Downloaded from Stanmorephysics.com

assessment matters

Please paste the barcoded label here

TOTAL MARKS	

Sequence number NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2025

PHYSICAL SCIENCES: PAPER II

EXAMINATION NUMBER								
Time: 3 hours						2	00 m	narks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- This question paper consists of 27 pages as well as a DATA SHEET of 3 pages (i–iii). Please make sure that your question paper is complete.
- Read the questions carefully.
- 3. Answer all the questions.
- Unless instructed otherwise, you do NOT have to give state symbols (phase indicators) when asked to write a balanced chemical equation.
- Use the data and formulae whenever necessary.
- 6. Show all the necessary steps in calculations.
- 7. Where appropriate, take your answers to two decimal places.
- It is in your interest to write legibly and to present your work neatly.
- 9. Two blank pages (page 26–27) are included at the end of the examination paper. If you run out of space for an answer, use these pages. If you use this extra space, make sure that you indicate this clearly at the question to ensure that your answer is marked in full.

FOR OFFICE USE ONLY: MARKERS TO ENTER MARKS

	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total
Mark									
Marker Initial					Salari State of Co.				
Moderated Mark									
Moderator Initial									
Question Total	20	18	24	27	21	20	30	40	200
Re-mark									
Initial									
Code .			2534262547455 (889,688)	Wicessell Di 1975					
ER Copyright @ 2025				[iii].bis[iii]				PLE	ASE TURN O

IEB Copyright © 2025

NATIONAL SENIOR CERTIFICATE: PHYSICAL SCIENCES: PAPER II

QUESTION 1

MULTIPLE CHOICE

Every question has only one correct answer. You may use the space provided to solve the questions, BUT YOU MUST INDICATE YOUR CHOSEN ANSWER FOR EACH QUESTION IN THE GRID BELOW. Make a clear cross (X) in the box corresponding to the letter that you consider to be correct.

A	В	Z D	Here	e, the op	tion C has	been ma	arked as	an example.
1.1	A	В	С	D				
1.2	Α	В	С	D				
1.3	Α	В	С	D				
1.4	A	В	С	D				
1.5	A	В	С	D				
1.6	Α	В	С	D				
1.7	A	В	С	D				
1.8	Α	В	С	D				
1.9	A	В	С	D				
1.10	Α	В	С	tan Dore	physics.com			

- 1.1 Which one of the following contains 1 mol of atoms?
 - A 16 g of SO₂
 - B 28 g of N₂
 - C 14 g of C₂H₄
 - D 20 g of SO₃

1.2 Consider the balanced equation below:

$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$$

- 0,4 mol of NH₃ is mixed with 0,8 mol of O₂ in a closed container. The reaction goes to completion. What is the total amount of gas in the container at the end of the reaction?
- A 1,3 mol
- B 10,0 mol
- C 1,0 mol
- D 0,4 mol

- 1.3 In which one of the following pairs of salts do the cations both have the same charge?
 - A PbS₂ and Co(NO₂)₂
 - B CdSO₄ and Cu(OH)₂
 - C Ag₂Cr₂O₇ and FeSO₃
 - D AuPO₄ and CrO₃

Stanmorephysics.com

1.4 Which of the given reaction types describe the reaction below?

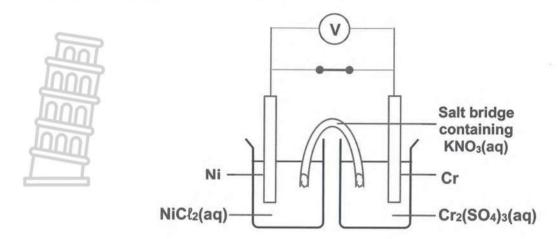
$$Ba(OH)_2(aq) + H_2C_2O_4(aq) \longrightarrow 2H_2O(\ell) + BaC_2O_4(s)$$

- 1 Redox
- 2 Precipitation
- 3 Neutralisation
- A 1, 2, and 3
- B 1 and 3 only
- C 1 and 2 only
- D 2 and 3 only

NATIONAL SENIOR CERTIFICATE: PHYSICAL SCIENCES: PAPER II DOWNIOG DE TOM Stanmorephysics.com

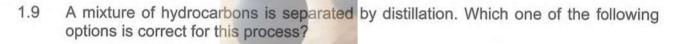
1.5 The following system is at equilibrium in a sealed gas flask:

$$3X_2(g) + Y_2(g) \implies 2X_3Y(g)$$
 $\Delta H < 0$


Which one of the following changes will increase the amount of Y2(g) in the flask?

