

PHYSICAL SCIENCES P2 (CHEMISTRY)

FINAL EXAMINATION

NOVEMBER 2025

Stanmorephysics.com

GRADE 11

MARKS: 150

TIME: 3 hours

This question paper consists of 12 pages and 4 data sheets.

Copyright reserved Please turn over

INSTRUCTIONS AND INFORMATION

- This question paper consists of EIGHT questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Start EACH question on a NEW page in the ANSWER BOOK.
- Number the answers correctly according to the numbering system used in this
 question paper.
- Leave ONE line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- You may use a non-programmable calculator.
- You are advised to use the attached DATA SHEETS.
- Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your final numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions et cetera where required.
- 10. Write neatly and legibly.

(2)

(2)

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the correct answer and write only the letter (A–D) next to the question number (1.1–1.10) in the ANSWER BOOK, for example 1.11 E.

1.1T	he tendency	of an aton	n to attract	a bonded	pair of	electrons i	is known as .	
------	-------------	------------	--------------	----------	---------	-------------	---------------	--

- A polarity.
- B electron affinity.
- C electronegativity.
- D ionisation energy.
- 1.2 Which ONE of the following atomic combinations will have the shortest bond length?
 - A C-C
 - B C-O
 - C C = C

$$D \quad C \equiv C \tag{2}$$

1.3 Which ONE of the following substances has a tetrahedral shape?

inmorephysics.com

- A CO₂
- B SO₂
- C HCN
- D NH₄⁺ (2)

1.4 In which ONE of the following are ION-DIPOLE forces present?

- A NH₃ gas
- B CO₂ gas
- C LiCl aqueous solution
- D MgCl₂ solid c5.com

Copyright reserved Please turn over

1.5	One mole of a gas, SEALED in a container of volume V, exerts pressure p.					
	The volume of the container is decreased to 1/3V, while the temperature					
	remains constant. What is the pressure now exerted by the gas?					

A 1/3 p

B 3 p

C p

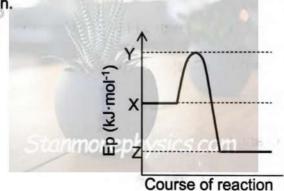
D 1,5 p (2)

- 1.6 Consider the following statements about ideal gases:
 - (i) The gas particles occupy no volume.
 - (ii) There are no intermolecular forces between the particles
 - (iii) The collisions between the particles are perfectly elastic

Which of the above statements are true?

- A (i) and (ii) only
- B (i) and (iii) only
- C (ii) and (iii) only

D (i), (ii) and (iii) (2)


- 1.7 Which ONE of the following solutions will have the greatest concentration of H⁺ ions?
 - A 2 mol·dm⁻³ NH₃
 - B 1,5 mol·dm⁻³ CH₃COOH
 - C 1,5 mol·dm⁻³ H₂SO₄
 - D 1,5 mol·dm⁻³ HCl (2)
- 1.8 Consider the following reaction:

$$HNO_3(aq) + X \rightarrow NO_3^-(aq) + HSO_4^-(aq)$$

In this reaction, X represents...

- A SO₄²-acting as a base
- B SO_4^{2-} acting as an acid.
- C H₂SO₄ acting as a base.
- D H_2SO_4 acting as an acid. (2)

1.9 The graph below shows the energy changes that take place during a chemical reaction.

Which ONE of the following expressions corresponds to the activation energy of the reverse reaction?

(2)

1.10 Consider the following redox reaction:

$$10C\ell^- + 2MnO_4^- + 16H^+ \rightleftharpoons 2Mn^{2+} + 8H_2O + 5C\ell_2$$

A product of the reduction half reaction is ...

(2) [2 x 10 = 20]

QUESTION 2 (Start on a new page.)

Consider the following reaction of nitric acid (HNO₃) with lithium oxide (Li₂O).

 $2HNO_3$ (aq) + Li₂O (s) \rightarrow 2LiNO₃ (aq) + H₂O (ℓ) $\Delta H = -139 \text{ kJ} \cdot \text{mol}^{-1}$

- 2.1 Define the term ionic bond. (2)
- 2.2 Show that the bond between Li and O is ionic. (2)
- 2.3 Write down the name of the salt formed in this reaction. (1)
- 2.4 Consider the H₂O molecule.
 - 2.4.1 (1) Write down the valency of the O atom.
 - 2.4.2 Draw the Lewis structure for the H₂O molecule. (3)
 - 2.4.3 What is the shape of the H₂O molecule? (1)
 - 2.4.4 NAME the ion that is formed when H2O forms a dative covalent bond. (1)
- 2.5 The above reaction takes place in a beaker. How will the temperature of the contents of the beaker be affected? Choose from INCREASES. DECREASES or REMAINS THE SAME. Give a reason for the answer. (2)
- (2)2.6 Define bond length.
- The diagram below shows the bonds that form between the atoms in the 2.7 HNO₃ molecule.

