



Province of the  
**EASTERN CAPE**  
EDUCATION

Iphondo leMpumiya Kapa: Isebe leMfundiso  
Provincie van die Oos-Kaap: Departement van Onderwys  
Poratensiya Ya Kapa Botshabelo: Lerapha la Thuto

## NATIONAL SENIOR CERTIFICATE



**GRADE 11**

**NOVEMBER 2025**

### LIFE SCIENCES P2

**MARKS:** 150

**TIME:** 2½ hours



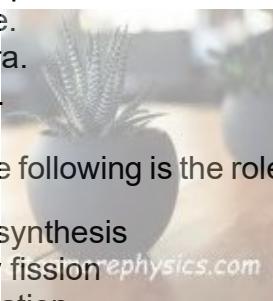
---

This question paper consists of 17 pages.

---

**INSTRUCTIONS AND INFORMATION**

Read the following instructions carefully before answering the questions.


1. Answer ALL the questions.
2. Write ALL the answers in the ANSWER BOOK.
3. Start the answer to EACH question at the top of a NEW page.
4. Number the answers correctly according to the numbering system used in this question paper.
5. Present your answers according to the instructions of each question.
6. ALL drawings MUST be done in pencil and labelled in blue or black ink.
7. Draw diagrams, tables or flow charts ONLY when asked to do so.
8. The diagrams in this question paper are NOT necessarily drawn to scale.
9. Do NOT use graph paper.
10. You must use a non-programmable calculator, protractor and a compass, where necessary.
11. All calculations to be rounded off to TWO decimal places.
12. Write neatly and legibly.

**SECTION A****QUESTION 1**

1.1 Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1.1 to 1.1.9) in the ANSWER BOOK, for example 1.1.10 D.

1.1.1 Organisms that cannot move since they are permanently attached to a surface are known as ...

- A autotrophic.
- B sessile.
- C porifera.
- D motile.



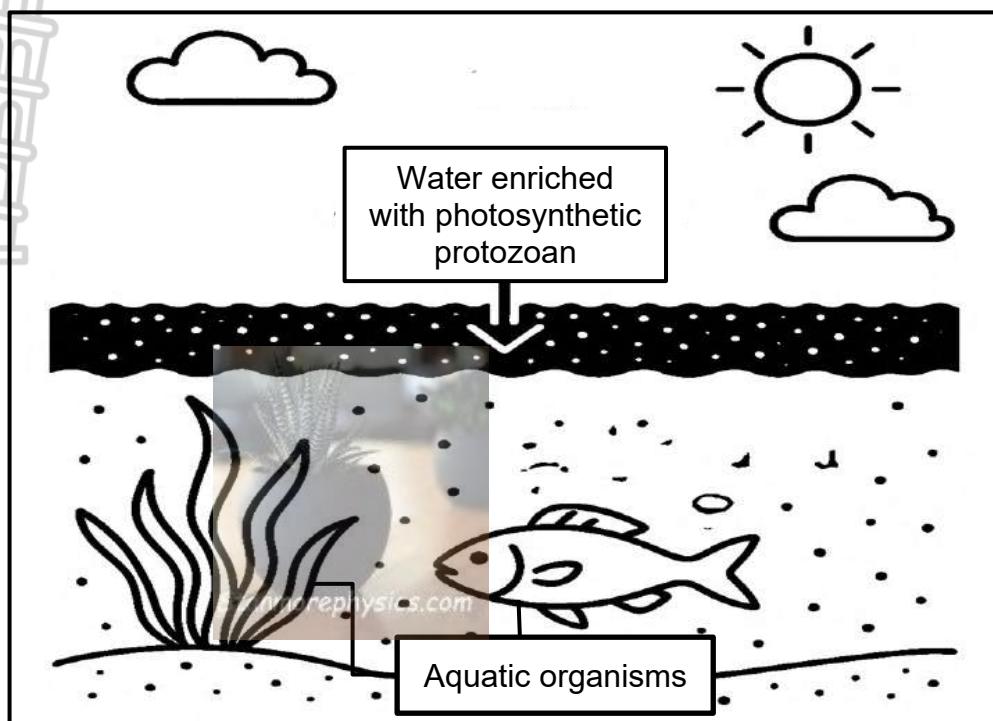
1.1.2 Which of the following is the role of micro-organisms in the nitrogen cycle?

- A Photosynthesis
- B Binary fission
- C Nitrification
- D Cause diseases

1.1.3 A feature of a developing country is ...

- A an expanding older age population.
- B a decreasing younger age population.
- C inadequate health facilities.
- D a high literacy rate.

1.1.4 Flowers with large, feathery stigmas to catch pollen are ...


- A wind pollinated.
- B insect pollinated.
- C bird pollinated.
- D water pollinated.

1.1.5 A common characteristic for all micro-organisms is that they are ...

- A Found only in soil.
- B photosynthetic.
- C microscopic.
- D harmful.



1.1.6 The diagram below represents a process that negatively affects marine life.



Which ONE of the following descriptions represents the process and events occurring in this habitat?

|   | Process        | Nutrients (nitrogen, phosphorus) | Aquatic organisms |
|---|----------------|----------------------------------|-------------------|
| A | Eutrophication | Increase                         | Survive           |
| B | Algal bloom    | Increase                         | Survive           |
| C | Eutrophication | Decrease                         | Die               |
| D | Algal bloom    | Increase                         | Die               |

1.1.7 Which ONE of the following factors has yielded better crops that have contributed to the human exponential growth over the past century?


- A Ozone layer depletion
- B Technological improvements
- C Agricultural improvements
- D Medicinal improvements

1.1.8 Viruses are considered living only when they ...

- A are in soil.
- B contain RNA.
- C have a nucleus.
- D reproduce inside a host cell.

1.1.9 The diagram below represents an interaction in a particular ecosystem. Both populations undergo logistic growth.

What is likely to happen to the logistic growth form over the course of these species' survival?



- A The population size of **B** will always increase exponentially due to unlimited resources
- B The population size of both **A** and **B** will always increase
- C Population size of both **A** and **B** fluctuates over time with the species **B** population increasing first
- D Population size of both **A** and **B** fluctuates over time with the population of **A** increasing first

(9 x 2) (18)

1.2 Give the correct **biological term** for EACH of the following descriptions. Write only the term next to the question numbers (1.2.1 to 1.2.8) in the ANSWER BOOK.