- A Decrease the volume of the flask
- B Remove X₂(g) from the flask
- Remove X₃Y(g) from the flask
- D Cool the flask
- 1.6 The auto-ionisation of water is endothermic. Which one of the following is TRUE when water is heated to just below its boiling point?
 - A $[H_3O^+][OH^-] < 1 \times 10^{-14}$
 - B $[H_3O^+] = 1 \times 10^{-7} \text{ mol} \cdot \text{dm}^{-3}$
 - C The pH of the solution is less than 7.
 - D $[H_3O^+] > [OH^-]$
- 1.7 Consider the reaction equation:

Which of the following are conjugate acid-base pairs in this reaction?

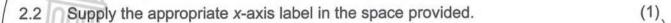

- 1 NaOH and Na⁺
- 2 OH- and H₂O
- 3 CH₃COOH and NaOH
- 4 CH₃COOH and CH₃COO-
- A 1, 2, and 3 only
- B 2 and 4 only
- C 3 only
- D 1 and 4 only

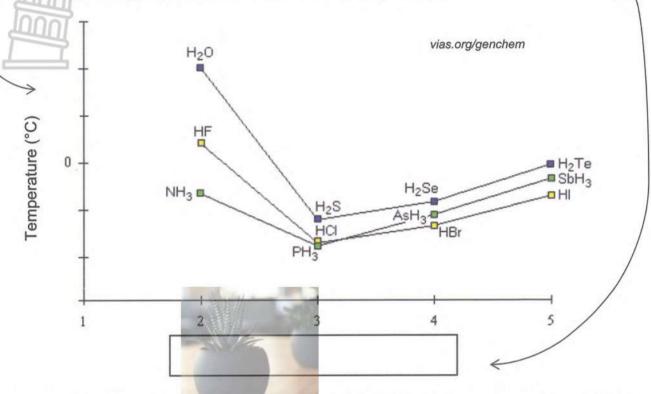
1.8 Downloaded from Stanmorephysics.com Consider the galvanic cell depicted below:

Which of the following ions will move into the salt bridge when the cell is operating?

- A Ni2+, Cl-
- B Cr3+, SO42-
- C Cr3+, Cl-
- D Ni²⁺, SO₄²⁻

	Type of process	Bonds/forces broken/overcome
Α	Physical	London forces
В	Chemical	London forces
С	Physical	Covalent bonds
D	Chemical	Covalent bonds


- 1.10 Which one of the following compounds is a chain isomer of butanoic acid?
 - A Pentanoic acid
 - B Ethyl ethanoate
 - C 2-methylbutanoic acid
 - D Methylpropanoic acid


[20]

Downloaded from Stanmorephysics.com QUESTION 2

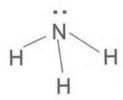
The graph below shows the boiling points of the hydrides of Groups V, VI, and VII at a pressure of 1 atmosphere.

2.1 Supply all the temperature values on the *y*-axis. (2)

2.3 Identify one compound shown on the graph that has non-polar covalent bonds. Explain why the bonds are non-polar. (2)

2.4 Name the bonds/forces responsible for the unusually high boiling points of H₂O, HF, and NH₃. (1)

2.5 H₂O has the highest boiling point. Give a reason why the intermolecular forces are stronger in H₂O than in NH₃ or HF. (1)


2.6 HF has a higher boiling point than NH₃. Explain one reason that the intermolecular forces are stronger in HF than in NH₃. (2)

2.7 For NH₃:

2.7.1 Give the common name of this compound.

(1)

2.7.2 Add to the diagram below to show, by means of a dotted line, the intermolecular force(s) in this compound. (2)

2.8 Consider the compound SbH₃.

2.8.1 In the bond between Sb and H, which atom would be assigned the δ^+ label? Give a reason for your answer. (2)

Stanmorephysics.com

2.8.2 SbH₃ has a higher boiling point than NH₃. Refer to ALL the intermolecular forces present to explain why more energy is needed to separate SbH₃ molecules than NH₃ molecules. (4)

(1)

NATIONAL SENIOR CERTIFICATE: PHYSICAL SCIENCES: PAPER II Downloaded from Stanmorephysics.com QUESTION 3

1.2 During the reaction option in the table. The reaction is		sorbed than released. Cir	cle the correct
option in the table		sorbed than released. Cir	cle the correct
The reaction is			
	EXOTHERMIC	ENDOTHERMIC	(1)
1.3 Define the activa	ted complex.		(2)
1.4 Define heat of re-	action.		(2)
1.5 Complete the en	ergy profile graph for	this reaction.	(1)
Potential energy, E _p (kJ·mol ⁻¹)	Reactants		
	Course of rea	action	
	Potential energy, E _p (kJ·mol ⁻¹)	Course of reaction of the graph, label Ea, the activities of the state	Course of reaction and AH,

