Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS PAPER 1

NOVEMBER 2025
Stanmorephysics.com

MARKS: 100

TIME: 2 hours

This question paper consists of 8 pages, including an information sheet.

Downloaded from Stanmorephysics.com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.

Stanmorephysics.com

- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Write neatly and legibly.

Copyright reserved Please turn over

1.1 Simplify the following completely:

1.1.1
$$(2x-3)(2x+3)$$

1.1.2
$$-5x(2x-1)^2+3$$
 (3)

1.1.3
$$\frac{(2^{x})^{3}.27^{x}}{8^{x}.(3^{2})^{x}.3^{x}}$$
more process.com

1.2 Factorise the following expressions fully:

1.2.1
$$2p^2 - p - 15$$
 (2)

1.2.2
$$y-b+by-1$$
 (3)

1.2.3
$$5m^3 - 40$$
 (3)

1.3 Calculate the value of the following, WITHOUT the use of a calculator:

$$\frac{2010 \times (2013^2 - 9) \times 2012}{2016 \times (2011^2 - 1)} \tag{4}$$

[20]

2.1 Solve for x without using a calculator:

$$2.1.1 2^{3x-4} = \frac{1}{512} (3)$$

$$2.1.2 \quad \frac{4}{x-5} - \frac{10}{x} = \frac{2}{x^2 - 5x} \tag{4}$$

2.2 At a school event, tickets are sold at two different prices: R20 for adults and R12 for learners. A total of 20 tickets were sold, collecting R320 in total. How many adult tickets and learner tickets were sold?

Let the number of adult tickets be x and the number of learner tickets be y. (6)

[13]

QUESTION 3

3.1 The n^{th} term of an arithmetic sequence is given as $T_n = 7n - 3$.

3.1.1 Determine the first term of the sequence. (1)

3.1.2 Which term is equal to 683? (3)

3.2 A grade 10 learner wrote the word **WHEAT** over and over again on a piece of paper as follows:

WHEATWHEATWHEATWHEAT.....

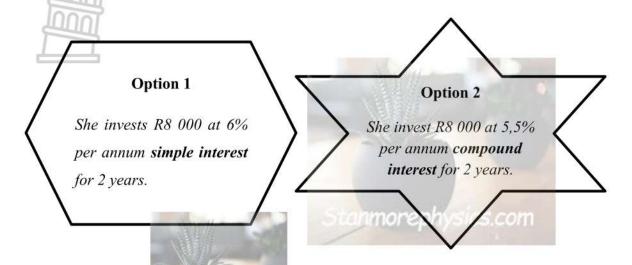
3.2.1 Write down the 30th letter. (1)

3.2.2 Determine the 508th letter.

3.2.3 The first H is in the second position, the second H is in the seventh position, the third H is in the twelfth position, and so forth. Determine in which position the 103rd H is?

(3)

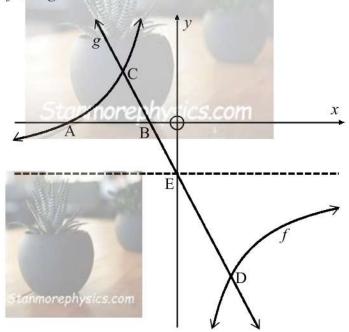
Stanmorephysics.com


3.3 Consider the number pattern: -3×1 ; -7×4 ; -11×7 ; -15×10 .

Determine the 62nd term of the above pattern.

(4) [15]

Copyright reserved


Amanda is planning a trip to England in 2 years. She considers two different ways to save her money.

- 4.1 Calculate the total amount Amanda will have after 2 years if she chooses the 2nd option. (2)
- 4.2 Which option gives Amanda a better return after 2 years? Show calculations to support your answer. (3)
- 4.3 If the exchange rate is £1 = R22,50. How many British pounds (£) will she have after 2 years if she chooses the better option? (2)
- 4.4 Suppose instead she wants to use option 1, but save monthly. If the bank agrees to let her save a fixed amount every month for 2 years, and she wants a total of R9 000, calculate the fixed monthly payment.
 - (Assume the interest is only calculated on the total of all deposits at the end of 2 years) [10]

Copyright reserved Please turn over

Sketched below are the graphs of $f(x) = -\frac{2}{x} - 1$ and g(x) = -2x - 1. Points A and B are x-intercepts of f and g respectively. E is the y-intercept of g. C and D are the points of intersection of f and g.