1.2.1 A diagram that shows the distribution of age and gender for a population

1.2.2 A plant structure that contains an embryo which results from a fertilised ovule

1.2.3 A study of interactions between living organisms and their environment

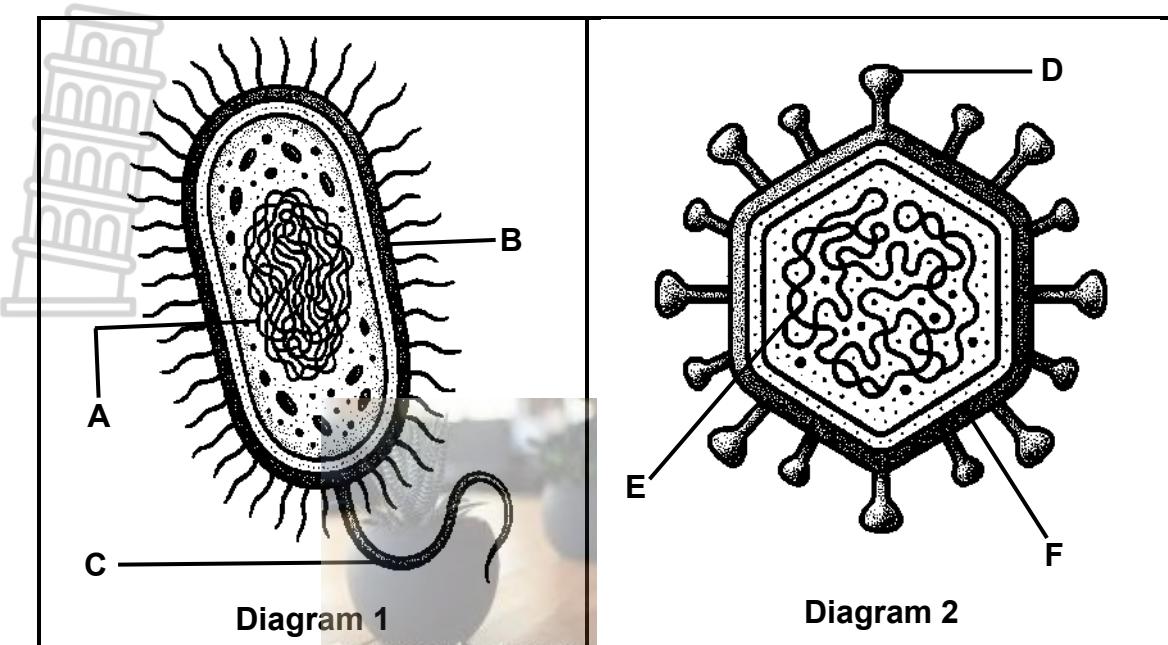
1.2.4 A process in which white blood cells engulf and digest harmful pathogens

1.2.5 The movement of individuals of a population out of a habitat

1.2.6 The collective name for a filament and an anther

1.2.7 A method of controlling alien invasive plant species by introducing their natural enemy into the environment

1.2.8 The average number of years a person is expected to live (8 x 1) (8)


1.3 Indicate whether each of the descriptions in COLUMN I, applies to **A ONLY**, **B ONLY**, **BOTH A and B**, or **NONE** of the items in COLUMN II. Write **A only**, **B only**, **both A and B**, or **none** next to the question numbers (1.3.1 to 1.3.3) in the ANSWER BOOK.

| COLUMN I |                                                                                              | COLUMN II |                           |
|----------|----------------------------------------------------------------------------------------------|-----------|---------------------------|
| 1.3.1    | An organism that transmits pathogens from one host to another                                | A:        | Vector                    |
|          |                                                                                              | B:        | Anopheles female mosquito |
| 1.3.2    | Division of resources by different species which reduces competition and enables coexistence | A:        | Resource partitioning     |
|          |                                                                                              | B:        | Competitive exclusion     |
| 1.3.3    | An avascular plant                                                                           | A:        | Bryophyte                 |
|          |                                                                                              | B:        | Gymnosperm                |

(3 x 2) (6)



1.4 The diagrams below represent two pathogenic micro-organisms to humans.

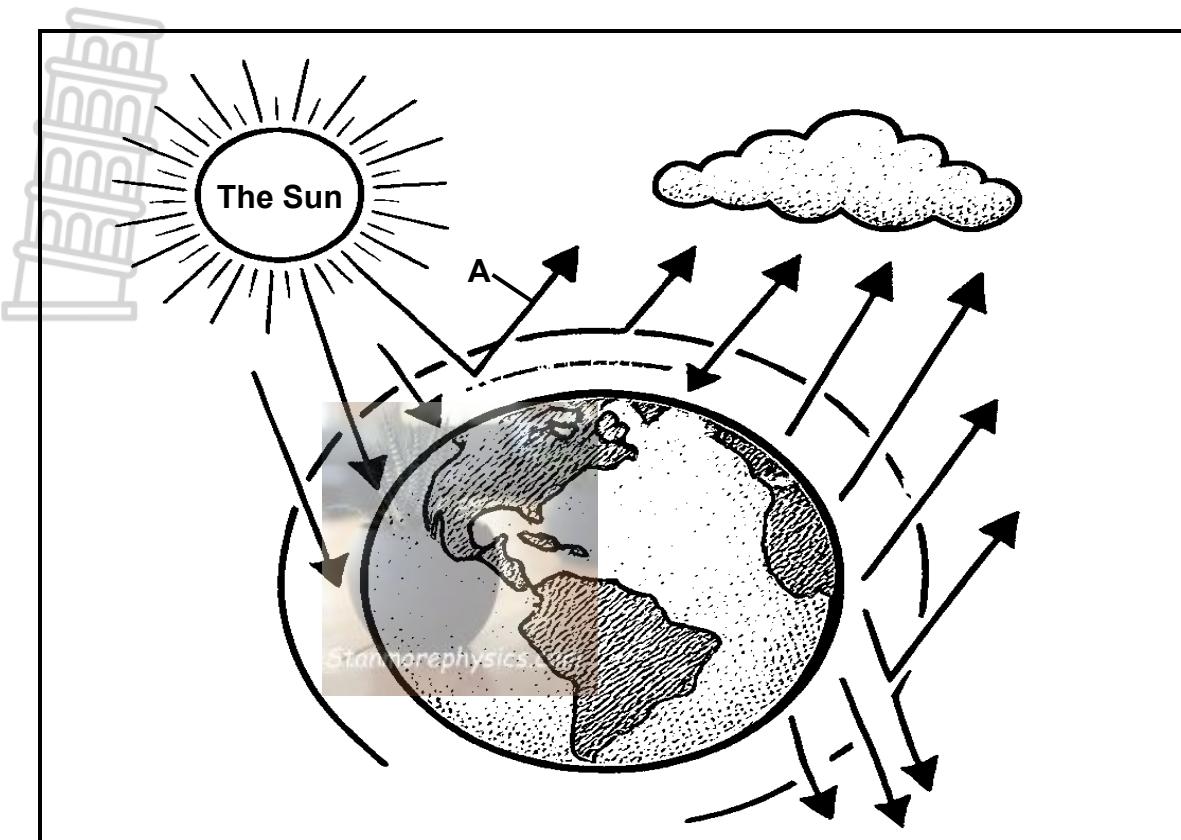


1.4.1 Identify the micro-organism in diagram 1. (1)

1.4.2 Label parts:

- (a) C (1)
- (b) D (1)

