Downloaded from Stanmorephysics.com

CAPE WINELANDS EDUCATION DISTRICT

GRADE 12

Marks: 150 Time: 3 hours

This paper consists of 14 pages and a 16-page SPECIAL ANSWER BOOK.

INSTRUCTIONS AND INFORMATION:

- 1. This question paper consists of FIVE questions. Answer ALL the questions.
- 2. 2.1 Use the ANNEXURES to answer the following questions:
 - ANNEXURE A for QUESTION 2.1.3
 - ANNEXURE B for QUESTION 3.2
 - ANNEXURE C for QUESTION 5.1
 - ANNEXURE D for QUESTION 5.2
 - 2.2 Answer QUESTION 3.2.2 on ANNEXURE B in your answer book.
- 3. You may use an approved calculator (non-programmable and non-graphical). unless stated otherwise.
- 4. Show ALL the calculations clearly.
- 5. Round off ALL final answers appropriately to the given context, unless stated otherwise.
- 6. Indicate units of measurement, where applicable.
- 7. Maps and diagrams are NOT necessarily drawn to scale, unless stated otherwise.
- 8. Write neatly and legibly.

(2)

QUESTION 1

Use the information above to answer the questions that follow.

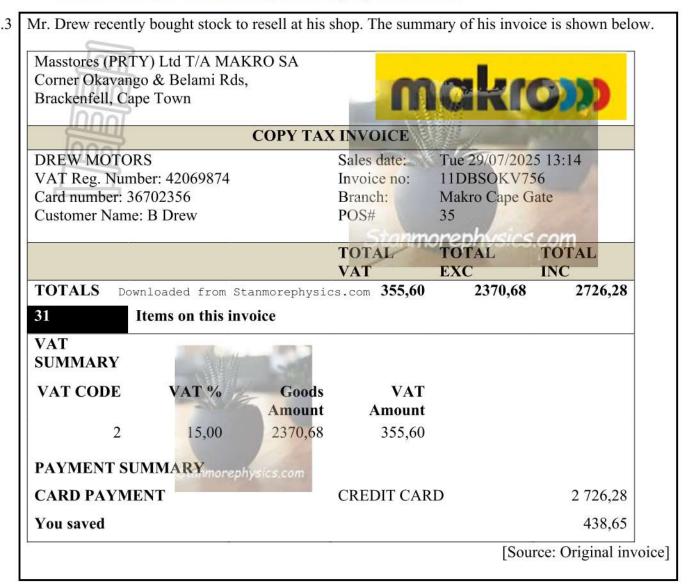
1.1.1 Write down the word that explains the financial concept illustrated above. (2) 1.1.2 Write, as a ratio, the price of a Spur burger in 2025 to the price in 1980. (2) 1.1.3 A favourite ice cream treat "Chico the Clown" was priced at R0,25 in 1980. Calculate the projected cost in 2025 if it increased with a ratio of 1:110 over the same time period. (2) 1.1.4 Choose the correct word from the brackets that will make the statement below true and write it in your answer book. The price of food at Spur showed a steady (increase / decrease) over time. (2) 1.1.5 On a Monday in 2025, the Spur burger is on special for R84,90. Calculate

the money saved if a person goes to Spur on a Monday.

[Source: https://www.instagram.com/askdomsa/

The heights of the South African national rugby union team for 2024/2025 are organised in TABLE 1 below. Downloaded from Stanmorephysics.com

TABLE 1: HEIGHTS OF RUGBY PLAYERS.


Height of players		
1,5 m - 1,8 m	///	3
1,8 m – 1,85 m	HH 11	7
1,85 m – 1,9 m	1111 /	A
1.9 m - 2 m		3
Stanmorephysics.com		
	[Source: ht	ttps://all.rugby/club/south-africa/squad

Use TABLE 1 and the information above to answer the questions that follow.

- 1.2.1 Write down the name of the tool that was used to organise the data. (2)
- 1.2.2 Classify the heights of the rugby players as discrete OR continuous. (2)
- 1.2.3 Identify the missing value represented by A in the table. (2)
- 1.2.4 Identify one error that was made when drawing this table. (2)
- 1.2.5 Choose the step that follows in the data handling cycle from the list below.

 Write the correct letter in your answer book.
 - A) Representing data
 - B) Summarising data
 - C) Interpreting data

(2)

Use the information above to answer the questions that follow.

- 1.3.1 Write down the name of the branch where items were bought. (2)
- 1.3.2 Identify the method of payment used to pay. (2)
- 1.3.3 Show how the VAT amount was calculated. (2)
- 1.3.4. On the statement it is shown that 31 items were purchased.
 - Calculate the average price (including VAT) per item that was purchased (3)

[29]

QUESTION 2

2.1 TABLE 2 below shows the increase in Social Grants noted by South African Social Security Agency (SASSA) for the 2025/2026 book year.

TABLE 2: INCREASE OF DIFFERENT GRANTS 2025/2026

CIAL GRANTS	2025	2026
age grant	2 185,00	2 315,00
r veterans grant	2 205,00	2 335,00
ability grant	2 185,00	2 315,00
ter care grant	1 180,00	1 250,00
e dependency grant	2 185,00	2 315,00
ld support grant	530,00	560,00
nt-in-aid	530,00	560,00
Secret State (notice syste)	Adapted from source:ww	/w

Use the information in the table above to answer the following questions

2.1.1 In 2026 a family will receive the following SASSA grants:

1 × Old age grant,

2 × child support grants and

1× disability grant.

Calculate the latest monthly income of the family in 2026.

(4)

- 2.1.2 Determine the percentage increase of the War veterans grant from 2025 to 2026. (3)
- 2.1.3 Car guards rely mainly on tips, averaging ±R30 each, with 12–20 tips per day. This equates to daily earnings of R360–R600, subject to fluctuations based on location, day, and other factors.

ANNEXURE A compares this daily income of car guards with that of a household receiving two old-age grants per month in 2026.