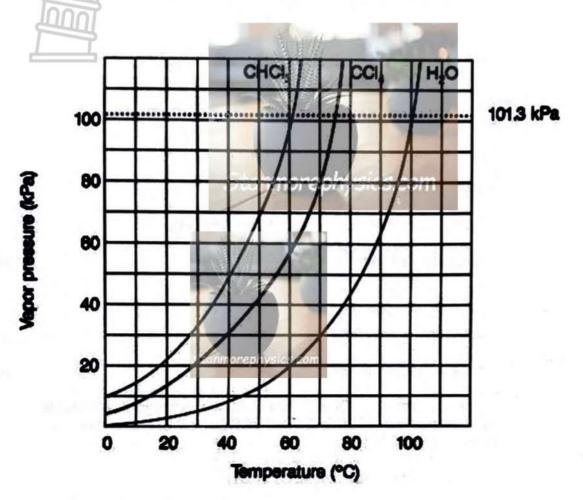
Consider the bonds between the following atoms: (a) H - Onmorephysics.com

- (b) N O
- (c) N = 0
- Is the bond length larger in (a) or in (b)? Explain the answer. (3)2.7.1
- Is the bond energy greater in (b) or in (c)? Give a reason for the 2.7.2 (2)answer. [20]

QUESTION 3 (Start on a new page.)

The following table provides the bond energies between atoms.

Bond	Energy (kJ·mol ⁻¹)
C≡C	839
C=O	804
0=0	498
C-C	348
0-0	145
H-O	463
C-O	358
H-C	413

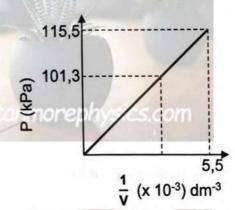

Consider the following reaction:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

- 3.1 Define the term activation energy. (2)
- 3.2 Determine:
 - 3.2.1 The activation energy for the reaction (3)
 - 3.2.2 The heat of reaction in kJ·mol⁻¹ (4)
- 3.3 How will the value calculated in QUESTION 3.2.2 be affected if a suitable catalyst is used? Choose from INCREASES, DECREASES or REMAINS THE SAME. Give a reason for the answer. (2)
- 3.4 24 g of CH₄ reacts completely with excess O₂ at STP.
 - 3.4.1 Is there a NET ABSORPTION or a NET RELEASE of energy? (1)
 - 3.4.2 Calculate the energy referred to in QUESTION 3.4.1. (3)
 - 3.4.3 If 5,5 moles of gas is present when the reaction is complete, calculate the initial number of moles of O₂ (g) used in the reaction. (5) [201

QUESTION 4 (Start on a new page.)

The graphs below show the relationship between vapour pressure and temperature for CHCl₃, CCl₄ and H₂O respectively. Atmospheric pressure is 101,3 kPa.

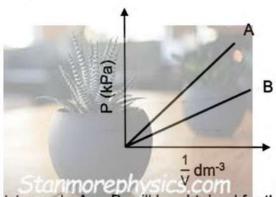

4.1	Define the term vapour pressure.						
4.2	Write de	Write down the:					
	4.2.1	Vapour pressure of CC4 at 70°C	(1)				
	4.2.2	Temperature at which the vapour pressure of CHCl3 is 100 kPa	(1)				
	4.2.3	Phase of CHCl ₃ at 65°C	(1)				
	4.2.4	Boiling point of CC4	(2)				
4.3	Fully ex	plain the difference in the boiling points of CC4 and H2O.	(4)				
4.4		soluble in H ₂ O? Choose from YES or NO. reason for the answer.	(3) [14				

Copyright reserved Please turn over

QUESTION 5 (Start on a new page.)

An experiment was conducted to investigate the relationship between pressure and volume of a fixed mass of gas at a temperature of 273 K.

The results obtained are shown in the graph below.


5.1 Named and state the law that was investigated. (3)

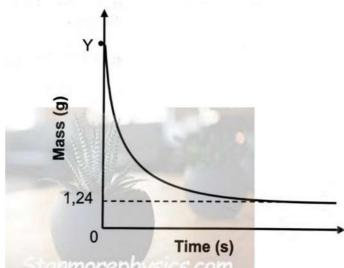
5.2 Calculate the volume of the gas when the pressure exerted by the gas is 101,3 kPa. (4)

5.3 Do real gases deviate from ideal gases at LOW pressures or HIGH pressures? Explain the answer. (3)

5.4 Draw a sketch graph of pressure (y-axis) vs volume (x-axis) for this experiment. No values or labels are required on the axes. (2)

The experiment is repeated using a greater mass of gas at 273 K. The results obtained are plotted on the same system of axes.