3.1.7 On the y-axis, mark the potential energy of the activated complex with a P.

NATIONAL SENIOR CERTIFICATE: PHYSICAL SCIENCES: PAPER II Downloaded from Stanmorephysics.com

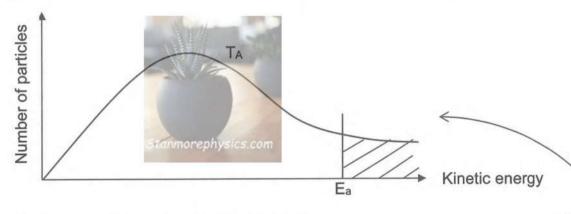
Study the following two-step redox reaction of the peroxydisulfate ion (S2O82-) with 3.2 the iodide ion in aqueous solution:

$$2Fe^{3+}(aq) + 2I^{-}(aq) \longrightarrow 2Fe^{2+}(aq) + I_2(aq)$$

$$2Fe^{2+}(aq) + S_2O_8^{2-}(aq) \longrightarrow 2Fe^{3+}(aq) + 2SO_4^{2-}(aq)$$

Overall:

3.2.1 Complete the definition: A redox reaction is a reaction involving...


3.2.2 In the space provided above, write down the overall (net) reaction that takes place. State symbols are not required.

3.2.3 Identify the catalyst in this reaction.

(1)

(1)

Consider the curve shown below for a reaction mixture at temperature T_A: 3.3

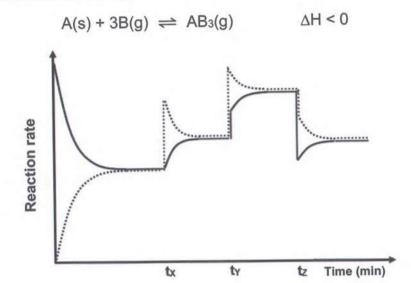
3.3.1 Supply the name for this type of curve.

(2)

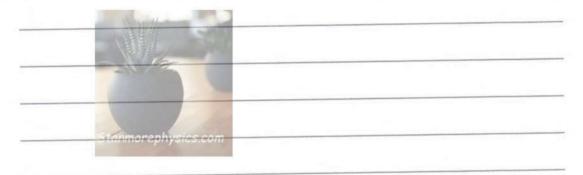
3.3.2 On the above diagram, redraw the curve for the mixture at a lower temperature, T_B.

3.3.3 On the above diagram, show and label the effect of adding a catalyst. (1)

3.3.4 Alistair says that adding a catalyst will result in more collisions between reactant particles. Circle the answer in the table and explain. (3)


Alistair is	CORRECT	INCORRECT	

(2)


Downiouder Trom Stanmore physics.com

QUESTION 4

4.1 Solid A and gas B were placed in a sealed 1,0 dm³ container and allowed to react. Dynamic chemical equilibrium was reached at a certain temperature. The equation for the reaction is as follows:

4.1.1 Explain what is meant by dynamic chemical equilibrium. (3)

4.1.2 When equilibrium was initially established, the value of K_c was 0,020. There were 0,2 mol A and 0,1 mol AB₃ in the 1,0 dm³ container. Calculate the molar concentration of B in the container. (4)

4.1.3 Changes are made to the system at times tx and ty. Describe the changes (to either the temperature, the pressure, or the concentration) at...

tx	
•^	(2)

ty ____

Page 11 of 27

Downloaded from Stanmorephysics.com

4.1.4 At time tz, the volume of the container was changed at constant temperature.

(a)	Circle the correct option in the table	ə:	(1)						
Inni	The volume of the container was	INCREASED	DECREASED						
	Explain the change observed on the graph at time tz (i) in terms of the collision theory.								
	(ii) in terms of Le Châtelier's Pr	rinciple.	(3)						

4.2 The equilibrium reaction of H₂(g) and Br₂(g) is represented by the following equation:

		8		7
	Si		4	.2.
		10	7	#
Î	0			4
4	1	Ц		3

$$H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$$

$$K_c = 710$$
 at 2 600 K

Write the expression for the equilibrium constant for this reaction. (2)

4.2.2 0,28 mol of H₂ and 0,28 mol of Br₂ are placed into a 3,00 dm³ container. Equilibrium is established at 2 600 K. Calculate the equilibrium concentrations of all the reactants and products in the container. (6)

- палиногарлузгажани	
	× ×

NA DOWNTOOR GET TO TO THE STAN SERVED PAPER II SICS. COM

QUESTION 5

Kyu was tasked to identify an unknown Group 1 metal carbonate salt, represented by the formula M₂CO₃.