- a) Write down the day on which the minimum income and the two old-age grants will be the same. (2)
- b) Show by means of calculation how "R5 570", the difference in income after 17 days indicated on the graph was determined. (5)

2.2 The latest Household Affordability Index shows that many South Africans are living below the food poverty line of R561 a month, with more than half of the population living on less than R1 230.

TABLE 3 below shows a budget for a typical South African household.

TABLE 3: TYPICAL HOUSEHOLD BUDGET

Several typical household expenses	For	Cost
Burial Insurance	Family	R275,00
Transport to work (2 taxi, return)	1 Adult	A
Transport to shops and to access public health services	Family	R154,00
Transport to school	1 Child	В
Prepaid electricity (360 kWh)	Family	R598,52
Debt on shop credit	Familynor	rephysR300,00
School fees	1 Child	R1 000,00
Water (flat rate, unmetered households)	Family	R131,58
Food	Family	R2 327,17
Domestic and personal hygiene products	Family	R643,62
Airtime	Family	R300,00
'Savings' into stokvel, food stamps, etc	Family	R200,00
Total for typical expenses		R7 649,89
[Adap	ted from source: b	ousinesstech.co.za]

Use the information above to answer the questions that follow.

2.2.1 Calculate the percentage of the total budget spent on Food. (3)

2.2.2 The transport cost for "Transport to work" and "Transport to school" are in a ratio of 28:15.

Calculate A, the cost of transport to work. (5)

2.2.3 Use TABLE 4 below to verify whether the amount budgeted for electricity was correctly calculated.

TABLE 4: RESIDENTIAL ELECTRICITY TARIFF

BLOCK	CONSUMPTION (kWh)	TARIFF (R/kWh)
Block 1	0 –350	2,19
Block 2	More than 350	2,91

(7)

[29]

QUESTION 3

3.1 The Indian Premier League (IPL) is a professional Twenty20 cricket league in India comprising of ten teams. The popular cricket players are bought through an auction where the highest bid is declared the winner.

TABLE 5 below shows the 11 most expensive players as well as their batting results for 2025:

TABLE 5: THE 11 MOST EXPENSIVE IPL PLAYERS IN 2025

Players	Team	Туре	Rands Sold (in millions)	Years Active	Matches Played	Innings	Runs Made in 2025
Rishabh Pant	LSG	BAT	57,138	2025-2025	14	13	269
Shreyas Iyer	PBKS	BAT	56,604	2025-2025	17	17	604
Venkatesh Iyer	KKR	AR	50,374	2021-2025	62	56	1468
Arshdeep Singh	PBKS	BOWL	38,092	2019-2025	82	14	31
Yuzvendra Chahal	PBKS	BOWL	38,092	2025-2025	14	-	-
Jos Buttler	GT	BAT	33,464	2025-2025	14	13	538
KL Rahul	DC	BAT	29,726	2025-2025	13	13	539
Jofra Archer	RR	BOWL	26,522	2018-2025	47	30	258
Trent Boult	MInmor	BOWL	om 26,522	2020-2025	45	7	3
Josh Hazlewood	RCB	BOWL	26,522	2022-2025	canmore 37	sics.com7	19
Mohammed Siraj	GT	BOWL	25,988	2025-2025	15	1	3

[Adapted from:espncricinfo]

NOTE:

AR: All-rounder BAT: Batter BOWL: Bowler

Use TABLE 5 to answer the questions that follow.

3.1.1 Write down the name of the player with the most years active in the IPL. (2)

3.1.2 Calculate, rounded to one decimal place, the probability of randomly selecting a player from PBKS.

Round off your answer to one decimal. (4)

3.1.3 It was stated that more than half of the players' auction prices are less than the average auction price.

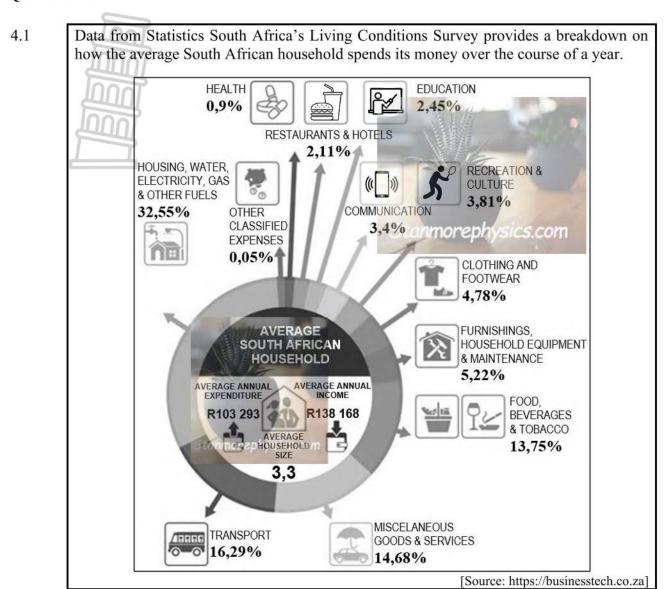
Show through calculations how this was calculated. (6)

- 3.1.4 Calculate the inter-quartile range (IQR) of the number of matches played. (5)
- 3.1.5 Suggest one reason why there are no statistics for Yuzvendra Chahal when he played 14 matches in total. (2)

3.2 ANNEXURE B shows an incomplete graph of the highest run scored and average runs for the top 9 players in the IPL in 2025.

Use the information above to answer the questions that follow.

- 3.2.1 Write down the highest number of runs scored. (2)
- 3.2.2 Some of the information on the line-and bar graph is incomplete.


Use the data table that is provided to complete graphs on the same grid on the ANSWER SHEET on ANNEXURE B. (4)

3.2.3 A cricket specialist stated that there is no connection between the two sets of data.Critically comment on his statement by referring to the statistics of S. Yadav and M. Marsh.

[29]

QUESTION 4

Use the information above to answer the questions that follow.