5.5 Which graph, A or B, will be obtained for the greater mass? Explain the answer.


[15]

(3)

QUESTION 6 (Start on a new page.)

- 6.1 A 1,50 g sample of a compound containing carbon, hydrogen and oxygen was completely burned in air. The products formed were 1,74 g of carbon dioxide and 0,70 g of water.
 - 6.1.1 Define the term *empirical formula*. (2)
 - 6.1.2 Determine, by calculation, the empirical formula of the compound. (7)
 - 6.1.3 If the ratio of empirical formula to molecular formula is 1:3, determine the molecular formula of the compound (2)
- 6.2 An iron ore (impure sample) contains 30% Fe₂O₃.
 - 6.2.1 Write down the oxidation number of iron in Fe₂O₃ (1)
 - 6.2.1 Calculate the mass of Fe that can be obtained from 150 g of this ore. (4)
- 6.3 In an experiment, a learner reacts 1,51 dm³ of sulphuric acid, H₂SO₄, of concentration 0,43 mol·dm⁻³ with solid lithium. The balanced equation for the reaction is:

The graph below shows how the mass of lithium changes with time during the reaction:

- 6.3.1 Define the term *limiting reagent*. (2)
- 6.3.2 Identify the limiting reagent in this reaction. Give a reason for the answer. (2)
- 6.3.3 Calculate the value of Y as shown in the graph. (7)

(5)

QUESTION 7 (Start on a new page.)

7.1 Acetic acid (CH₃COOH) ionises in water according to the following balanced equation:

$$CH_3COOH(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$$

- 7.1.1 Define an acid according to the Arrhenius theory (2)
- 7.1.2 Write down the FORMULAE of TWO acids in this reaction. (2)
- 7.1.2 Is acetic acid a STRONG acid or a WEAK acid? Give a reason for the answer. (2)
- 7.2 A nitric acid solution, HNO₃(aq), has a concentration of 0,15 mol·dm⁻³. In a reaction, 31,3 cm³ of the HNO₃ solution neutralises 24,5 cm³ of a calcium hydroxide solution, Ca(OH)₂(aq), according to the following balanced equation:

$$2HNO_3(aq) + Ca(OH)_2(aq) \rightarrow Ca(NO_3)_2(aq) + 2H_2O(l)$$

7.2.1 Calculate the concentration of the Ca(OH)₂ solution.

250 cm³ of the Nitric acid HNO₃ solution, with the same concentration of 0,15 mol·dm⁻³ is now reacted with pure Zn.

$$Zn(s) + 2HNO3(aq) \rightarrow Zn(NO3)2(aq) + H2(g)$$

The pH of the final solution is 2,174.
Assume that the volume of the solution does not change.

- 7.2.2 Calculate the mass of Zn that reacted. (8)
- 7.2.3 Determine the volume that the hydrogen gas produced will occupy at 25°C.

 Take molar gas volume as 24000cm³·mol⁻¹ at 25°C

ake molar gas volume as 24000cm³·mol⁻¹ at 25°C (3) [22]

QUESTION 8 (Start on a new page.)

8.1 A solution of iron (II) nitrate reacts with At (s) according to the following unbalanced ionic equation:

$$Al(s) + Fe^{2+}(aq) \rightleftharpoons Al^{3+}(aq) + Fe(s)$$

- 8.1.1 Define the term redox reaction. (2)
- 8.1.2 Identify the reducing agent in the above reaction. (1)
- 8.1.3 Give a reason why the nitrate ion, NO₃-, is a spectator ion in the reaction. (1)
- 8.1.4 Give a reason why the reaction is unbalanced. (2)
- 8.2 The incomplete ionic reaction between dichromate ions ,Cr₂O₇²⁻, and tin (II) ions, Sn²⁺, in an acid medium is given below.

