20 N)} = F \cos \theta$	
	$F_{y(20 \text{ N})} = 20 \sin 50^{\circ} \checkmark$	$F_{y(20 \text{ N})} = 20 \cos 40^{\circ} \checkmark$	
	= 15,32 N	= 15,32 N√	
		Tuut	
	$F_{x(net)} = 6.92 + 12.5 \checkmark -15.32 \checkmark$	Incat	
	rd/opwaarts/op ✓	(6)	

[20]

QUESTION 3/VRAAG 3

3.1 The rate of change of velocity of an object. ✓✓


Die tempo van verandering in snelheid van 'n voorwerp.

(2)

3.2 0 m.s⁻²
$$\checkmark$$
 (1)

3.3	Option 1/Opsie 1	Option 2/Opsie 2	
	$f_f = F_{x(16N)} \checkmark$	$f_f = F_{x(16N)} \checkmark$	
	= <u>16 cos 37°</u> ✓	= 16 sin 53° ✓	
	f _f = 12,78 N ✓	$f_f = 12,78 \text{ N} \checkmark$	(3)

3.4

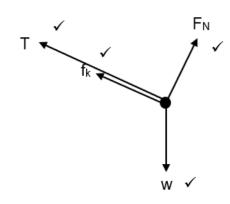
3.5 $F_N = F_g - F_{y(16N)}$ $F_N = mg - F_{y(16N)}$ $F_N = (3 \times 9.8) \checkmark - 16 \sin 37^{\circ} \checkmark$ $F_N = 19,77 \text{ N}$ $F_f = \mu F_N \checkmark$ $12,78 = \mu \times 19,77 \checkmark$ $\mu = 0,65 \checkmark$

(5)

3.6 DECREASES. ✓

 F_Y increases, making the F_N to decrease. \checkmark F_f is directly proportional to the F_N . \checkmark AFNEEM

 F_Y verhoog, wat F_N laat verlaag. \checkmark F_f is direk eweredig aan F_N


(3) **[18]**

QUESTION 4/ VRAAG 4

4.1 When object/body A exerts a force on object/body B, object/body B will exert the same force on object/body A simultaneously in the opposite direction. ✓ ✓ Wanneer voorwerp A 'n krag op voorwerp B uitoefen, oefen voorwerp B GELYKTYDIG 'n krag van gelyke grootte in die teenoorgestelde rigting op voorwerp A uit.

(2)

4.2

(4)

4.3 | F_{net} = ma ✓

Block/Blok A

$$F_g = mg$$

 $19,6 = m \times 9.8 \checkmark$

$$T - F_g = ma$$

$$T - 19,6 = 2a \checkmark$$

$$T = 2a + 19.6 ...(1)$$

Block/Blok B

Fg// - T -
$$f_k$$
 = ma/mg sin θ - T - f_k = ma
18 x 9,8 sin 35° - T - 20 = 18a ✓

$$T = 81,18 - 18a ...(2)$$

$$20a = 81.58$$

4.4

$$a = 3.08 \text{ m.s}^{-2} \checkmark$$

Option 1/Opsie 1

 $T = 25.74 \text{ N} \checkmark$

 $T = 81,18 - 18(3,08) \checkmark$

Option 2/Opsie 2

$$T = 2(3,08) + 19,6 \checkmark$$

(range 27,56 N - 27,74 N)

(2) **[15]**

(7)

(2)

QUESTION 5/VRAAG 5

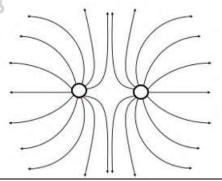
5.1 Every particle in the universe attracts every other particle with a force directly proportional to the product of their masses ✓ and inversely proportional to the square of the distance between their centres. ✓ Elke deeltjie in die heelal trek elke ander deeltjie aan met 'n gravitasiekrag wat direk eweredig is aan die produk van hulle massas ✓ en omgekeerd eweredig is aan die kwadraat van die afstand tussen hulle middelpunte. ✓

5.2 $g = \frac{GM}{r^2} \checkmark$ $7.4 \checkmark = \frac{6.67 \times 10^{-11} \times 4 \times 10^{18} \checkmark}{r^2}$ $r = 6.01 \times 10^3 \,\text{m} \checkmark (6004.5 \,\text{m})$ (4)

5.3
$$F_{g} = \frac{GMm}{r^{2}} \checkmark$$

$$F_{g} = \frac{6.67 \times 10^{-11} \times 4 \times 10^{18} \times 100 \checkmark}{(6.01 \times 10^{3})^{2} \checkmark}$$

$$F_{g} = 7.39 \times 10^{2} \text{ N} \checkmark (738,65 \text{ N})$$
(4)



QUESTION 6/VRAAG 6

6.1 POSITIVE/POSITIEF ✓

(1)

6.2

Note:

1 mark – correct shape. ✓

1 mark - direction of arrows. ✓

1 mark – lines touching the charge but do not cross each other. ✓

(3)

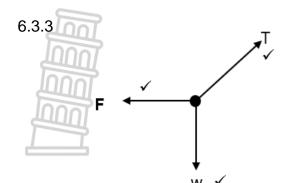
Let wel:

1 punt – korrekte vorm. ✓

1 punt – rigting van pyltjies. ✓

1 punt – Lyne raak die lading maar kruis nie mekaar nie. ✓

6.3 6.3.1 The <u>electrostatic force</u> exerted by one point charge on another is <u>directly proportional to the product of the charges</u> ✓ and <u>inversely proportional to the square of the distance</u> between them. ✓ Die grootte van die elektrostatiese krag wat deur twee puntladings op mekaar uitgeoefen word, is direk eweredig aan die produk van die grootte van die ladings ✓ en omgekeerd eweredig aan die kwadraat van die afstand tussen hulle.✓