- 4.1.1 Write the average annual income of a South African household in words. (2)
- 4.1.2 Write the percentage of Education to Food, Beverages and Tobacco in simplified ratio. (3)
- 4.1.3 Determine the difference between the amount of money spent on Education compared to the money that was spent on clothing & footwear. (7)

(3)

4.2 China is one of the world's leading producers and exporters of fruit, supplying both domestic and international markets with a wide variety of produce. The fruit industry plays a significant role in the country's agricultural economy, contributing billions of dollars in income and employing millions of people across different regions.

TABLE 6 shows the production of China's top 10 fruits in 2024 as well as employment in each sector.

TABLE 6: PRODUCTION AND EMPLOYMENT OF TOP 10 FRUITS IN CHINA

Fruit	Production Volume (Million Metric Tons)	olume (illion etric (Billion USD)		Estimated Employment	Global production (Million Metric Tons)	% of global production	
Apples	48	14,4	1,1	1 200 000	97,34	49,3%	
Grapes	16	4,8	0,6	800 000	72,49	22,1%	
Pears	20,2	6,1	0,5	900 000	26,51	76,2%	
Bananas	13,5	3,5	0,3	700 000	139,28	9,7%	
Oranges	10	2,8	0,2	600 000	69,85	14,3%	
Watermelons	9,5	2,5	0,15	550 000	104,93	9,1%	
Peaches	8	2	0,1	500 000	27,08	29,5%	
Plums	6,5	1,6	0,08	450 000	12,49	52,0%	
Mangoes	5,45	2,6	0,45	350 000	61,11	8,9%	
Cherries	0,45	reph 1,2s con	3,7	300 000	2,96	15,2%	

Use TABLE 6 above to answer the questions that follow

- 4.2.1 Identify the fruit with the largest contribution to the domestic income. (2)
- 4.2.2 Globally 104,93 million metric tons of watermelons are produced.

Show through calculations, how the percentage of global production for watermelons was calculated.

- 4.2.3 Arrange the export income in ascending order. (2)
- 4.2.4 Calculate the median for the export income. (3)
- 4.2.5 Determine as a percentage, the probability of randomly selecting a type of fruit that will provide employment opportunities to less than half a million people. (3)
- 4.2.6 An analyst states that Cherries is the most profitable product that China produces.

 Critically comment on this statement by referring to at least two variables from the graph.

 (3)

 [28]

Mathematical Licewnloaded from Stanmorephysics.com QUESTION 5

NOTE: M = Million anmore physics.com

5.1 ANNEXURE C shows the comparative pie charts of main destinations and origins of wine in terms of import and export for South Africa.

Wine imports and exports form a large part of South African trade. A total of R 11,8 billion was made through exports, while R1,03 billion was paid for imports in 2024.

TABLE 7 below shows the increase of wine exports and imports in ZAR in 2024.

TABLE 7: DATA RELATING TO IMPORTS AND EXPORTS OF WINE IN SOUTH AFRICA.

WINE F	EXPORTS IN	INCREASE OF WINE IMPORTS IN 2024 (ZAR)					
	Increased by	Country	Increased by				
Au	273M	Australia	28,6M				
	81M	Portugal	11,5M				
-3/4	55,4M	United states	8,85M				
	WINE I	273M 81M	Increased by Country 273M Australia 81M Portugal				

Use the information above as well as the graphs on ANNEXURE C to answer the questions that follow.

- 5.1.1 Write the amount paid for imports as a number, without using words. (2)
- 5.1.2 Write the amount that was made from exports to Sweden as a percentage of the total amount made through exports. (3)
- 5.1.3 Calculate the difference in the percentage for "other countries" when imports and exports are compared (3)
- 5.1.4 Calculate, in millions, the amount paid for imports from Italy in 2024. (3)
- 5.1.5 A market analyst stated that the increase of 11,5 million Rand paid for imports from Portugal, is more than 30% of the total amount paid for imports from Portugal in 2024.

Verify whether his statement is valid by showing all calculations. (5)

5.2 Valdis is a Latvian winemaker. He earns an annual taxable income of €19 067.

Latvia has a progressive Personal income tax system. Unless the law provides for a different rate, the progressive rate is based on the level of annual income. TABLE 8 below shows how tax is calculated.

TABLE 8: PERSONAL INCOME TAX TABLE USED IN LATVIA

PERSONAL INCOME TAX RATES (PIT): LATVIA

Updated: 13.02.2025

BASIC FORMS OF INCOME:

- Annual Taxable Income
- Income from Business Activities

PIT Rate	Amount	
25,5%	Under EUR 105 300	
33%	EUR 105 300 to 200 000	
Additional 39	% Above EUR 200 000	

RATE	OTHER FORMS OF INCOME
28% (fixed)	Total income received from dividends, bank interest, life insurance policies, investments in private pension funds, individual management of financial instruments
25,5 % (fixed)	A professional athlete's annual total wage income from participation in professional sports.

NOTE: €1 = R 20,30

[Adapted from: www.vid.gov.lv]

Use TABLE 8 above as well as the South African income tax table on ANNEXURE D to answer the questions that follow.

- 5.2.1 Calculate the percentage at which tax would be calculated if a person earns more than 200 000 euros (€) (3)
- 5.2.2 Use the Latvian tax table to calculate the income tax that Valdis needs to pay. (2)
- 5.2.3 Valdis states that his converted income will be R 387 060,10. Show how this amount was calculated. (2)
- 5.2.4 Valdis also states that he would pay more income tax in South Africa if he were paid a similar salary there.

Verify his statement by showing the necessary calculations (8)

5.2.5 Andris Biedrins is a professional Latvian athlete. He plays basketball for the national team and receives an annual taxable income of €184 170.

Calculate his annual personal income tax payable.