- 8.2.1 Write down the oxidation number of Cr in the Cr₂O₇²⁻ ion. (1)
- 8.2.2 Write down the reduction half-reaction. (2)
- 8.2.3 Using the Table of Standard Reduction Potentials, write down the balanced net ionic equation. (3)

 [12]

TOTAL:150

DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 2 (CHEMISTRY) GEGEWENS VIR FISIESÈ WETENSKAPPE GRAAD 11 **VRAESTEL 2 (CHEMIE)**

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Тө	273 K
Charge on electron Lading op elektron	е	1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	NA	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n=\frac{m}{M}$	$n = \frac{N}{N_A}$	
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$	
$\frac{c_a v_a}{c_b v_b} = \frac{n_a}{n_b}$	pH = -log[H ₃ O ⁺]	
P ₁ V ₁ = P ₂ V ₂	PV = nRT	
K _w = [H₃O ⁺][OH ⁻]] = 1 x 10 ⁻¹⁴ at/ <i>by</i> 298 K	

		_
	3	<u>~</u>

NSC

Physical Sciences/P2

November 2025

			-		-			_
Down	n Dec	10 200 200 200 200 200 200 200 200 200 2	18 A	W. Z. Z.	R X E	S SCOL	E 3	
34	3	4.0 4.0 19	તુ 17 લ CI 35,5	8 E &	25 127 - 53	25 A A	75 75	
3 2		8 မှ 0 က 16	16 เพื่ร 32	24 34 28 53	52 N Te 128	02 28 8	69 T	
25		7 σ, N 14	15 N P	33 N As 75	8. 9. 5. 12. 12.		88 P	
4 §					8.1 2.2.5 119		67	
13					49 115 115		99 A	
12					17 Cd 112 Ld 48 L		8 E	
7		i			1.9 108	79 197	64 64	
10		lood bood	mass	- CONTRACTOR	2.2 106 P 46	78 195 195	£ 5	
9 mber	etal	Simbool	ative atomic mass ewe atoommassa		2.2 103 E &	77 11 192	29 ES	
8 9 omic numbe	Ato omgetal	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	elative	AL	22 5	76 OS 190	P 4	
7 Atom	` _	†	Approximate relative atomic mass Benaderde relatiewe atommassa	25 1. Min 55		75 Re 186	9 P	-
9	WE	negativ	Approx Benad	4.6 7.5 52		74 W 184	88 2	
S	KEYISLEUTEI	Electronegativity – Elektronegatiwiteit			41 Nb 92	73 Ta 181	88 8	
4	¥			2,r 2 ≒ &	40 7. Zr 91	72 © Hf 179		
ဗ				ε,ι 2 % &			89 . Ac	
2 🗐		4 Be	12 24	20 Ca 40	8 S 8		9 88 6 Ra 226	
		S'l	Z'l	0°L	0'1	6'0		
-€	- = -			5 × 8		1000	87 F F	
	ı'z	0,1	6'0	8,0	8,0	7,0	۷'0	

7	3	175	103 L
2	£	173	102 ₹
69	Ę	169	101 Md
8	Ē	167	100 Fm
29	오	165	99 Es
99	Dy	18	C 88
8	9	159	97 BK
4	P9	157	96 Cm
63	E	152	95 Am
62	ES	150	\$ ₹
61	Pa		93 Np
99	PN	144	92 U 238
29	Ь	141	Pa Pa
9	e,	40	97 28

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/H	Ε ^θ (V)		
F ₂ (g) + 2e ⁻			+ 2,87
Co3+ + e-	==	Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ⁺ +2e ⁻	===	2H₂O	+1,77
MnO 4 + 8H+ + 5e-	-	Mn ²⁺ + 4H ₂ O	+ 1,51
Cl ₂ (g) + 2e ⁻			+ 1,36
Cr ₂ O ²⁻ ₇ + 14H ⁺ + 6e ⁻	=	2Cr3+ + 7H₂O	+ 1,33
O ₂ (g) + 4H ⁺ + 4e ⁻			+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt2+ + 2e-			+ 1,20
Br ₂ (t) + 2e-			+ 1,07
NO 3 + 4H+ + 3e-			+ 0,96
Hg ²⁺ + 2e ⁻			+ 0,85
Ag* + e-			+ 0,80
NO 3 + 2H+ + e-			+ 0,80
Fe ³⁺ + e ⁻			+ 0,77
O ₂ (g) + 2H ⁺ + 2e ⁻			+ 0,68
l ₂ + 2e		21-	+ 0,54
Cu* + e-		0	+ 0,52
SO ₂ + 4H ⁺ + 4e ⁻	==	0 . 011 0	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	-	40H	+ 0,40
Cu2+ + 2e-	=	Cu	+ 0,34
3		SO ₂ (g) + 2H ₂ O	+ 0,17
Stanmore Cu2+++	om	Cu*	+ 0,16
Sn ⁴⁺ + 2e ⁻		Sn ²⁺	+ 0,15
S + 2H+ + 2e-		H₂S(g)	+ 0,14
2H+ + 2e-		H₂(g)	0,00
Fe ³⁺ + 3e ⁻			- 0,06
Pb2+ + 2e-	-	Pb	-0,13
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Ni ²⁺ + 2e ⁻	-	Ni	- 0,27
Co2+ + 2e-	=	Co	- 0,28
Cd2+ + 2e-	=	Cd	- 0,40
Cr3+ + e-	=	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr3+ + 3e-	-	Cr	- 0,74
Zn2+ + 2e-	=	Zn	- 0,76
2H ₂ O + 2e ⁻	**	H ₂ (g) + 2OH	- 0,83
Cr2+ + 2e-	=	Cr	- 0,91
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
At3+ + 3e-	=	Al	- 1,66
Mg ²⁺ + 2e ⁻	quit.	Mg	- 2,36
Na+ + e-	=	Na	- 2,71
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Cs* + e*	-	Cs	- 2,92
K+ + e-	=	К	- 2,93