5.1.1 Write down:

a) the y-coordinate of E.
$$(1)$$

b) the equation of the vertical asymptote of
$$f$$
. (1)

5.1.2 Determine the coordinates of B. (2)

5.1.4 Determine the coordinates of C and D. (5)

5.1.5 Determine the value(s) of x for which:

a)
$$f$$
 is increasing. (1)

$$b) \qquad \frac{g(x)}{f(x)} \le 0 \tag{3}$$

5.1.6 If h(x) = f(-x) + 3. Describe in words the transformation from f to h. (2)

5.2	Use the following properties to sketch the graph of p if $p(x) = a \times b^x + q$: • $a > 0$	
	• 0 < <i>b</i> < 1	
	$\cdot q < 0$	(3)
		[22]
QUE	ESTION 6	
Give	en: $m(x) = -2x^2 + 8$	
6.1	Determine the x – intercepts of m .	(2)
6.2	Sketch the graph of m .	(3)
6.3	Determine the value(s) of k for which $m(x) = k$ will have no solution.	(1)
6.4	Determine the maximum value of $3^{m(x)-5}$.	(2)
		[8]
QUE	ESTION 7	
7.1	If $P(D) = 0.25$; $P(K) = 0.5$ and $P(D \text{ or } K) = 0.625$	
	7.1.1 Calculate P(D and K).	(2)
	7.1.2 Are events D and K complementary? Give a reason.	(2)
7.2	A survey was conducted among 100 learners to determine their participation in two	
	subjects: Maths (M) and Life Orientation (LO). The following results were obtained:	
	• 42 learners participate in Maths.	
	• 35 learners participate in Life Orientation.	
	• x learners participate in both subjects.	
	• 38 learners did not participate at all.	
	7.2.1 Draw a Venn diagram to represent the above information.	(3)
	7.2.2 Determine the number of learners who participated in both subjects.	(2)
	7.2.3 Determine the probability that a learner selected at random participates in:	
	a) Neither Maths nor LO.	(1)
	5 b) Maths or LOSICS.com	(1)
	c) Maths only.	(1)
		[12
		8

TOTAL MARKS: 100

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d]$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 ; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$S_{\infty} = \frac{a}{1-r}$$
; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan\theta$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan\theta$$

$$(x-a)^2 + (y-b)^2 = r^{2}$$
 more physics.com

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

area
$$\triangle ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

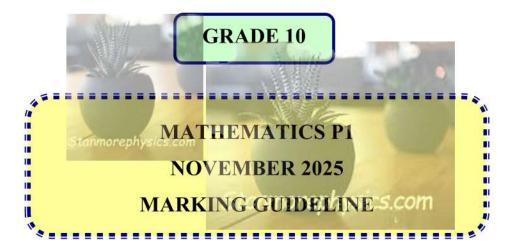
$$\sigma^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{\sigma^2}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$


Downloaded from Stanmorephysics.com FINAL

KWAZULU-NATAL PROVINCE

EDUCATIONREPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

MARKS: 100

This marking guideline consists of 9 pages.