- 5.1 Define a salt. (2)
- 5.2 Write the equation for the complete dissociation of M₂CO₃ in water. (2)
- 5.3 Write the equation for the hydrolysis reaction that occurs once M₂CO₃ has dissociated. (2)

Kyu used a 1,31 g sample of M₂CO₃ to prepare an aqueous solution of volume 200,0 cm³. 25,00 cm³ of this solution was titrated with HCℓ solution of concentration 0,102 mol·dm⁻³. The following data was obtained:

	Volume	of 0,102 r	nol·dm ⁻³ HCℓ (cm ³)
Titration	1	2	3
Initial burette reading	24,20 rep	hy 0,20	X:
Final burette reading	47,40	23,50	Y:
Volume added	23,20	23,30	
Average volume for the titration			

Titration 3

Initial Final reading

0 X 23

Y 24

The diagram alongside shows the initial and final burette readings for Titration 3.

- 5.4 Write down the values for **X** and **Y** in the table and then complete the table. (4)
- 5.5 Define a standard solution. (1)
- 5.6 Circle the most appropriate indicator that can be used for this titration in the table below: (2)

Indicator	Methyl orange	Phenol red	Thymol blue
pH range	3,1 – 4,4	6,4 - 8,0	8,0 - 9,6

NATIONAL SENIOR CERTIFICATE: PHYSICAL SCIENCES: PAPER II

Downloaded from Stanmorephysics.com

The equation for the reaction between the metal carbonate and hydrochloric acid is as follows.

$$M_2CO_3 + 2HC\ell \longrightarrow 2MC\ell + CO_2 + H_2O$$

5.7	Prove by calcula	tion that	the	concentration	of	the	metal	carbonate	solution	is
	0,0474 mol·dm ⁻³ .									(3)

<u> </u>	
Hence, prove by calculation that the mola	ar mass of M ₂ CO ₃ is 138 g·mol ⁻¹ . (3)

5.8	Hence, prove by calculation that the molar mass of M₂CO₃ is 138 g·mol ⁻¹ .	(3)

Staninor aphysics.com	

5.9 Identify metal M with the aid of a calculation (2)

	(2	

QUESTION 6

111771	s bubbled through an aqueous solution of potassium bromide. ne balanced net ionic equation for the redox reaction that occurs.	(3)
6.2 Identify	y the oxidising agent in the reaction.	(1)
6.3 A galv	anic cell can be set up making use of the reaction in Question 6.1.	
	What is a galvanic cell?	(3)
6.3.2	Write the cell notation for the cell. Assume that both products of the reaction are in aqueous solution. Conditions and state symbols are required.	e cell e not (4)
6.3.3	Calculate the emf of the cell at standard conditions.	(4)
6.3.4	State one method of increasing the emf of this cell, calculated in Qu 6.3.3.	uestio (1

AL SENIOR CERTIFICATE: PHYSICAL SCIENCES: PAPER II Nownloaded Trom Stanmorephysics.com Some bromine is added to an aqueous solution of potassium chloride.

7	Will a spontaneous reaction to	s reaction take place?		
	Circle the correct answer:	YES	NO	
6.4.2	Explain the answer by refer agents.	ring to the r	relative stren	gths of the oxidising (3)
				[20]

QUESTION 7

Copper can be extracted from chalcopyrite ore, which is mainly composed of CuFeS2.

The reaction equations are given below:

$$2CuFeS_2 + 2SiO_2 + 4O_2 \longrightarrow Cu_2S + 2FeSiO_3 + 3SO_2$$

Reaction (i)

$$Cu_2S + O_2 \longrightarrow 2Cu + SO_2$$

Reaction (ii)

7.1 When a 3 kg sample of the ore is reacted completely, 1 kg of pure copper is produced. Assume both reactions go to completion. Calculate the percentage of CuEeS3 in the ore (6)

(0)

7.2 Give the name of Cu₂S.

(2)

7.3 Consider the chemical bonding in the substances involved in reactions (i) and (ii). Select ONE substance that...

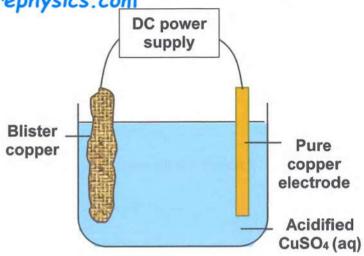
7.3.1 has a giant atomic lattice structure.

(1)

7.3.2 consists of simple molecules in which electrons are unequally shared between atoms.