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Increasing oxidising ability/Toenemende oksiderende vermoë

RD-REDUKSIEPOTE	Eθ		
Half-reactions/Half	(v)		
Li+ + e-	=	Li	- 3,05
K⁺ + e⁻	=	K	- 2,93
Cs+ + e-	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Na+ + e-		Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Al ³⁺ + 3e ⁻	\rightleftharpoons	Al	- 1,66
Mn ²⁺ + 2e ⁻		Mn	- 1,18
Cr2+ + 2e-	=	Cr	- 0,91
2H ₂ O + 2e ⁻		H ₂ (g) + 2OH ⁻	- 0,83
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
Cr3+ + 3e-		Cr	- 0,74
Fe ²⁺ + 2e ⁻		Fe	- 0,44
Cr3+ + e-	27.10	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻		Cd	- 0,40
Co ²⁺ + 2e ⁻		Co	- 0,28
Ni ²⁺ + 2e ⁻		Ni	- 0,27
Sn ²⁺ + 2e ⁻		Sn	- 0,14
Pb ²⁺ + 2e ⁻		Pb	- 0,13
Fe ³⁺ + 3e ⁻		Fe	- 0,06
2H+ + 2e-		H ₂ (g)	0,00
S + 2H1 + 2e			+ 0,14
Sn ⁴⁺ + 2e ⁻		Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻		40H-	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	=		+ 0,45
Cu+ + e-	=	Cu	+ 0,52
l ₂ + 2e ⁻		21-	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻			+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
NO 3 + 2H+ + e-		$NO_2(g) + H_2O$	+ 0,80
Ag+ + e-	\rightleftharpoons	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
NO 3 + 4H+ + 3e-	=	NO(g) + 2H ₂ O	+ 0,96
Br ₂ (ℓ) + 2e ⁻	=	2Br	+ 1,07
Pt ²⁺ + 2 e ⁻		Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr3+ + 7H2O	+ 1,33
Cl ₂ (g) + 2e ⁻	=	2Ct	+ 1,36
MnO - + 8H+ + 5e-	=	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H₂O	+1,77
Co3+ + e-			+ 1,81
	=	2F-	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë

NATIONAL SENIOR CERTIFICATE

PHYSICAL SCIENCES P2 (CHEMISTRY)

FINAL EXAMINATION

NOVEMBER 2025

comprehistics com

tanmorephysics.com

GRADE 11

These marking guidelines consist of 10 pages.

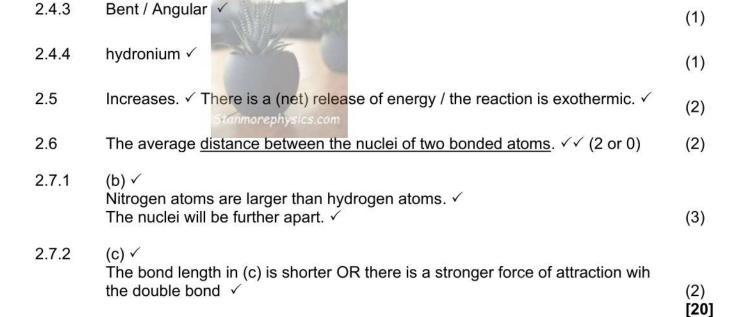
Physical decided from Stanmore physics. COMWAZULU-NATAL/NOVEMBER 2025 Marking Guidelines

QUESTION 1

1.1	CVY	(2)
	All the second	_/

1.3
$$\mathsf{D}\checkmark\checkmark$$

$$1.4 \qquad C \checkmark \checkmark \tag{2}$$


tanmorephysics.com

(2)

Physical desired from Stanmorephysics.com/AZULU-NATAL/NOVEMBER 2025 Marking Guidelines