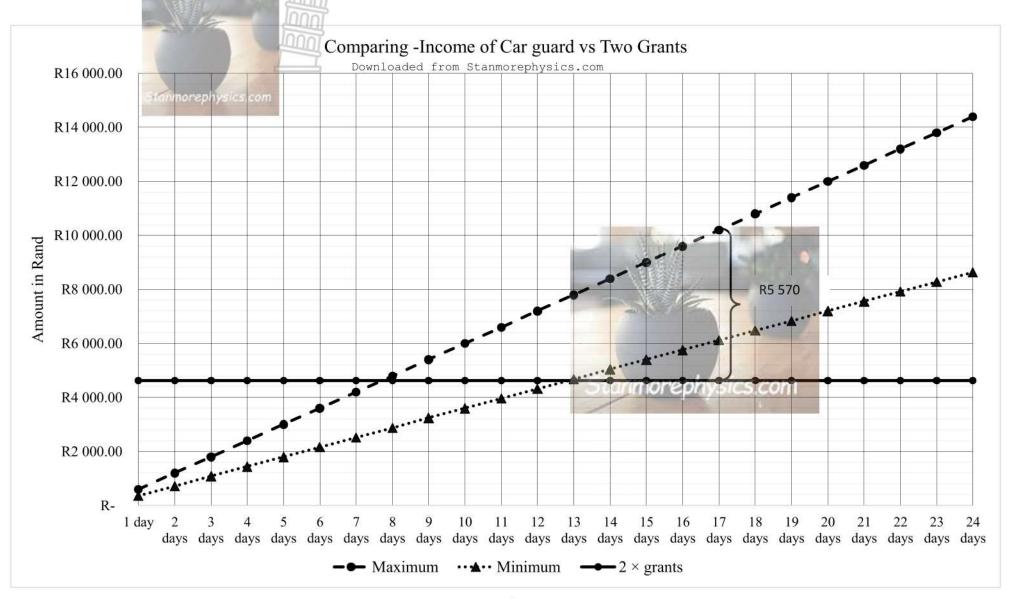
(2)

5.2.6 Give one possible reason why an athlete would be taxed at a lower tax rate than other citizens.

(2) [35]

TOTAL: 150

	SOUTH HDS/EI)/EAS	KAROO,	RAL/OVER	BERG/								5	School ba	dge					
LEARNER			, inchilit																	
LEARNER	NAME			<u> </u>																
GRADE 12				()															
DATE				2 0	2 5	0	9	0	5	BOOK	C NUM	BER)F			BOOKS	s
										PAPEI	R NUM	BER			1					
SUBJECT NA	AME			MATH	EMA	TI	CA	LL	ITI	ERA	\C	Y								
	(MARE	(ER	Stanmorep	hysics.c	om			М	ODERA	ATOR	S DETA	AILS IN	RELEVANT	BLOC	к				
Question	Marks	i .	Marker Initials	Surname &	Marks		Int	ernal		Marks	s	,	Peer		Marks Extern		ıal			
1																				
2						-	_													
3						_	_		_				-							
4			-			-							-							
5		-				-	-		_											
-													S							
						-					-		-							
-:		11 21																		
			1			+	+						i i							
		2373				-				100			5 2.							
			1			+	_													
		+	TOT	AL		+	+													
		2017				+							2					,		
CONTROLL SURNAME A				RECT		1	d s			30 **								INSTR ON T	EAD UCTION HE NE	ONS EXT
Copyrig	ght res	ervec	ı		This a	nsw	er bo	ok c	onsi	sts of	f 16	page	S			I	Pleas	e turr	ı ove	er


FOLLOW THESE INSTRUCTIONS CAREFULLY.

- 1. Clearly write your name, surname and class number in the space provided.
- 2. Answer ALL questions in the spaces provided.
- 3. No pages may be torn from this answer book.
- 4. Read the instructions in each examination paper.
- 5. Candidates may not retain an answer book or remove it from the examination room.
- 6. Answers must be written in black/blue ink as distinctly as possible.
- 7. Do not write in the margins.
- 8. If you require additional space for your answers:
 - Use the additional space for rough work provided in the answer book.
 - When answering a question in the additional space, indicate clearly the question number in the column on the left-hand side.
- 9. Draw a neat line through any work that must not be marked.

QUESTION 1

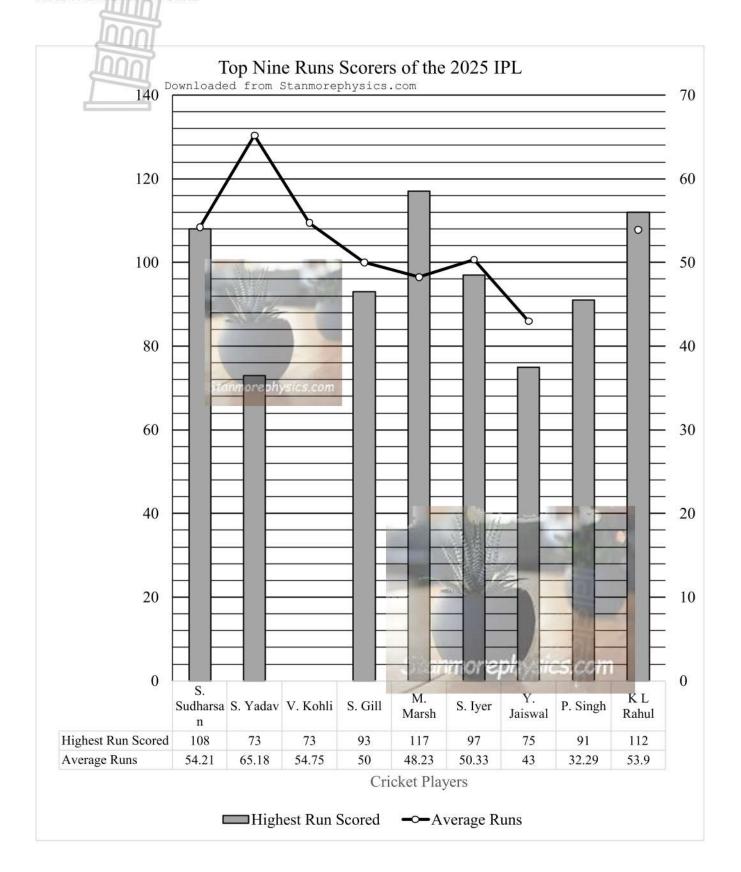
Solution	Marks
1.1.1	
	(2)
1.1.2	(2)
1.1.3	(2)
114	(2)
1.1.4	
	(2)
1.1.5	
	(2)
1.2.1	
	(2)
1.2.2	(2)
Stanmorephysics.com	
1.2.3	(2)
380000000000	
1.2.4	(2)
1.2.4	
	(2)
1.2.5	
	(2_
1.3.1	
	(2)
1.3.2	
	(2)
1.3.3	(2)
1.3.4	(2)
1.5.1	
	(3)
	[29]