Copyright reserved Please turn over

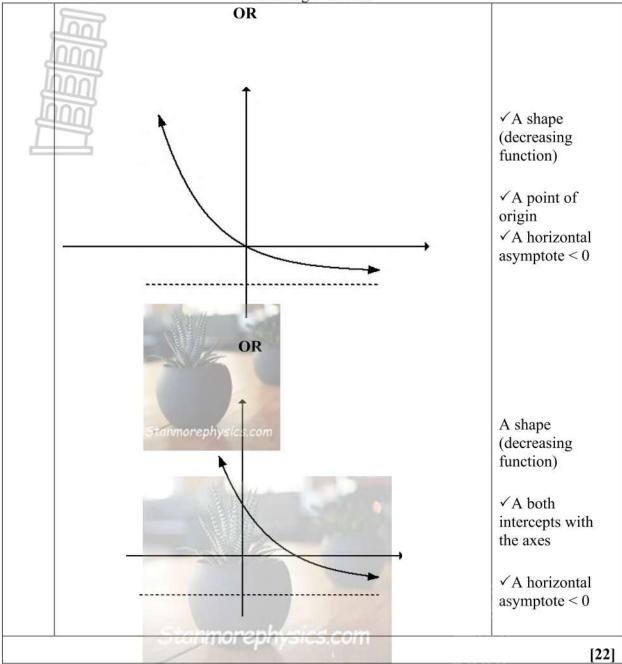
1.1.1	$4x^{2} + 6x - 6x - 9$ $4x^{2} - 9$ Answer only; Award Full Marks	✓A products ✓A answer (2)
1.1.2	$-5x(4x^2-4x+1)+3$	$\sqrt{A} 4x^2 - 4x + 1$
	$-20x^3 + 20x^2 - 5x + 3$	\checkmark CA $-20x^3 + 20x^2$
		\checkmark CA $-5x+3$
		(3)
1.1.3	$=\frac{2^{3x}.3^{3x}}{2^{3x}.3^{2x}.3^{x}}$	✓ A prime bases
		(CA simulification
	$=2^{0}\times3^{0}$	✓ CA simplification ✓ CA answer
	=1	(3)
1.2.1	(2p+5)(p-3)	\checkmark A(2p+5) \checkmark A(p-3)
		(2)
1.2.2	= y - 1 + by - b = y + by - b - 1	✓ A rearranging
	=(y-1)+b(y-1) OR $=y(1+b)-(b+1)$	✓ A factors
	= (y-1)(1+b) = (1+b)(y-1)	✓ A answer
1.2.3	Stanmorephysics.com	(3) ✓A common factor
1.2.5	$5(m^3-8)$	\checkmark A common factor \checkmark A $(m-2)$
100	$=5(m-2)(m^2+2m+4)$	$\checkmark A (m^2 + 2m + 4)$
		(3)
1.3	$= (2010)(2013+3)(2013-3)\times 2012$	✓A numerator (factors)
	$= \frac{2016 \times (2011+1)(2011-1)}{2016 \times (2011+1)(2011-1)}$	✓ A denominator
	(2010)(2016)(2010)×2012	
5	$2016 \times (2012)(2010)$ Answer Only; 0/4	✓ A simplification
	= 2010	✓A answer
	OR	
<u>L</u>		

Walking Guid	Tellife
$tet 2010 = x$ $x[(x+3)^{2} - 9](x+2)$ $(x+6)[(x+1)^{2} - 1]$	
$= \frac{x(x+2)(x^2+6x)}{(x+6)(x^2+2x)}$ $= \frac{x \cdot x(x+2)(x+6)}{x(x+6)(x+2)}$	✓ A numerator (factors) ✓ A denominator ✓ A simplification
stanm = xephysics.com = 2010	✓A answer (4)
	[20]

2.1.1	$2^{3x-4} = 2^{-9}$ $3x-4=-9$ $x=-\frac{5}{3}$ Stanmore physics.com	✓A 2 ⁻⁹ ✓CA equating exp. ✓CA answer (3)
2.1.2	$\frac{4}{x-5} - \frac{10}{x} = \frac{2}{x(x-5)}$ $LCD = x(x-5)$ restrictions: $x \neq 0$ or $x \neq 5$ $4x - 10(x-5) = 2$ $-6x = -48$ $x = 8$	$✓ A x(x-5)$ $✓ A restrictions$ $x \neq 0 \text{ or } x \neq 5$ $✓ A simplification$ $✓ CA answer$ (4)
2.2	$x + y = 20 \qquad \dots \dots (1)$ $20x + 12y = 320 \dots \dots (2)$ $y = 20 - x \qquad \dots \dots (3)$ $20x + 12(20 - x) = 320$ $20x + 240 - 12x = 320$ $8x = 80$ $x = 10$ $y = 10$	✓A Equation 1 ✓A Equation 2 ✓CA Equation 3 ✓CA substitution ✓CA x-value ✓CA y-value