QUESTION 2

2.1.	The force of attraction between oppositely charged ions, ✓ formed as a result of the transfer of electrons. ✓	(2)
2.2	Δ EN = 3.5 $-$ 1 = 2.5 Δ EN > 2.1 \checkmark	(2)
2.3	lithium nitrate ✓	(1)
2.4.1	2 ✓ (Accept: -2)	(1)
2.4.2	Marking criteria/Nasienriglyne ✓ Correct number of electrons surrounding each atom. ✓ Single bond between O and each of the two H atoms. ✓ Whole structure correct	(3)

Physical decided from Stanmore physics. com AZULU-NATAL/NOVEMBER 2025 Marking Guidelines

QUESTION 3

3.1 The minimum energy needed for a reaction to take place.
$$\checkmark\checkmark$$
 (2)

3.2.1 E_{absorbed} =
$$(4 \times C - H) + (2 \times O = O)$$

= $(4 \times 413) \checkmark + (2 \times 498) \checkmark$
= $2648 \text{ kJ} \cdot \text{mol}^{-1} \checkmark$

(3)

3.2.2 **POSITIVE MARKING FROM Q3.2.1**:

Ereleased =
$$(2 \times C = O) + (4 \times O - H)$$

= $(2 \times 804) \checkmark + (4 \times 463) \checkmark$
= $3460 \text{ kJ} \cdot \text{mol}^{-1}$

$$\Delta H = \sum E_{absorbed} - \sum E_{released}$$

$$= 2648 - 3460 \checkmark$$

$$= -812 \text{ kJ·mol}^{-1} \checkmark$$
(4)

3.3 REMAINS THE SAME <

A catalyst has no effect on energy of reactants or products

OR A catalyst only affects activation energy.

(2)

(1)

3.4.2 POSITIVE MARKING FROM Q3.2.2

$$n = \frac{m}{M}$$

$$= \frac{24}{16} \checkmark$$

$$= 1,5 \text{ mol}$$
Energy released = 1,5 x 812 kJ \checkmark = 1218 kJ \checkmark

(3)

3.4.3 **POSITIVE MARKING FROM Q3.4.2**

no₂ that reacted = 2 x n_{CH4} that reacted = 2 x 1,5 = 3 mol√

nco2 that formed = 1 x ncH4 that reacted = 1 x 1,5 = 1,5 mol√

n_{H2O} that formed = 2 x n_{CH4} that reacted = 2 x 1,5 = 3 mol√

 n_{02} in excess = 5,5 - (1,5 + 3) = 1 mol \checkmark

Initial
$$n_{02} = 3 + 1 = 4 \text{ mol}\sqrt{5}$$
 [50]

Physical decided from Stanmore physics.com/AZULU-NATAL/NOVEMBER 2025 Marking Guidelines

QUESTION 4

4.1 The temperature at which the vapour pressure of a liquid equals atmospheric pressure. ✓✓ (2)

4.2.1 80 kPa ✓ (1)

4.2.2 60°C ✓ [Accept answers between 60°C and 62°C] (1)

4.2.3 Gas ✓ (1)

4.2.4 75°C√√ (2)

4.3 H₂O has a higher boiling point than CCl₄√ Intermolecular forces between H₂O molecules is hydrogen bonding, while intermolecular forces between CCl₄ molecules is London/Dispersion forces.√ Intermolecular forces in H₂O are stronger / Intermolecular forces in CCl₄ are weaker. √

More energy is required to overcome the intermolecular forces in H_2O . \checkmark (4)

4.4 No. ✓

OPTION 1: CCl₄ molecules are polar ✓ while H₂O molecules are non-polar ✓

OPTION 2: the imtermolecular forces in H₂O are stronger than in CCl₄ ✓ so they are not of comparable strength. ✓

(3) **[14]**

(3)

QUESTION 5

5.1. Marking guidelines

If any of the underlined key words/phrases are omitted: minus 1 mark.

Boyle's Law ✓

<u>Pressure</u> of an enclosed gas is <u>inversely proportional to the volume</u> it occupies at <u>constant temperature</u>. ✓

5.2 **OPTION 1**:

$$V = \frac{1}{5.5 \times 10^{-3}}$$

$$p_1V_1 = p_2V_2 \checkmark$$

$$(115.5)(181.82) = (101.3)V_2 \checkmark$$

$$V_2 = 207.31 \text{ dm}^3 \checkmark$$

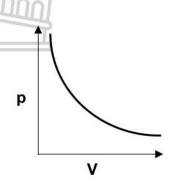
OPTION 2:

$$\frac{\frac{\text{OPTION 2.}}{115 - 101,3\checkmark}}{5,5 - \frac{1}{\sqrt{}}\checkmark} = \frac{115}{5,5}\checkmark$$

$$V = 207,45 \text{ dm}^{3}\checkmark$$
(4)

Physica are lossed from Stanmore physics.com AZULU-NATAL/NOVEMBER 2025 Marking Guidelines

5.3 High√


The volume of the gas particles is no longer negligible \checkmark **OR** Intermolecular forces become significant.