ANNEXURE A: COMPARISON OF THE CAR GUARD AND TWO GRANTS - QUESTION 2.1.3

QUESTION 2

	Solution	Marks
2.1.1		
		(4)
2.1.2		
2.1.2		(3)
2.1.3 (a)		(2)
2.1.3 (b)		(2)
	Stanmorephysics.com	(5)

2.2.1		
	Inni	
	Inni	
		(3)
2.2.2		(-)
		4
		8
		(5)
2.2.3	Stanmarenhysics.com	
		(7) [29]
		[29]


QUESTION 3

	Solution	Marks
3.1.1	Inni	
		(2)
3.1.2		
3.1.3		(4)
		,
	Stanmorephysics.com	(6)
3.1.4		
		,
3.1.5		(5)
		(2)
3.1.3		

ANNEXURE B:

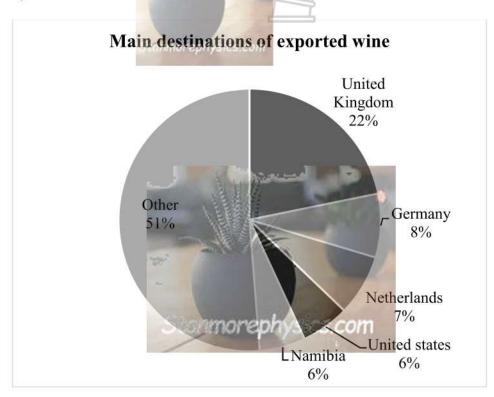
QUESTION 3.2

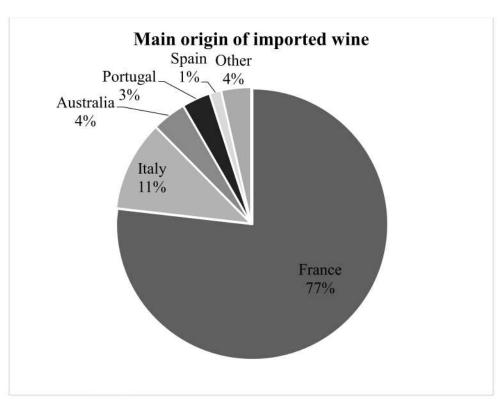
ANSWER SHEET 3.2.2

WCED Downloaded from Stanmorephysicser com

September 2025

3.2.1		
3.2.2	Complete the graph on the ANSWER SHEET on ANNEXURE B	(4)
3.2.3		
		(4)
		[29]


QUESTION 4


	Solution	Marks
4.1.1	Inni	
	Inni	(2)
4.1.2		
		(3)
4.1.3		
	Stanmorephysics.com	
		(7)

		T T
4.2.1		
In		(2)
4.2.2	7	
Inni	T T	
Inno	\$	(3)
4.2.3		
		(2)
4.2.4		
		(3)
4.2.5		
		(3)
4.2.6		
	Stanmorephysics.com	
13		
		(2)
		(3)
		[28]

ANNEXURE C

QUESTION 5.1 COMPARATIVE PIE CHARTS OF MAIN DESTINATIONS AND ORIGINS OF WINE

[Source: www.oec.world]

5.1.1		i i
3.1.1		
		(2)
5.1.2	Inni	(-)
	Inna	
	10001	
- 1		.
		-
		(3)
5.1.3		
		(3)
5.1.4		
5.1.5	Stanmorephysics.com	(3)
0.1.0		
		(5)

ANNEXURE D

QUESTION 5.2

TABLE 8: TAX TABLE FOR THE 2025/26 FINANCIAL YEAR

TAX	TAXABLE	TAX RATE (IN RANDS)
BRAC-	INCOME	
KET	1001	
1 %	$1-237\ 100$	18% of taxable income
2	237 101 – 370 500	42 678 + 26% of taxable income above 237 100
3	370 501 - 512 800	77 362 + 31% of taxable income above 370 500
4	512 801 - 673 000	121 475 + 36% of taxable income above 512 800
5	673 001 – 857 900	179 147 + 39% of taxable income above 673 000
6	857 901 – 1 817 000	251 258 + 41% of taxable income above 857 900
7	1 817 001 and above	644 489 + 45% of taxable income above 1 817 000
		TAX REBATES
Primary		R17 235
Secondar	y (65 years and older)	R9 444
Tertiary (75 years and older)	R3 145
	-200	MEDICAL TAX CREDITS
PER MO	NTH	2025/2026
Main member with no additional		dependants R364
First depe	endant	rephysics.com R364
For each additional dependant R246		

[Source:sars.co.za]

5.2.1		
		(3)
5.2.2	Inni	(-)
	Inni	
	linni	(2)
5.2.3		(2)
d d		(2)
5.2.4		(2)
		-
		-
		-
		-
		-
		-
		7
5.2.5		(8)
3.2.3		-
526		(2)
5.2.6		-
		(2)
		[35]

Addition	nal space	Marks
Inil		
		,
	Stanmorephysics.com	

NAME OF YOUR SCHOOL

MATHEMATICAL LITERACY 1 WISKUNDIGE GELETTERDHEID 1

GRADE 12

SEPTEMBER 2025

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150

Cognitive Distribution for Assessment:

	Level 1	Level 2	Level 3	Level 4
Expected:	30%	30%	20%	20%
Actual:	29,3%	29,3%	20,7%	20,7%

Per Topic Distribution for Assessment:

Topic:	Finance	Data Handling	Measurement	Maps & Plans	Probability
% of task:	58%	37,3%	·	(=0	4,7%