OR	✓A Equation 1	
x + y = 20(1)	✓A Equation 2	
$20x + 12y = 320 \dots (2)$	✓CA Equation 3	
$x = 20 - y \qquad \dots (3)$	✓CA substitution	
20(20 - y) + 12y = 320	Sept. See Section Security 1914 Sept. Sept. Section Section 1914	
400 - 20y + 12y = 320		
8y = 80	✓CA <i>x</i> -value	
y = 10	✓CA y-value	
$ \begin{array}{c} y=10 \\ \text{Stanmor} \\ x=10 \end{array} $ sics.com	N1	(6)
∴ 10 adult tickets and 10 learner tickets were sold.		(6)
h/	ľ	13]

3.1.1	T - 4	
5.1.1	$T_1 = 4$	✓A 4
3.1.2 3.2.1 3.2.2	683 = 7n - 3 $686 = 7n$ $n = 98$ T 508	
	$ \begin{array}{l} \hline 5 \\ = 101, 6 \\ 0, 6 \times 5 = 3 \\ \Rightarrow 3^{rd} letter \end{array} $	✓ A remainder times 5
	∴ E	✓A answer
	OR	OR
	$\frac{510}{5} \rightarrow (510 \text{ is divible by 5})$ $= 102$ $510 \text{ to } 508 = 3 \text{ steps backwards}$ $\Rightarrow 3^{rd} \text{ letter}$	✓ A any number nearest to 508 & divisible by 5 510 or 505 ✓ A method (backwards or forward)
	∴ E	✓ A answer (3)


3.2.3	$T_n = 5n - 3$	✓A 5 <i>n</i> -3
9	$T_{103} = 5(103) - 3$	\checkmark CA subst. $n = 103$
1	= 512	✓CA answer
- 1		(3)
3.3	(-4k+1)(3d-2)	$\sqrt{A} \sqrt{A} (-4k+1)(3d-2)$
#	=[-4(62)+1][3(62)-2]	\checkmark A \checkmark A $(-4k+1)(3d-2)$ \checkmark CA substitution
	$=-247 \times 184$	✓CA answer
	Accept: -45448 as the final answer	(4)
		[15]

4.1	$A = P(1+i)^n$	
	$=8000(1+0,055)^{2}$	✓ A subs. into correct
	= R8904,20	formula
		✓CA answer
	OR	OR
	$A = P \left(1 + \frac{r}{100} \right)^n more physics.com$	
	$=8000\left(1+\frac{5,5}{100}\right)^2$	✓ A subs. into correct formula
	$=8000\left(1+\frac{3}{100}\right)$	✓CA answer
	= R 8904, 20	(2)
4.2	A = P(1+ni)	
	$=8000(1+2\times0,06)$	✓ A subs. into correct
	A = R 8960	formula
	∴ Option 1 or simple interest	✓CA future value
		✓CA answer
	OR	OR
	$A = P\left(1 + \frac{nr}{100}\right)$	
	$=8000\left(1+\frac{2\times6}{100}\right)$	
	$\frac{-3000}{100}$	✓ A subs. into correct formula
190	A = R 8960	✓CA future value
	∴ Option 1 or simple interest	✓CA answer
1		(3)

	Warking Guideline	Y
4.3	$R8960 \times \frac{£1}{R22,50}$	✓CA dividing by 22,5
Į	=£398,22	✓CA answer
		(2)
4.4	A = P(1+ni)	
4	$9000 = P(1+2\times0,06)$ $\frac{0}{2}$ if wrong formula used	
	P = R 8035,71	✓ A value of P
	8035,71	✓ A dividing P by 24
	Fixed monthly payment = 24	✓ CA answer
	= R 334,82	(3)
		[10]