1.4.3 Which diagram (1 or 2) represents a pathogenic micro-organism that:


- (a) Causes HIV/Aids infection? (1)
- (b) Develops resistance to antibiotics? (1)

1.4.4 Write only the TWO LETTERS of the organelles that contain genetic material in both diagrams. (2)

1.4.5 Give the name of the:

- (a) Circular structure used in insulin production by organisms in diagram 1 (1)
- (b) Type of micro-organism as in diagram 2 that attacks organisms in diagram 1 (1)

1.5 The diagram below illustrates the greenhouse effect.

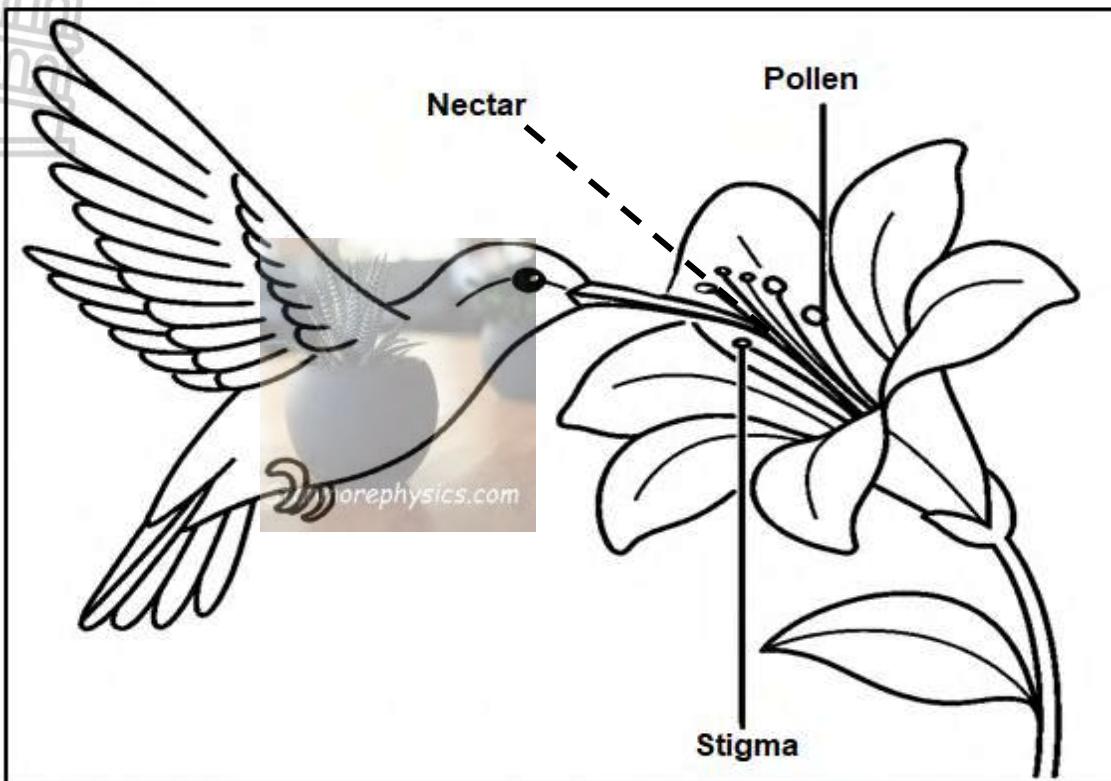


1.5.1 Identify the type of energy emitted by the sun in this greenhouse effect. (1)

1.5.2 State what happens to the type of energy identified in QUESTION 1.5.1 at point A. (1)

1.5.3 Give TWO greenhouse gases that enhance the greenhouse effect in the atmosphere. (2)

1.5.4 Name the phenomenon that exists when:


- The average global temperatures increase on Earth (1)
- Humans cut-down trees for their own benefit (1)
- There is a change in weather patterns over a long time (1)
- The total amount of greenhouse gases emitted directly or indirectly by an individual per year (1)

1.5.5 Name the human activity that enhances the greenhouse effect in the production of electricity. (1)

**TOTAL SECTION A: 50**

**SECTION B****QUESTION 2**

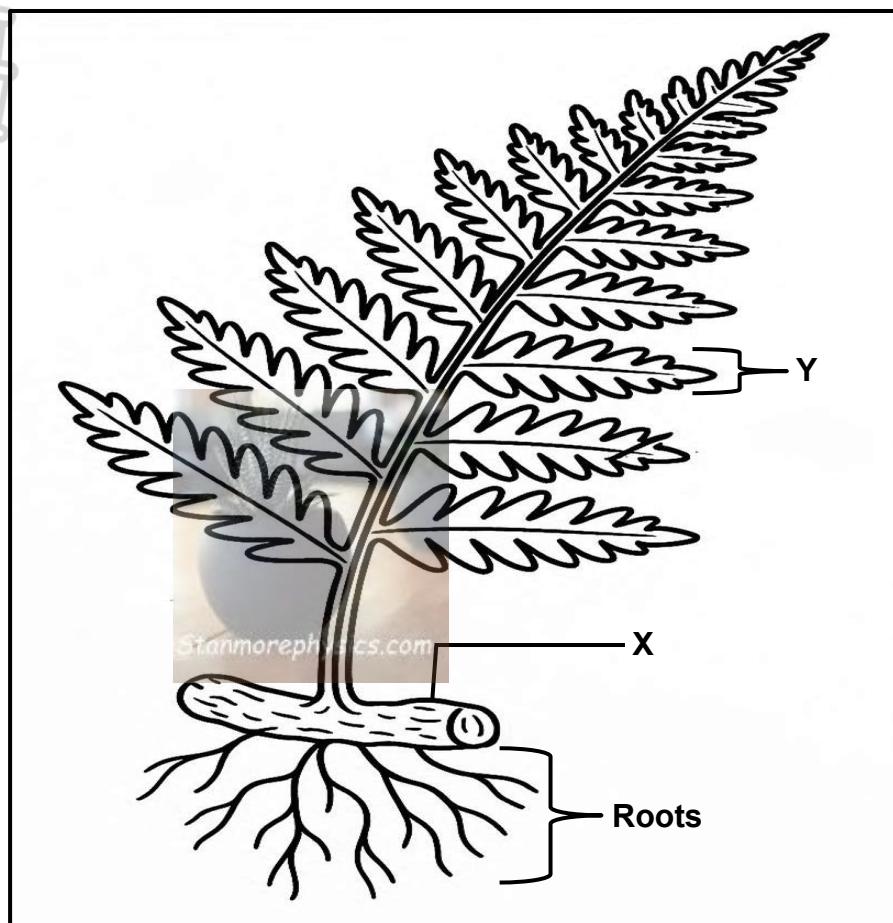
2.1 The diagram below shows a hummingbird pollinating a plant.