Symbol/Kode	Explanation/Verduideliking		
M	Method/Metode		
MA	Method with accuracy/Metode met akkuraatheid		
CA	Consistent accuracy/Volgehoue akkuraatheid		
A	Accuracy/Akkuraatheid		
C	Conversion/Herleiding		
S	Simplification/Vereenvoudiging		
RT	Reading from a table/graph/document/diagram/Lees vanaf tabel/grafiek/dokument/diagram		
SF	Correct substitution in a formula/Korrekte vervanging in 'n formule		
0	Opinion/Explanation/Opinie/Verduideliking		
P	Penalty, e.g. for no units, incorrect rounding off, etc./Penalisasie, bv. vir geen eenhede, verkeerde afronding, ens.		
R	Rounding off/Afronding		
NPR No penalty for rounding/Geen penalisasie vir afronding nie			
AO	AO Answer only/Slegs antwoord		
MCA	Method with consistent accuracy/Metode met volgehoue akkuraatheid		
RCA	CA Rounding consistent with accuracy/ Afronding met volgehoue akkuraatheid		

These marking guidelines consist of 12 pages. Hierdie nasienriglyne bestaan uit 12 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled) version.
- Consistent accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra item presented. Rounding is an independent mark.
- General principle of marking, if the candidate makes one mistake one mark is deducted.
- A conclusion mark can only be given if relevant calculations precede it.
- No penalty for rounding (NPR) if the first decimal is correct.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoor<mark>d van 'n vraag doodt</mark>rek (kanselleer) en nie oordoen nie, sien die doodgetrekte (gekanselleerde) poging na.
- Volgehoue akkuraatheid (CA) word in ALLE aspekte van die nasienriglyne toegepas; dit hou egter op by die tweede berekeningsfout.
- Wanneer 'n kandidaat aflesings vanaf 'n grafiek, tabel, uitlegplan en kaart geneem en ekstra antwoorde gee, penaliseer vir elke ekstra item.
- Afronding tel as 'n afsonderlike punt.
- Die algemene beginsel van merk as 'n leerder een fout maak, word een punt afgetrek.
- 'n Gevolgtrekkingspunt kan slegs gegee word indien relevante berekeninge dit voorgaan.
- Geen penalisering vir ronding (NPR) as die eerste desimaal korrek is nie.

QUES	TION 1 [29 MARKS]	AO FULL MARKS	
Q/V	Solution/Oplossing	Explanation/Verduideliking	T&L
1.1.1	Inflation		F
Щ	<i>Inflasie</i> ✓✓A	2A correct concept	L1
Inn	7	(2)	
	✓ RT	1RT correct values	F
1.1.2	115:1 ✓A	1A correct order	L1
	\$	(2)	
	✓MA	1MA multiply by 110	F
1.1.3	$0,25 \times 110$	1A correct answer	L1
	$= R27,50 \checkmark A / 2750 \text{ cents}$	(2)	
1.1.4	Increase $\checkmark \checkmark A$	2A increase	F
	Toename	(2)	L1
1.1.5	R115 – R84,90 ✓ MA	1MA subtract correct values	F
	= R30,10 ✓A	1A saving	L1
		(2)	
1.2.1	Frequency table	2A Frequency table	D
	Frekwensietabel	(2)	L1
1.2.2	Continuous	2A continuous	D
	Kontinu VA	(2)	L1
1.2.3	6 🗸 A	2A 6	D
	···A	(2)	L1
1.2.4	The intervals are not the same size $\checkmark \checkmark A$	2A reason	D
	Die intervalle is nie ewe groot nie		L1
	OR/OF		
	✓✓A		
	Some values are repeated in both intervals		
	Sommie waardes kom in twee intervalle		
	voor	(2)	
1.2.5	B ✓✓A	2A "B"	D
	V - 1871	(2)	L1
1.3.1	Cape gate $\checkmark\checkmark$ A	2A Cape Gate	F
	VV A	Accept Brackenfell Branch	L1
		(2)	
1.3.2	Card	2A Card	F
	Kaart VA	Accept Credit card/Kredietkaart	L1
		(2)	
1.3.3		2MA correct VAT calculation	F
	$VAT = R \ 2370,68 \times \frac{15}{100} \ \checkmark \checkmark MA$		L1
	100	(2)	consideração de 19
101	/DT	A9 7910	г
1.3.4	✓RT	1RT Price incl. VAT	F
	$\frac{2726.28}{31} = R87,95$ \checkmark CA	1MA divide by number of items	L1
	✓MA	1CA Price per item	
	Seat Address.	(3)	
			[29]

Q/V	ON 2 [29MARKS] SOLUTION / OPLOSSING	EXPLANATION/ VERDUIDELIKING	T&LI
ШU	✓MA	1RT correct values	F
2.1.1	$R2\ 315 + 2(560) + 2\ 315 \ \checkmark RT \ \checkmark MA$	1MA child grant multiply 2	L2
2	= R5 750 ✓CA	1MA adding values	
TUUUI		1CA simplification	
		(4)	
2.1.2	Percentage increase:	IDT	F
	√RT	1RT correct values	L2
	$\frac{2335 - 2205}{2205} \times \frac{100}{1}$ \checkmark MA	1MA percentage calculation	
	2 205	1CA simplification	
	= 5,89569161 % ✓CA	(3)	
	5,0500510170	(3)	63
			F
2.1.3(a)	Day 13 ✓✓RT	2RT correct reading	L2
	(DT (MA	(2)	-
2.1.27	RT MArephysics.com	1RT using max value	F
2.1.3(b)	$R600 \times 17 = R10\ 200$	1MA multiply by 17 days	L3
	R2 315 × 2 = R4 630 ✓MA ✓RT	1RT using grant value	
	Difference/Verskil:	1MA finding total grants	
	R10 200 – R4 630 ✓ MCA	1MCA subtracting values	
	= R 5 570,00	Twich subtracting values	
	10 3 70,00	(5)	e de
2 2 1	2 227 17 100 /PT	1 D.T. season result and an extension	F
2.2.1	$\frac{2327,17}{7649,89} \times \frac{100}{1} \checkmark \text{RT} \\ \checkmark \text{MA}$	1RT correct values	L2
	7 649,89 1 MA	1MA percentage calculation	
	= 30,4209603 % ✓CA	1CA simplification	
	- 30,4209003 /6 • CA	(3)	
2.2.2	R7649,89 – (R275 + R154 +)	1MA adding and subtracting	F
	R/649,89 - (R2/3 + R134 +) = R7 649,89 - 5 929,89	8	L3
	= R1 720 ✓CA	1CA simplification	19
	$28 + 15 = 43$ \checkmark MCA	1MCA ratio	
	Transport to work/Vores are such to a		
	Transport to work/Vervoer werk toe: 28 1 720 ✓MA	1MA ratio calculation	
	$\left \frac{28}{43} \times \frac{1720}{1} \right \checkmark MA$	TIVIA ratio calculation	
	43 1	1CA simplification	
	= R1 120 ✓CA	(5)	