7.3.3 conducts electricity when molten but not when solid.

(1)


7.3.4 would have only London intermolecular forces.

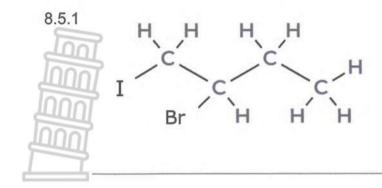
(1)

'Blister' copper is about 98% pure and contains trace amounts of **gold** and **cobalt**.

It is purified electrochemically until it is 99,99% pure, which makes it suitable for use as electrical wiring.

The diagram shows a cell used for this purpose.

Why does the copper	used for electrical wiring	need to be very pure?	(
Which electrode sho supply?	ould be connected to the	NEGATIVE terminal of the	NOC
	PURE COPPER	BLISTER COPPER	(
Circle the answer:	PURE COPPER	BEIGTER GOTTER	,
		O ₄ electrolyte but not Au ³⁺ ions.	
Explain why Co ²⁺ ion	s will be found in the CuS		


44111111		on in the table. The		1
Inni	INCREASE	DECREASE	REMAIN THE SAME	(1)
7.9.2 E	Explain the answer in	Question 7.9.1.		(3)
_				
-				
7.10 In a cel	rtain time interval, 19	9,3 × 10 ³ C of charg	e passes through the cell.	
7.10.1	How many moles of	electrons does this	represent?	(3)
	Stanmor	rephysics.com		
7.10.2	Hence, calculate the electrode during this	s time interval.	at will be deposited on the pu	re copper (3)

NAT Dans Hoaded of Forms Star Frish Epillysics.com

QUESTION 8

8.1	1001	npounds 1,1-dibromobutane and 1,2-dibromobutane are structural ison	(2)
	8.1.1	Define structural isomers.	
	8.1.2	What type of structural isomers do these two compounds represent?	(1)
8.2	Name	the homologous series of the organic compound formed when an alcohol reacts with a carb	ooxylic
	8.2.1	acid.	(1)
	8.2.2	consisting of saturated hydrocarbons.	(1)
	8.2.3	of the organic product of a hydrolysis reaction.	(1)
8.3	Write	down the term for each of the following:	
	8.3.1	of organic reaction when alkanes reaction	et with (1)
	8.3.2	The GENERAL type of organic reaction that results in an unsaproduct	aturated (1)
	8.3.3	The process of heating a flask containing an organic reaction mixture condenser attached to avoid volatile compounds escaping	e with a (1)
8.4	Give	the chemical formula of	
	8.4.1	the two products of the complete combustion of hydrocarbons.	(1)
	8.4.2	the reagent used in the standard laboratory test for unsaturation.	(1

NATIONAL SENIOR CERTIFICATE: PHYSICAL SCIENCES: PAPER II Downloaded from Stanmorephysics.com 8.5 Give the IUPAC names of the compounds below:

(3)

(4)

NATIONAL PROPERTY STANFORD STANFORD NATIONAL SCIENCES: PAPER II

8.6 Consider the compound below:

	CH ₃ (CH ₂) ₃ COOC	H ₂ CH ₂ CH ₃	
6.1 Give the IUPAC	name of the compour	nd.	(2)
6.2 Draw the struct	t ural formula of a FU	JNCTIONAL isomer of	the compound (2
	12	f the learner drow	n above. (2
		oup of the isomer draw	Tabove.
NAME of functions.	anmorephysics.com		(
The isomer in (2 will have a higher b	oiling point.
3.6.5 Explain why me	are aparay is peeded	to overcome the interm 4. Refer to all the inte	olecular forces rmolecular forc (

8.7 The boiling points of the compounds CH₃F and C₂H₆ at standard atmospheric pressure are compared.

8.7.1 Circle the correct answer: (1)

CH₃F

C₂H₆

is likely to have a higher boiling point.

8.7.2 Other than atmospheric pressure, write down one controlled variable for this comparison. (1)

- 8.8 Write balanced equations for the following reactions.
 - 8.8.1 The dehydration of hexan-1-ol. Use condensed structural formulae. (5)

8.8.2 The cracking of a 14-C alkane to form a mixture of pentane and propene. Use **molecular** formulae. (4)

[40]

Total: 200 marks

ADDITIONAL SPACE (ALL QUESTIONS)

Stanmorephysics.com	ITIONAL SPACE T	RLY INDICATE AT THE QUESTION O ENSURE THAT ALL ANSWERS ARE	MARKED.
	mon		
	TIIIII		
	lonni		
		The same of the sa	
		31000	
		Stanmorephysics.com	