2.1.1 Name the plant division represented by the plant in the diagram above. (1)

2.1.2 State TWO unique characteristics of the plant division named in QUESTION 2.1.1. (2)

2.1.3 Identify the labelled part which:


- Produces a male gamete (1)
- Is located on top of the pistil (1)
- Attracts the hummingbird to this plant (1)

2.1.4 Explain the significance for reproduction, of having both male and female reproductive parts being close to each other in this plant. (3)

2.1.5 Name another pollinating agent that is attracted by a strong scent produced by other plants. (1)

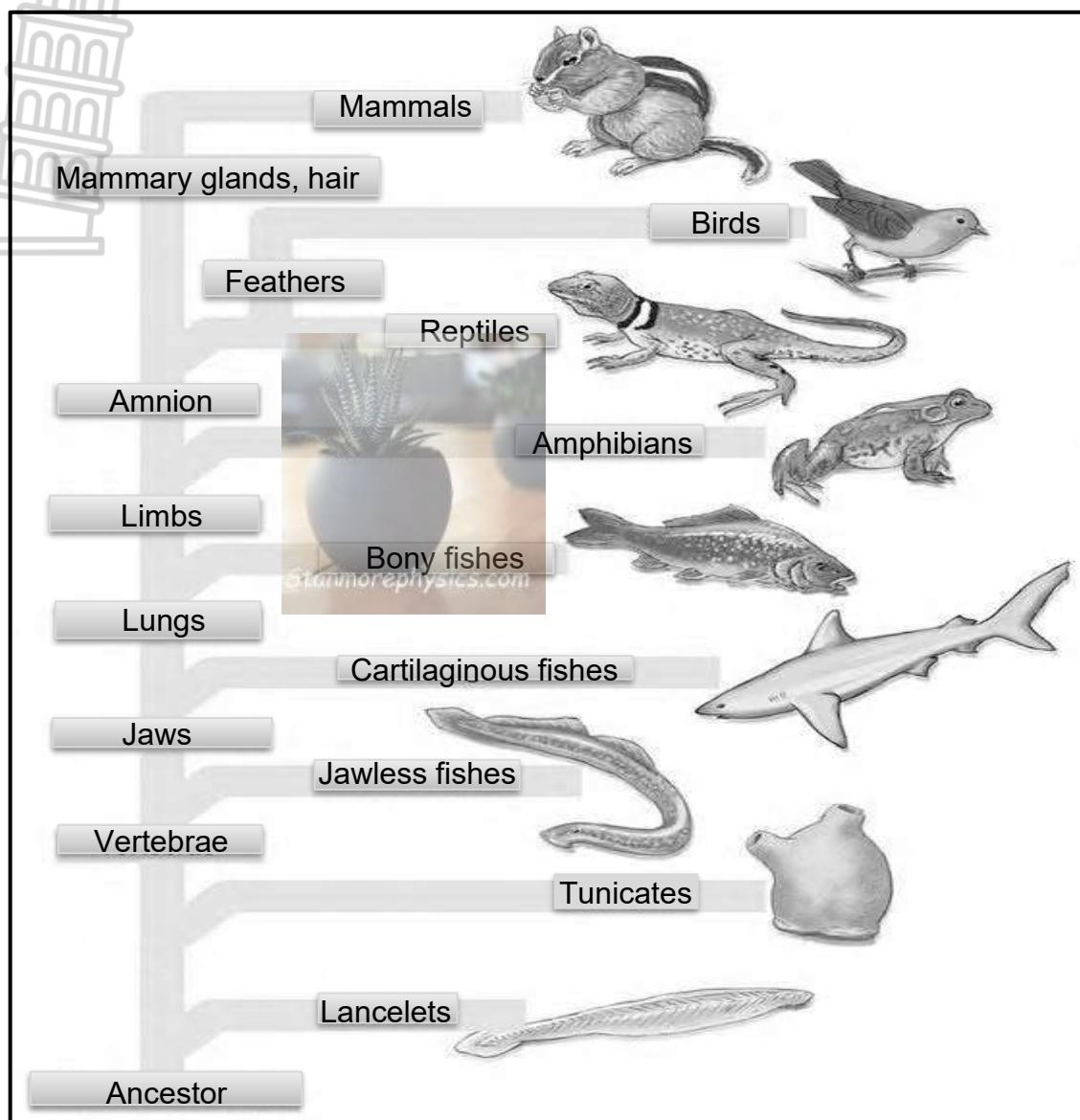
2.1.6 Discuss TWO important roles the process of pollination plays for plant survival in ecosystems. (4)

2.2 The diagram below shows a pteridophyte (fern) plant.



2.2.1 Identify the type of:

(a) Stem at **X** (1)


(b) Leaf at **Y** (1)

2.2.2 Name the cluster of sporangia that are usually found on the underside of the leaf at **Y**. (1)

2.2.3 Tabulate ONE difference between the plant sizes of pteridophytes in comparison to bryophytes. (3)

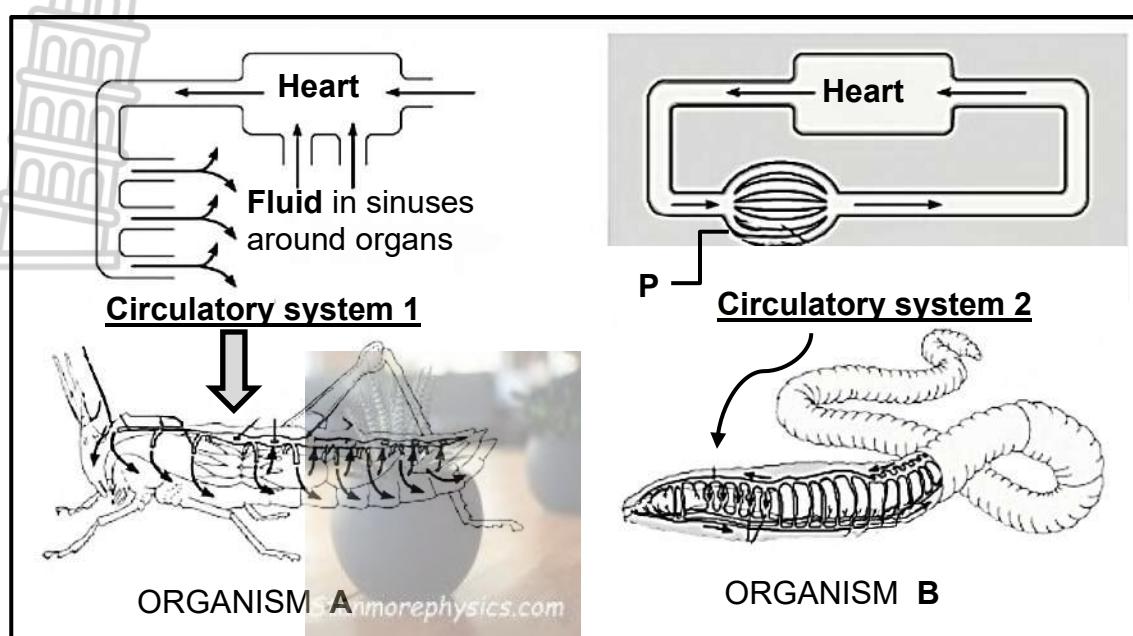
2.2.4 Name TWO vascular tissues that are found in the roots of this fern plant. (2)