			F
2.2.3	Block 1/ <i>Blok 1</i> :	1RT correct value	L4
1000	350 × R2,19 ✓ RT ✓ MA	1MA multiply by tariff	
4	= R766,50 ✓CA	1CA simplification	
TUUL	Block 2/Blok 2:	1MA multiply with tariff	
Innn	10 × R2,91 ✓MA	1CA simplification	
FEETITION	= R29,10 ✓CA	Parameter	
	R766,50 + R29,10 ✓ MCA		
	= R795,60 VMCA	1MCA finding total cost	
	900 NO W	100 at 10 at 100	
	No, it is not correct. ✓O	1O justification	
	Nee,dit is nie korrek nie	(7)	
			[20]
			[29]

Stanmorephysics.com

Q/V	ON 3 [29 MARKS] SOLUTION /OPLOSSING	EXPLANATION/ VERDUIDELIKING	T&L
3.1.1	Jofra Archer. ✓✓RT	2RT correct player	D
3.1.2	$= \frac{3}{11} \checkmark A \checkmark A$	(2) 1A numerator	L1 P
IDDU	= 0,2727 ✓ CA	1A denominator 1CA correct probability	L2
	$=0.3 \checkmark R$	1R correct rounding	
3.1.3	Mean/ $Gemm$.: $\frac{57,138 + + 25,988}{11} \checkmark MA \checkmark RT$ = 37.18581818 \checkmark CA	1RT correct values 1MA concept of mean	D L2
	Half: $\checkmark A \frac{6}{11} \times 100 \checkmark MA$ = 54% $\checkmark CA$ which is more than half.	1CA simplification 1A determine the number of players with less than 37.18million 1MA percentage calculation 1CA simplification	
3.1.4	13; 14; <u>14</u> ; 14; 15; 17; 27; 45; <u>47</u> ; 62; 82 ✓ A ✓RT 47 – 14 ✓RT ✓MA = 33 ✓CA	1A correct order 1RT Q1 1RT Q3 1MA IQR 1CA simplification	D L3
3.1.5	He is a bowler therefore not the most likely choice to bat. ✓✓O Hy is n bouler, daarom nie die mees gunsteling opsie om te kolf nie ✓✓O	2O opinion related to him not batting. (2)	D L4
3.2.1	117√√RT	2RT correct amount (2)	D L1
3.2.2	Top Nine Run Scorers of the 2025 IPL 140 120 100 80 60 40 20 Sulliarvim S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Sulliarvim S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Iyer V, Jaiswal P, Singh KL Rahul S, Yadav V, Kohli S, Gill M, Marsh S, Yadav V, Ko	1A correct bar: Kohli 1A joining Jaiswal to Singh 1A point for P Singh 1A joining Singh to Rahul (4)	D L2
3.2.3	He is correct. ✓O Just because a batsman had a high score does not necessarily mean that they have the highest average runs. ✓ ✓O	10 specialist is correct 20 justification for Yadav 10 justification for Marsh	D L4

Q/V	SOLUTION /OPLOSSING	EXPLANATION/ VERDUIDELIKING	T&L
	Yadav has a high average for runs but not a high score in comparison with Marsh who has a high score but a lower average run ✓O	(4)	
MAN			[29]

Q/V	SOLUTION/ OPLOSSING	EXPLANATION/VERDUID ELIKING	T L
	✓✓A One hundred and thirty-eight thousand one hundred and sixty eight rand/ Eenhonderd agt en dertigduisend een honderd agt en sestig rand.	2A correct amount in words	F L1
		(2)	
1.1.2	2,45:13,75 ✓RT 245:1375 ✓MA 49:275 ✓A	1RT correct values 1MA simplified ratio 1A correct order (3)	F L2
1.1.3	Education: $\frac{2,45}{100} \times \frac{103\ 293}{1}$ \sqrt{RT} \sqrt{MA}	1RT correct values 1MA percentage calculation	F L3
	= R2530,68 ✓A Stanmorephysics.com Clothing and footwear:	1A correct answer	
	$\frac{4,78}{100} \times \frac{103\ 293}{1} $ \checkmark MA	1MA percentage calculation	
	= R4937,41	1A correct answer 1MCA subtracting values 1CA simplification	
	OR/OF	OR/OF	
	Difference in percentages: 4,78% - 2,45% ✓ RT ✓ MA = 2,33% ✓ CA	2RT correct values 1MA subtracting 1CA simplification	
	$\frac{2,33}{100} \times \frac{103293}{1} $ = R2 406,73 \checkmark CA	1RT correct percentage 1MA percentage calculation 1CA simplification (7)	
.2.1	Apples ✓✓RT	2RT correct fruit (2)	F L1
.2.2	\sqrt{MA} \sqrt{MA} $\frac{9.5}{104,93} \times 100 = 9.1\%$ \sqrt{R}	1MA correct fraction 1MA multiply by 100 1R correct rounding	F L2