Increasing the pressure does not decrease the volume as predicted by

Boyle's Law√

(3)

5.4

Marking criteria

Correct shape (hyperbola) ✓✓

5.5 A ✓

The gradient is proportional to the number of moles.

A has a larger gradient, ✓ and hence a larger number of moles of gas ✓.

(3) **[15]**

(2)

QUESTION 6

6.1.1 The smallest whole number ratio of elements in a compound. ✓✓ (2 OR 0) (2)

6.1.2 Mass of C = $\frac{12}{44}$ x 1,74 \checkmark = 0,475 g

Mass of H = $\frac{2}{18}$ x 0,70 \checkmark = 0,078 g

Mass of O = 1.5 - (0.475 + 0.078) \checkmark = 0.947 g

C: H:
$$n = \frac{m}{M}$$
 $n = \frac{m}{M}$ $= \frac{0,475}{12}$ porephysics $= \frac{0,078}{1}$

O:

$$n = \frac{m}{M}$$

$$= \frac{0,475}{12}$$

$$= \frac{0,947}{16}$$

$$= 0.04$$

$$= 0.078$$

$$= \frac{0,947}{16}$$

$$= 0.059$$

C:H:O

0,04:0,078:0.059

2:4:3

Molecular formula: C₂H₄O₃ ✓ (7)

6.1.3 (C₂H₄O₃)₃√

Molecular formula is C₆H₁₂O₉ ✓ (2)

Physical decided from Stanmorephysics.com/AZULU-NATAL/NOVEMBER 2025 Marking Guidelines

6.2.2 Mass of Fe₂O₃ = $\frac{30}{100}$ x 150 \checkmark = 45g

Mass of Fe =
$$\frac{112}{160} \checkmark x 45 \checkmark$$

= 31,5 g \checkmark (4)

- 6.3.1 Limiting reagent is the reactant that is used up completely in a reaction.

 OR Limiting reagent determines the maximum amount of product formed in a reaction.
- 6.3.2 H₂SO₄ ✓
 Lithium was left over after the reaction OR All the H₂SO₄ was used up during the reaction. ✓
- 6.3.3 Marking criteria:
 - (a) Use of formula $c = \frac{n}{V} \checkmark$
 - (b) Substitution into formula $c = \frac{n}{V}$ to calculate no fo mol of H₂SO₄ \checkmark
 - (c) Apply ratio (2:1) to calculate no of mol of Li used. ✓
 - (d) Substitution into formula $n = \frac{m}{M}$ to calculate mass of Li used / initial mass of Li. \checkmark
 - (e) Addition of mass of Li used to final mass of Li OR Addition of moles of Li used to final moles of Li.
 - (f) Final answer. ✓

$$c = \frac{n}{V} \checkmark^{(a)}$$

$$0,43 = \frac{n}{1,51} \checkmark^{(b)}$$

$$n_{H2SO4} = 0,65 \text{ mol } H_2SO_4$$

n_{Li} used = 2 x n_{H2}so₄ used = 2 x 0,65 = 1,3 mol

$$n = \frac{m}{M}$$

 $1,3 = \frac{m}{7} \sqrt{(d)}$ m = 9,1 g Li used $n = \frac{1,24}{7}$

m = 0,18 mol Li used

Initial mass of Li = 9,1 + 1,24 \checkmark \checkmark (e) Y = 10,34 g \checkmark (f)

Initial moles of Li = 0,18 + 1,3 $\checkmark \checkmark$ (e) = 1,48 mol

$$n = \frac{m}{M}$$

 $n = \frac{m}{M}$

$$1,48 = \frac{m}{7} \sqrt{(d)}$$

 $Y = m = 10,33 \text{ g} \checkmark^{(f)}$

(7) **[27]**

(2)

Physical desired from Stanmore physics.com AZULU-NATAL/NOVEMBER 2025 Marking Guidelines

QUESTION 7

- An acid is a substance that produces hydrogen ions (H+)/hydronium 7.1.1 (2)ions (H₃O⁺) when it dissolves in water. ✓✓
- 7.1.2 CH₃COOH ✓ and H₃O⁺ ✓ (2)
- Weak acid. ✓ It ionises incompletely/partially in water to form a low 7.1.2 (2)concentration of H₃O⁺ ions. ✓

(5)