2.3 The phylogenetic tree below shows different organisms that belong to the most evolved phylum in the animal kingdom.



2.3.1 Identify the:

- (a) Phylum represented by the diagram above (1)
- (b) TWO organisms in the diagram above that lack a backbone (2)


2.3.2 Some organisms that belong to the animal group identified in QUESTION 2.3.1(b) are also found on land.

Explain the role played by those organisms in agriculture. (3)

2.3.3 Name the:

- (a) Characteristic shared by mammals, birds and reptiles (1)
- (b) Group of organisms with the most advanced evolutionary features (1)

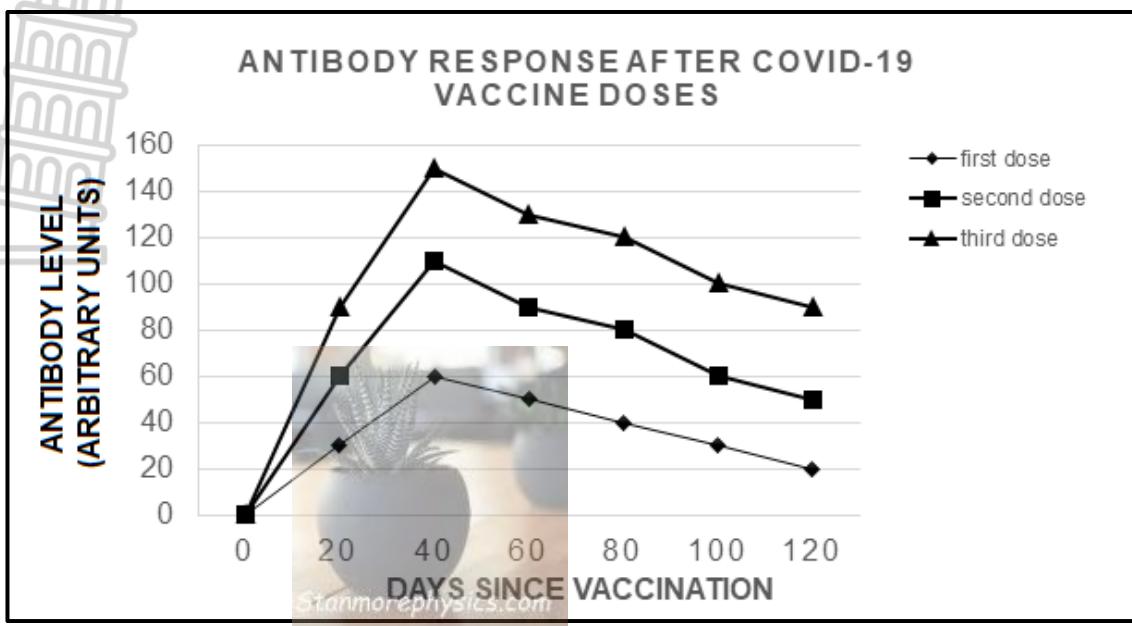
2.4 The diagrams below represent two circulatory systems that exist in different animals.



2.4.1 Identify the type of:

- Blood circulatory system 1 (1)
- Blood vessel P (1)

2.4.2 Name TWO useful substances that are transported in blood vessel P of organism B that assist in its survival. (2)


2.4.3 Describe the type of body symmetry associated with organism A. (2)

2.4.4 Name the fluid filled body cavity that:

- Acts as a hydrostatic skeleton in organism B (1)
- Plays a role in nutrient distribution and waste removal in organism A (1)

2.4.5 Give TWO benefits of having segmented body plans displayed by organism A and B. (2)

2.5 The graphs below show the antibody response after Covid-19 vaccine doses in 6 245 participants in the United States of America (USA).



2.5.1 State what happens to antibody levels after Covid-19 vaccine is initially administered on day 0 to 40. (1)

2.5.2 Give the:

- Antibody level two months after the second Covid-19 vaccine dose was administered (1)
- Type of immunity the Covid-19 vaccine offers to patients (1)
- Cells in the immune system that produce antibodies (1)

2.5.3 Give ONE reason why 6 245 participants were used instead of 60 participants in this study. (2)

2.5.4 Give the main active component of a vaccine. (1)

2.5.5 Based on the information on the graphs over the 120-day period, explain why it is necessary for people to take the third dose of the Covid-19 vaccine dose. (3)

[50]

**QUESTION 3**

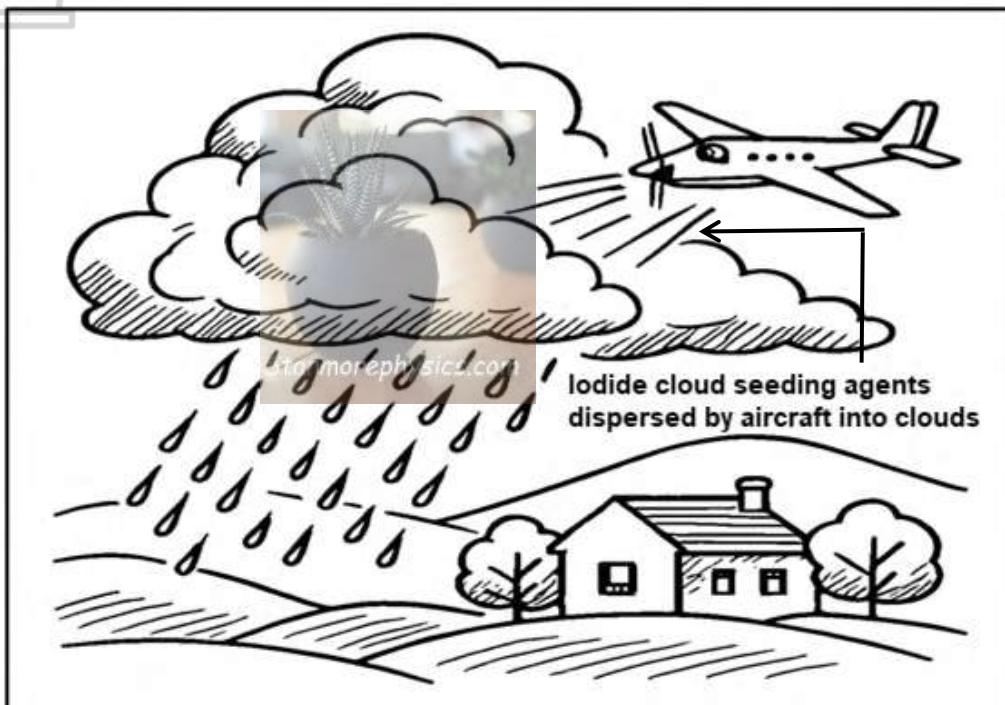
3.1 An aging population together with low-fertility rates has seen the population of Japan decline rapidly in recent years. Japan had a population size of 126,9 million people in 2016.