(
5.1.1 a)	y = -1	$\checkmark A y = -1 \tag{1}$
5.1.1 b)	x = 0	$\checkmark A x = 0 \tag{1}$
5.1.2	0 = -2x - 1	✓ A equating to 0
	$x = -\frac{1}{2}$ $B\left(-\frac{1}{2};0\right)$ Answer only; Award Full marks	✓ CA answer (in coordinate form)
5.1.3	$0 = -\frac{2}{1} - 1$	\checkmark A $f(x) = 0$
	$1 = -\frac{2}{x}$ $x = -2 A(-2;0)$ $AB = -\frac{1}{2} + 2 = 1,5 \text{ units}$	✓ CA x_A ✓ CA difference
	OR OR	✓ CA answer OR
Sta	$0 = 0 = \frac{2}{x}$	$\checkmark A f(x) = 0$
	$1 = -\frac{2}{x}$ $x = -2$ A(-2;0)	\checkmark CA x_A
	$AB = \sqrt{\left(-\frac{1}{2} + 2\right)^2 + \left(0 - 0\right)^2}$	✓ CA using the distance formula ✓ CA answer (4)
	= 1, 5 <i>units</i>	

Marking Guideline	
$5.1.4 \qquad -\frac{2}{x} - 1 = -2x - 1$	✓A equating
$\frac{2}{-2x} = -2x$	
$x^2 - 1 = 0$	✓ A std. form
(x+1)(x-1) = 0	✓ CA factors
x=-1 or $x=1$	✓ CA both values of
y=1 or $y=-3$	X
C(-1;1)	✓ CA both values of
D(1;-3)	y
$5.1.5 \text{ a}) x \in \mathbb{R} \ ; \ x \neq 0$	(5)
OR	✓A
x > 0 or $x < 0$	✓A
OR	805100
$x \in (-\infty; 0) \text{ or } x \in (0; \infty)$	✓A
5.1.51)	(1)
$5.1.5b$) $x < -2$ or $-\frac{1}{2} \le x < 0$	✓CA✓CA✓A
Stanmorephysics.com	OR (3)
OR	
$x \in (-\infty; -2)$ or $x \in \left[-\frac{1}{2}; 0\right]$	✓CA✓CA✓A
L - /	(3)
5.1.6 - Reflected about the y – axis or line $x = 0$.	✓A
- Shifted or translated 3 units up.	✓A (2)
5.2	(2)
	✓ A shape (decreasing function)
	✓ A both intercepts
x.	with the axes < 0
Stanmananhar	✓A horizontal
Stahmorephys cs.com	asymptote < 0
>	(3)

Copyright reserved Please turn over

6.1	$0 = -2x^{2} + 8$ $0 = x^{2} - 4$ $(x+2)(x-2) = 0$ $x = -2 \text{ or } x = 2$	✓ A factors or square root on both sides ✓ A (both values of x)
6.2	Stanmorephysics.com	✓ A turning point ✓ CA both x – intercepts ✓ A shape (concave down)
6.3	$k > 8$ or $k \in (8, \infty)$	✓CA (from the graph in 6.2)
6.4	Max value of $m = 8$ 8-5=3 3^3 ∴ The maximum value is 27.	✓A 3 ✓ A answer (2)
		[8]

7.1.1 $P(D \text{ and } K) = P(D) + P(K) - P(D \text{ or } K)$	
=0,25+0,5-0,625	✓A substitution
= 0,125	✓ CA answer (2)
7.1.2 No,	√A
 Events are not mutually exclusive / P(A and B) ≠ 0 OR events are not exhaustive / P(A) + P(B) = 1 	✓A reason (2)
7.2.1 M	\checkmark A x on the intersection
$\begin{array}{ c c c }\hline & 42-x & x \\ \hline & 35-x \\ \hline & 38 \\ \hline \end{array}$	✓ A both $42 - x & 35 - x$ ✓ A 38 (3)
7.2.2 $42-x+x+35-x+38=100$	✓ A equating
x = 15	✓CA answer
7.2.3 a) $\frac{38}{100}$ or $\frac{19}{50}$ Accept: 0,38	(2) ✓A (1)
b) $\frac{62}{100}$ or $\frac{31}{50}$ Accept: 0,62	✓A (1)
c) $\frac{27}{100}$ Accept: 0,27	✓A
100 Stanmorephysics.com	(1)
	[12]

TOTAL: 100 MARKS

Copyright reserved Please turn over