7.2.1 **OPTION 1**

$$\frac{C_B V_B}{C_A V_A} = \frac{n_B}{n_A} \checkmark$$

$$\frac{C_B(24,5)\sqrt{}}{(0,15)(31,3)\sqrt{}} = \frac{1}{2}\sqrt{}$$

 $C_B = 0.1 \text{ mol} \cdot \text{dm}^{-3} \checkmark$

OPTION 2

$$C = \frac{n}{V} \checkmark$$

$$0,15 = \frac{n}{0,0313}$$

$$n = 4.7 \times 10^{-3} \text{ mol HNO}_3$$

nmorephysics.com HNO₃: Ca(OH)₂

2:11

4,7 x 10⁻³: 2,35 x 10⁻³ mol Ca(OH)₂

$$C = \frac{n}{V}$$

$$C = \frac{2,35 \times 10^{-3}}{0,0313}$$

$$C = 0.1 \text{ mol} \cdot \text{dm}^{-3} \checkmark$$

tanmorephysics.com

7.2.2 Marking criteria:

- (a) Substitution into formula n = cV to calculate initial concentration of HNO₃.
- (b) Substitution of pH value (2,174) in pH formula.
- (c) Substitution into formula n = cV to calculate final concentration of H₃O⁺.
- (d) Apply ratio n_{final}(H₃O⁺): n_{final}(HNO₃) =1:1 to calculate final moles of HNO₃.
- (e) Subtraction: n_{reacted} (HNO₃) = n_{final} (HNO₃) n_{rnitial} (HNO₃).
- (f) Apply ratio n_{reacted} (Zn) = ½ n_{reacted} (HNO₃) to calculate n_{reacted} (Zn).
- (g) Substitute in formula m = nM to calculate mass of Zn that reactd.
- (h) Final answer.

$$\begin{split} n_{\text{initial}}(\text{HNO}_3) &= \text{cV} \\ &= \underline{0,15 \times 0,25} \,\, \checkmark^{(a)} \, = \, 0,0375 \,\, \text{mol} \\ \text{pH} &= -\text{log}[\text{H}_3\text{O}^+] \\ \underline{2,174} &= -\text{log}[\text{H}_3\text{O}^+] \,\, \checkmark^{(b)} \\ \text{[H}_3\text{O}^+] &= 6,7 \times 10^{-3} \,\, \text{mol} \cdot \text{dm}^{-3} \\ n_{\text{final}}(\text{H}_3\text{O}^+) &= \text{cV} \\ &= \underline{6,7 \times 10^{-3} \times 0,25} \,\, \checkmark^{(c)} \!\! = \, 1,675 \times 10^{-3} \,\, \text{mol} \\ n_{\text{final}}(\text{HNO}_3) &= \, 1,675 \times 10^{-3} \,\, \text{mol} \,\, \checkmark^{(d)} \end{split}$$

$$n_{\text{reacted}}(HNO_3) = 0.0375 - 1.675 \times 10^{-3}$$
 $\checkmark^{(e)}$

= 0,0358 mol

 $n_{\text{reacted}} (Zn) = \frac{1}{2} (0.0358) \sqrt{(f)}$ = 0.018 mol/s/cs.com

m = nM
=
$$0.018 \times 65 \checkmark^{(g)}$$

= $1.16 \text{ g} \checkmark^{(h)}$

7.2.3

$$n_{produced}$$
 (H₂) = $\frac{1}{2}$ $n_{reacted}$ (HNO₃) OR 1 x $n_{reacted}$ (Zn)
= $\frac{1}{2}$ (0,0358) \checkmark OR 1(0,018)
= 0,018 mol

$$V = nV_m$$

$$= 429.6 \text{ cm}^3 \checkmark (0.4296 \text{ dm}^3)$$

(3) **[22]**

(8)

Physical desired from Stanmore physics. com AZULU-NATAL/NOVEMBER 2025 Marking Guidelines

QUESTION 8

8.1.1 A reaction in which electrons are transferred.
$$\checkmark\checkmark$$
 (2)

8.1.2 Al \checkmark (1)

8.1.3 NO₃ ions do not undergo oxidation nor reduction \checkmark OR
The oxidation numbers stay the same. (1)

8.1.4 The net charge on the left-hand side / for the reactants is not equal to the net charge on the right-hand side / for the products. $\checkmark\checkmark$ (2)

8.2.1 +6 \checkmark (1)

8.2.2 $Cr_2Or^{2-} + 14H^+ + 6e^- \checkmark \rightarrow 2Cr^{3+} + 7H_2O \checkmark$ (2)

8.2.3 $3Sn^{2+} \rightarrow 3Sn^{4+} + 6e^- \checkmark \rightarrow 2Cr^{3+} + 7H_2O \checkmark$ Balancing \checkmark (3)
[12]

Stansorephysics.com