The table below shows the annual population decrease rate from 2016 to 2024 in Japan. The population decrease rate is calculated by subtracting the number of deaths from the number of births.

| PERIOD (Years) | POPULATION DECREASE |
|----------------|---------------------|
| 2016-2017      | 363 000             |
| 2017-2018      | 405 000             |
| 2018-2019      | 497 000             |
| 2019-2020      | 505 000             |
| 2020-2021      | 610 000             |
| 2021-2022      | 780 000             |
| 2022-2023      | 837 000             |
| 2023-2024      | 890 000             |

3.1.1 Define the term *population*. (3)

3.1.2 Describe the general trend that can be observed in the population size of Japan over this period. (2)


3.1.3 Calculate the percentage increase in the number of people by which Japan's population decreased from 2019–2020 and 2020–2021. Show ALL working. (3)

3.1.4 Explain TWO ways in which a negative population growth could negatively harm a country. (4)

3.1.5 Name ONE factor that might increase the population size of Japan. (1)

3.2 Cloud seeding is a weather modification technique that introduces seeding agents (substances) such as silver/potassium iodide, dry ice as well as sodium chloride into the clouds. These seeding agents are usually transported by aircrafts into small clouds to allow them to condense and enlarge. This eventually increases rainfall in drought-affected regions.

The diagram below shows a schematic representation of how cloud seeding is performed.



3.2.1 Give TWO cloud seeding agents that are NOT dispersed by this aircraft. (2)

3.2.2 Name ONE human-made reservoir that will store water from the rainfall caused by cloud seeding. (1)

3.2.3 Explain ONE benefit on agriculture that cloud seeding has in regions affected by drought. (2)

3.2.4 Suggest THREE other strategies of increasing water availability in drought affected regions. (3)

3.3 Scientists carried out an investigation to determine how different concentrations of microplastics affect the rate of photosynthesis in aquatic organisms such as algae.

They:

- Identified and cultured a freshwater algae (*Chlorella vulgaris*) in a lab.
- Prepared multiple beakers with growth medium and equal amounts of freshwater algae in each beaker. The beakers were divided into FOUR groups **A** to **D**.
- Added a microplastic (polyethylene microspheres) in the beakers with increasing concentrations of microplastic as follows:

| GROUP                                | A | B  | C  | D   |
|--------------------------------------|---|----|----|-----|
| Concentration of microplastics (ppm) | 0 | 10 | 50 | 100 |

Scientists further:

- Placed the samples/beakers under the same light and temperature conditions.
- Measured the rate of photosynthesis in the algae over a few days by using dissolved oxygen production, carbon dioxide uptake and chlorophyll fluorescence (red glow of excess energy given off by chlorophyll which is not used in photosynthesis).

The results of this investigation are tabulated below.

| GROUP                      | A    | B   | C   | D   |
|----------------------------|------|-----|-----|-----|
| Rate of photosynthesis (%) | 100% | 85% | 67% | 53% |

3.3.1 For this investigation, identify the:

(a) Independent variable (1)  
 (b) Dependent variable (1)

3.3.2 State THREE ways in which the variable identified in QUESTION 3.3.1(b) was measured. (3)

3.3.3 Explain the purpose of:

(a) Including group **A** in this investigation (2)  
 (b) Placing the beakers under the same light and temperature condition during this investigation (2)

3.3.4 Draw a bar graph to represent the rate of photosynthesis in the groups with microplastics. (6)

3.3.5 Use the information in the table to explain how microplastics could negatively affect food security. (2)

## 3.4 Read the extract below.

**THE CLOWNFISH AND THE SEA ANEMONE SYMBIOTIC RELATIONSHIP**

The sea anemone has stinging tentacles made of nematocysts cells that it uses to catch prey. These tentacles release and inject a powerful venom into prey, which paralyses and kills the animal when in contact. This enables the sea anemone to use these tentacles to move food into its central single digestive opening.

The clownfish has found shelter in the sea anemone that allows it to escape predators by living and breeding within the sea anemone tentacles. The clownfish secrete a special mucus layer on their skin that protect them from the stinging tentacles of the sea anemone. The clownfish feeds on the leftovers from the sea anemone meals, helping to clean the tentacles. A limited number of sea anemones often leads to the death of many clownfish.



3.4.1 Name and describe the symbiotic relationship that exists between the sea anemone and the clownfish. (2)

3.4.2 Name TWO other symbiotic relationships that occur in species within ecosystems. (2)

3.4.3 From the extract above, give evidence of a:

- Poisonous secretion of the sea anemone. (1)
- Defence strategy of the clownfish from the sea anemone tentacles. (1)
- Blind gut in the sea anemone. (1)

3.4.4 Explain how intraspecific competition in clownfish prevents their population size from exceeding the carrying capacity in the ecosystem. (5)

[50]

**TOTAL SECTION B: 100**  
**GRAND TOTAL: 150**



Province of the  
**EASTERN CAPE**  
EDUCATION

Iphondo leMpumiya Kapa: Isebe leMfundu  
Provincie van die Oos-Kaap: Departement van Onderwys  
Poratensi Ya Kapa Botjhabela: Lefephla leThuto

## NATIONAL SENIOR CERTIFICATE



**GRADE 11**

**NOVEMBER 2025**

## **LIFE SCIENCES P2 MARKING GUIDELINE**

**MARKS: 150**



---

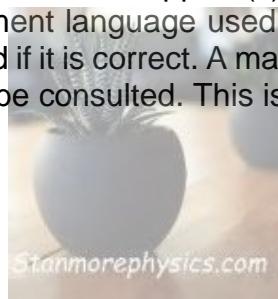
This marking guideline consists of 11 pages.

---

## PRINCIPLES RELATED TO MARKING LIFE SCIENCES

1. **If more information than marks allocated is given**  
Stop marking when maximum marks are reached and put a wavy line and 'max.' in the right-hand margin.
2. **If, for example, three reasons are required and five are given**  
Mark the first three irrespective of whether all or some are correct/incorrect.
3. **If whole process is given when only a part of it is required**  
Read all and credit the relevant part.
4. **If comparisons are asked for but descriptions are given**  
Accept if the differences/similarities are clear.
5. **If tabulation is required but paragraphs are given**  
Candidates will lose marks for not tabulating.
6. **If diagrams are given with annotations when descriptions are required**  
Candidates will lose marks.
7. **If flow charts are given instead of descriptions**  
Candidates will lose marks.
8. **If sequence is muddled and links do not make sense**  
Where sequence and links are correct, credit. Where sequence and links are incorrect, do not credit. If sequence and links become correct again, resume credit.
9. **Non-recognised abbreviations**  
Accept if first defined in answer. If not defined, do not credit the unrecognised abbreviation but credit the rest of the answer if correct.
10. **Wrong numbering**  
If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.
11. **If language used changes the intended meaning**  
Do not accept.
12. **Spelling errors**  
If recognisable, accept the answer, provided it does not mean something else in Life Sciences or if it is out of context.
13. **If common names are given in terminology**  
Accept, provided it was accepted at the memo discussion meeting.
14. **If only the letter is asked for but only the name is given (and vice versa)**  
Do not credit.