(2)

6.3.2
$$F = \frac{KQq}{r^2} \checkmark$$

$$3.09 \checkmark = \frac{9 \times 10^9 \times 6 \times 10^{-6} \times q}{(0.2)^2} \checkmark$$

$$q = 2.29 \times 10^{-6} \text{ C} \checkmark$$

(4)

(3)

(3)

6.3.4 Sin
$$\theta = \frac{\text{opp}}{\text{hyp}} \frac{\text{teenoorstaand}}{\text{skuins}}$$
Sin $10^{\circ} \checkmark = \frac{3,09}{T} \checkmark$

$$T = 17.8 \text{ N} \checkmark$$

6.3.5
$$T^2 = F_g^2 + F_e^2$$

 $17.8^2 = F_g^2 + 3.09^2 \checkmark$
 $F_g = 17.529 \text{ N}$
 $F_g = \text{mg} \checkmark$
 $17.53 = \text{m x } 9.8 \checkmark$
 $m = 1.79 \text{ kg} \checkmark$ (4)

QUESTION 7/VRAAG 7

7.1 +3 nC
$$\checkmark$$
 (1)

- 7.2 Electric field strength is inversely proportional to the distance. ✓✓ (2)Sterkte van die elektriese veld is omgekeerd eweredig aan die afstand.
- 7.3 The force per unit charge/*Die krag per eenheidslading*. ✓ ✓ (2)

7.4
$$E_{net} = \frac{KQ}{r^2} - \frac{Kq}{r^2} \checkmark$$

$$E_{net} = \frac{9 \times 10^9 \times 3 \times 10^{-9}}{(0.012)^2} \checkmark - \checkmark \frac{9 \times 10^9 \times 5 \times 10^{-9} \times q}{(0.028)^2} \checkmark$$

E_{net} = 130 102,04 N.C⁻¹ (1,3 x 10⁵ N.C⁻¹)
$$\checkmark$$
 Right/East \checkmark [6]

QUESTION 8/VRAAG 8

8.1 The magnitude of the induced EMF is equal to the rate of change of magnetic flux. ✓ ✓

Die grootte van die geïnduseerde emk oor die ente van 'n geleier is direk eweredig aan die tempo van verandering van die magnetiese vloedkoppeling met die geleier. (2)

8.2 8.2.1 $\Delta \Phi = \Delta BA \cos \theta \checkmark$

$$= (1,5) (4 \times 10^{-4}) (\cos 90^{\circ} - \cos 0^{\circ}) \checkmark$$

$$= -6 \times 10^{-4} \text{ Wb } \checkmark$$
(3)

8.2.2 $\varepsilon = -N \frac{\Delta \Phi}{\Delta t} \checkmark$ $2.5 \checkmark = -300 \frac{-6 \times 10^{-4}}{\Delta t} \checkmark$ $\Delta t = 0.5 \text{ s} \checkmark$ (4)

8.3 It will be halved/divided by 2. ✓

EMF is directly proportional to the number of windings in the coil. ✓ *Dit sal halveer/verander met 2.* ✓

EMK is direk eweredig aan die aantal windings op die spoel. ✓

Decreasing the number of turns in the coil/decreasing the surface area of the coil. ✓
 Verminder die aantal windings van die spoel/verklein die

kontakoppervlak van die spoel.

- Decreasing the strength of the magnets. ✓
 Verminder die sterkte van die magnete.
- Moving the magnets in and out slower or at a lower frequency.
 Beweeg die magneet stadiger in en uit/kleiner frekwensie.
 (any/enige 2)

(2) **[13]**

(2)

QUESTION 9/VRAAG 9

9.1 9.1.1 The amount of energy provided by the cell/battery per coulomb charge.

Die totale hoeveelheid energie wat 'n sel aan 1 coulomb lading kan verskaf. ✓ ✓ (2)

9.1.2 0 (A) ✓ (1)

9.1.3 Emf = I (R + r) \checkmark 6 \checkmark = I (9 + 1) \checkmark I = 0,6 A \checkmark (4)

9.1.4 P = $I^2R \checkmark$ 1,8 = (0, 6)2R \checkmark R = 5 Ω

 $Rp = 9 - 5 = 4\Omega$ $\frac{1}{R} = \frac{1}{R} + \frac{1}{R}$

 $\frac{1}{4} = \frac{1}{R} + \frac{1}{4R} \checkmark$

 $R_2 = 5\Omega \checkmark \tag{6}$

9.1.5 Increase/Verhoog ✓ (1)

9.1.6 The total external resistance increases and current decreases \checkmark . The external voltage will decrease (V \propto I) \checkmark . Emf remains the same \checkmark and thus V lost increases.

Die totale eksterne weerstand verhoog en die stroom verlaag. \checkmark Die eksterne spanning sal afneem (V \propto I). \checkmark Emk bly dieselfde \checkmark en daarom verlaag die verlore volts.

9.2 $P = VI \checkmark$ = 250(8,5) \checkmark = 2 125 W

> Cost/Koste = 2,125 \checkmark x $\frac{10}{60}$ x 1,67 \checkmark = R0,59 \checkmark (5)

[22] TOTAL/*TOTAAL*: 150

(3)