	✓A✓A	1A correct values		D
	0,08; 0,1; 0,15; 0,2; 0,3; 0,45; 0,5; 0,6; 1,1; 3,7	1A correct order		L1
4.2.3			(2)	
Д	√ RT	CA FROM 4.2.4		D
In	$Median = \frac{0.3 + 0.45}{2} \qquad \checkmark MA$	1RT correct values		L2
4.2.4	2	1MA concept of median		
TU.	0.75	1CA correct answer		
	$=\frac{0.75}{2}$		1200 to 0	
_	2		(3)	
	= 0,375√CA			
	- 0,5757 CA			
	$\frac{3}{10}$ \checkmark A \checkmark A	1A numerator		P
4.2.5	= 30% ✓ CA	1A denominator		L2
	= 30% CA	1CA correct percentage		
		A 1000	(3)	
	Statement is correct VO	10 correct		D
4.2.6	✓A	100		L4
	The table shows that it has the highest income	1A export income		
	from exports,			
		1A employment cost	020	
	but the lowest employment rate that implicates the		(3)	
	lowest employment cost.			
				[28]

QUES	TION 5 [37 MARKS]	<i>x</i>	
Q/V	SOLUTION/OPLOSSING	EXPLANATION/ VERDUIDELIKING	T&L
	✓RT	1RT Correct value	F
5.1.1	1 030 000 000 ✓A	1A correct value in numbers	L1
44		(2	()
5.1.2	$\frac{55,4M}{11,8B} \times 100 \checkmark MA$	1MA Percentage calculation	F
	11,88		L2
	55,4M × 100	No transfer to transfer	
	$=\frac{55,4M}{11800M}\times 100$	1 C Converting to millions	
	✓C	1 CA Personal	
	-0.46040152549/ -/CA	1 CA Percentage	
	= 0,4694915254% ✓CA		
	OR		
	OK		
	55,4M × 100 ×/MA	1MA Percentage calculation	
	$\frac{55,4M}{11,8B} \times 100 \checkmark MA$	8	
	0.05548		
	$= \frac{0.0554B}{11.8B} \times 100$ Stanmore physics.com	1 C Converting to billions	
	✓C	64 Managar gog	
		1 CA Percentage	
	= 0,4694915254% ✓CA	NDD	
		NPR (3	,
	✓RT ✓RT	1RT 51%	D
5.1.3	$51\% - 4\% = 47\% \checkmark CA$	1RT 4%	L2
5.1.5	3170 - 470 4770 7 671	1CA	122
		(3)
	✓RT	CA 5.1.1	D
5.1.4	1 030 000 000 × 11% = 113 300 000	1RT correct percentage	L3
	✓C	1 Converting to millions	
	113 300 000 ÷ 1000 000 = 113,3milj ✓CA	1CA answer in millions	
	0.0		
	OR		
	✓RT		
	$1,03 \text{ Billion} \times 11\% = 0,1133 \text{ Billion}$	1RT correct percentage	
	√C 0,1155 Billion	1 Converting to millions	
	$0.1133 \times 1000 = 113.3 \text{ milj } \checkmark \text{CA}$	1CA answer in millions	
	Control of the Contro	(3)
			(C) (C)
5.1.5	1,03B =1 030 000000	1 C converting to same units	D
	$11,5 \text{ M} = 11500000 \checkmark \text{C}$	1 BT 20/	L4
	✓RT	1 RT 3%	
	$1\ 030\ 000\ 000 \times 3\% = 30\ 900\ 000$		
	11 500 000 100 C	1MA calculating percentage	
	Percentage = $\frac{11500000}{30900000} \times 100$ \checkmark MA	11111 Calculating percentage	
		1 CA simplification	
	I,		

Q/V	SOLUTION/OPLOSSING	EXPLANATION/ VERDUIDELIKING		T&L
h	= 37,21682848% ✓CA	1 O conclusion		
	∴ He is correct ✓O	NPR		
	OR			
	\sqrt{C} \sqrt{RT} 1 030 000 000 × 3% = 30 900 000	1 C converting to same units 1 RT 3%		
	✓MA	1MA calculating percentage		
	30 900 000 × 30% = R9 270 000 ✓ CA	1 CA simplification		
	R9 270 000 < 11 50 <mark>0</mark> 000	1 O conclusion		
	Therefore he is correct ✓O		(5)	

I.C.		TOTAL/ TOTAAL	[150]
2			[35]
	Any valid reason		
	To thank athletes for representing their country		
5.2.6	To encourage citizens to take part ✓✓O	2O any valid reason (2)	F L4
s	€ 184 170 × 25,5% = €46 963,35 ✓ A	1A Tax (2)	L2
5.2.5	✓RT	1RT tax bracket	F
0	South-Africa	(8)	
	∴ He is incorrect – He will pay less tax in		
	√ 0	10 Opinion (compared to 5.2.2.)	
	= R 65 260,63 ✓ CA		
	✓MA R82 495,63 – R17 235	1MA rebate 1CA income tax	
	= R 82 495,63 ✓CA		
	= 77 363 + 5133,631	1CA simplification	
	✓RT ✓SF 77 363 + (387 060,10 - 370 000) × 31%	1RT Correct tax bracket 1SF substitution of income in rand	
	Income tax in S.A:	IDT C	
	1. 5. 502,05 125,05	Total I I I I I I I I I I I I I I I I I I I	
	✓C ∴ €4 862,09 × R20,30 = R98 700,43 ✓CA	1C multiplying by R20,30 1CA Tax in Rand	L4
5.2.4	Income tax in Latvia:	CA 5.2.3 and 5.2.2	F
5.2.3	€19 067 × R20,30 = R 387 060, 10	1C converting to Rand (2)	L2
	✓RT ✓C	1RT Salary in €	F
	=€19 067 × 25,5% = €4 862,09 ✓ A	(2)	
5.2.2	Total income tax/ Totale inkomstebelasting ✓RT	1A Tax amount	L2
. In		1RT Tax percentage	F
In	007	1A Tax percentage (3)	
5.2.1	$33\% + 3\% = 36\% \checkmark A$	1MA Adding 3%	L1
	✓RT ✓MA	1RT 33%	F