**15. If units are not given in measurements**


Candidates will lose marks. Marking guideline will allocate marks for units separately.

**16. Be sensitive to the sense of an answer, which may be stated in a different way****17. Caption**

All illustrations (diagrams, graphs, tables, etc.) must have a caption.

**18. Code-switching of official languages (terms and concepts)**

A single word or two that appear(s) in any official language other than the learners' assessment language used to the greatest extent in his/her answers should be credited if it is correct. A marker that is proficient in the relevant official language should be consulted. This is applicable to all official languages.



**SECTION A****QUESTION 1**

|     |       |                                     |         |      |
|-----|-------|-------------------------------------|---------|------|
| 1.1 | 1.1.1 | B ✓✓                                |         |      |
|     | 1.1.2 | C ✓✓                                |         |      |
|     | 1.1.3 | C ✓✓                                |         |      |
|     | 1.1.4 | A ✓✓                                |         |      |
|     | 1.1.5 | C ✓✓                                |         |      |
|     | 1.1.6 | D ✓✓                                |         |      |
|     | 1.1.7 | C ✓✓                                |         |      |
|     | 1.1.8 | D ✓✓                                |         |      |
|     | 1.1.9 | C ✓✓                                |         |      |
|     |       |                                     | (9 x 2) | (18) |
| 1.2 | 1.2.1 | Age-gender pyramid ✓                |         |      |
|     | 1.2.2 | Seed ✓                              |         |      |
|     | 1.2.3 | Ecology ✓                           |         |      |
|     | 1.2.4 | Phagocytosis ✓                      |         |      |
|     | 1.2.5 | Emigration ✓                        |         |      |
|     | 1.2.6 | Stamen ✓                            |         |      |
|     | 1.2.7 | Biological control ✓                |         |      |
|     | 1.2.8 | Life expectancy ✓                   |         |      |
|     |       |                                     | (8 x 1) | (8)  |
| 1.3 | 1.3.1 | Both A and B ✓✓                     |         |      |
|     | 1.3.2 | A only ✓✓                           |         |      |
|     | 1.3.3 | A only ✓✓                           |         |      |
|     |       |                                     | (3 x 2) | (6)  |
| 1.4 | 1.4.1 | Bacteria ✓/E.coli                   |         |      |
|     | 1.4.2 | (a) Flagellum ✓/tail                |         |      |
|     |       | (b) Protein spikes ✓                |         |      |
|     | 1.4.3 | (a) (Diagram) 2 ✓                   |         |      |
|     |       | (b) (Diagram) 1 ✓                   |         |      |
|     |       |                                     | (1)     | (1)  |
|     | 1.4.4 | A ✓                                 |         |      |
|     |       | E ✓                                 |         |      |
|     |       |                                     | (2)     |      |
|     | 1.4.5 | (a) Plasmid ✓                       |         |      |
|     |       | (b) Bacteriophage ✓                 |         |      |
|     |       |                                     | (1)     | (1)  |
| 1.5 | 1.5.1 | Radiant ✓ energy                    |         |      |
|     | 1.5.2 | Reflected/bounces back into space ✓ |         |      |
|     | 1.5.3 | - Carbon dioxide ✓/CO <sub>2</sub>  |         |      |
|     |       | - Methane ✓/CH <sub>4</sub>         |         |      |
|     |       | - Nitrous oxide ✓/N <sub>2</sub> O  |         |      |
|     |       | <b>(Mark first TWO only)</b>        |         |      |
|     |       |                                     | (2)     |      |

1.5.4 (a) Global warming ✓ (1)  
(b) Deforestation ✓ (1)  
(c) Climate change ✓ (1)  
(d) Carbon footprint ✓ (1)

1.5.5 Burning of fossil fuels ✓/coal /oil/ natural gases (1)



**TOTAL SECTION A: 50**



**QUESTION 2**

2.1 2.1.1 Angiosperms ✓/flowering plants (1)

- They produce flowers ✓
- Seeds enclosed in a fruit ✓

2.1.3 (a) Pollen ✓ (1)

(b) Stigma ✓ (1)

(c) Nectar ✓ (1)

2.1.4 - To allow for self-pollination ✓ to occur  
 - Since pollen will land on the stigma ✓  
 - In order for fertilisation ✓ to take place (3)

2.1.5 Insects ✓ (1)

2.1.6 - It transfers pollen from male reproductive parts to the female reproductive parts ✓  
 Allows plants to reproduce ✓

- Cross pollination creates genetic diversity ✓/variation in plants
- Producing offspring that are resilient ✓/can withstand changes in the environment

**(Mark first TWO only)** (2 x 2) (4)

2.2 2.2.1 (a) Rhizome ✓ (1)

(b) Fronds ✓ (1)

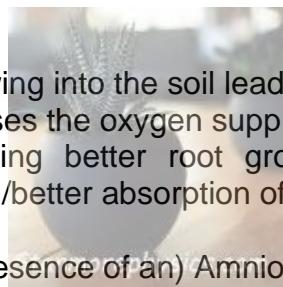
2.2.2 Sori ✓/sorus (1)

T ✓\*

| PTERIDOPHYTES                 | BRYOPHYTES              |
|-------------------------------|-------------------------|
| Bigger/larger (plant sizes) ✓ | Smaller (plant sizes) ✓ |

1\* compulsory + 2 (3)

2.2.4 - Xylem ✓  
 - Phloem ✓ (2)


2.3 2.3.1 (a) Chordata ✓ (1)



(b) - Lancelets ✓  
- Tunicates ✓  
- Ancestor ✓  
**(Mark first TWO only)** (2)

2.3.2 - Decomposition ✓ of dead organisms leads to the formation of humus ✓ that improves soil texture ✓/increases the water retention capacity of the soil/increases soil fertility/recycles nutrients back in the soil

OR



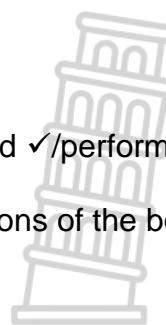
- Burrowing into the soil leads to better aeration ✓ of the soil which increases the oxygen supply to the root cells ✓ promoting better root growth ✓/preventing rotting of the root system/better absorption of nutrients and water (3)

2.3.3 (a) (Presence of an) Amnion ✓ (1)

(b) Mammals ✓ (1)

2.4 2.4.1 (a) Open blood ✓ system (1)

(b) Capillaries ✓ (1)


2.4.2 - Nutrients ✓  
- Oxygen ✓ (2)

2.4.3 - Organism A has bilateral ✓ symmetry  
- Can be cut through the centre once ✓  
- to produce two equal ✓/identical halves (Any 2) (2)

2.4.4 (a) Coelom ✓ (1)

(b) Haemocoel ✓ (1)

2.4.5 - Allows the various body parts to be specialised ✓/perform different functions  
- Allows for independent movements ✓ of sections of the body  
- Allows for growth ✓  
**(Mark first TWO only)** (Any 2) (2)



2.5 2.5.1 It increases ✓ (1)

2.5.2 (a) 90 ✓ arbitrary units (1)

(b) Artificial ✓/acquired immunity (1)

(c) White blood ✓ cells/lymphocytes (1)

2.5.3 - To increase ✓  
- the reliability ✓ of the results (2)

2.5.4 A suspension/weakened/dead form of the pathogen ✓ /virus/bacteria/antigen (1)

2.5.5 - Antibody levels are higher ✓ for the third dose  
- indicating a stronger immune response ✓  
- which prevents Covid-19 infection ✓ (3)

[50]



Stammorephysics.com



**QUESTION 3**

3.1 3.1.1 - Organisms of the same species ✓  
 - Occupying the same habitat ✓  
 - At the same time ✓/able to interbreed (3)

3.1.2 As the period (in years) increases the population size decreases ✓✓ (2)

3.1.3 
$$\frac{610\,000 - 505\,000}{505\,000} \times 100 \times 100 = 20,79\% \checkmark$$
 (3)

3.1.4 - A decrease in the economy/GDP  
 (Fewer/less taxes collected) due to a decrease in labour force ✓/  
 workers  
 - Reduction of skills ✓/variety/innovation  
 Due to fewer younger individuals ✓  
 - Pressure on health facilities ✓  
 Due to an increase in an aging population, ✓ thus require medical  
 care  
 - Increased need for social programs ✓  
 (With an aging population), which will put a strain on limited financial  
 resources ✓due to fewer workers  
**(Mark first TWO only)** (Any 2 x 2) (4)

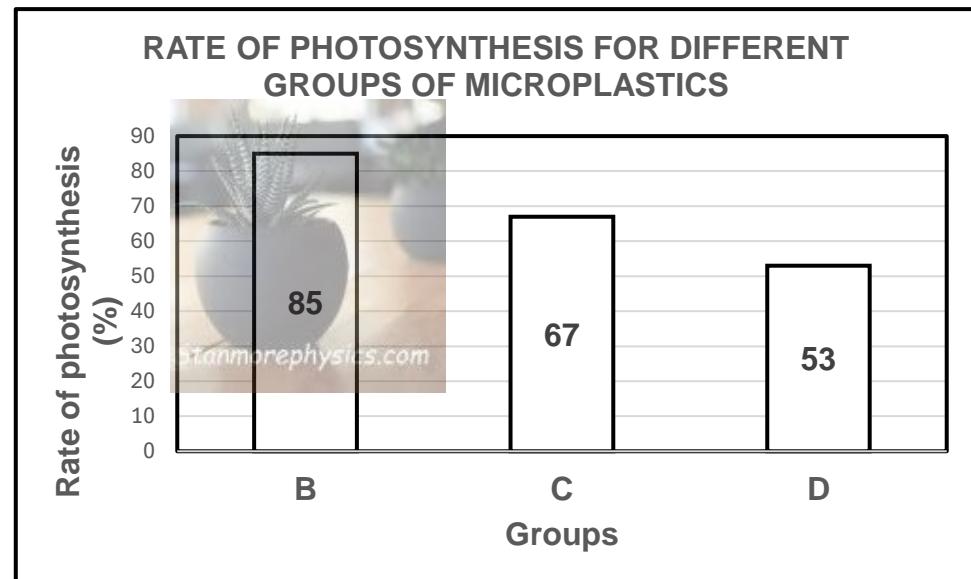
3.1.5 - Immigration ✓  
 - High birth rate ✓ (1)  
**(Mark first ONE only)**

3.2 3.2.1 - Dry ice ✓  
 - Sodium chloride ✓ (2)

3.2.2 Dam ✓ (1)

3.2.3 - Water availability will increase ✓  
 - Leading to constant supply of water for irrigation ✓ (2)

3.2.4 - Research alternative methods ✓/e.g. desalinate seawater  
 - Fix/maintain all waterworks ✓/pipe systems  
 - Locate aquifers ✓/boreholes/underground water  
 - Remove alien plants ✓ in the catchment area of the dam  
 - Recycle grey water ✓  
**(Mark first THREE only)** (Any 3) (3)


3.3 3.3.1 (a) Concentration of microplastics ✓ (1)  
 (b) Rate of photosynthesis ✓ (1)

3.3.2 - Dissolved oxygen production ✓  
 - Chlorophyll fluorescence ✓  
 - Carbon dioxide uptake ✓ (3)

3.3.3 (a) - It served as a control ✓  
 - to compare whether the concentration of microplastics had any effect on the rate of photosynthesis ✓ or not (2)

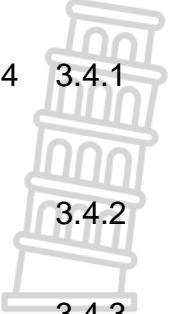
(b) - To ensure that other factors affecting the rate of photosynthesis are kept constant ✓/only the concentration of microplastics should have an effect on the rate of photosynthesis  
 - to ensure the validity ✓ of the investigation (2)

3.3.4



**Rate of photosynthesis for different groups/concentrations of microplastics**

| CRITERIA                     | ELABORATION                                                                                                                           | MARK        |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Type of graph (T)            | Bar graph drawn                                                                                                                       | 1           |
| Caption of graph (C)         | Both variables included                                                                                                               | 1           |
| Axes labels (L)              | X- and Y-axis correctly labelled with units                                                                                           | 1           |
| Scale for X- and Y-axis (S)  | - Equal space and width of bars for X-axis and<br>- Correct scale for Y-axis                                                          | 1           |
| Plotting of co-ordinates (P) | - 1 to 2 co-ordinates plotted correctly<br>- All 3 required co-ordinates plotted correctly.<br>- All 4 co-ordinates plotted correctly | 1<br>1<br>2 |


Histogram or line graph drawn

- Lose marks for type of graph

Transposed axes

- Can get full credit, if axes labels are also swapped and bars are horizontal
- If labels are not corresponding, then lose marks for labels and scale
- Check that the plotting is correct for the given labels (6)

3.3.5 - Food security will decrease ✓  
due to reduction/decrease in the rate of photosynthesis ✓ (2)

3.4  3.4.1 - Mutualism ✓  
- Both organisms benefit from the relationship ✓/clownfish gets shelter while sea anemone tentacles are cleaned (2)

3.4.2 - Commensalism ✓  
- Parasitism ✓ (2)

3.4.3 (a) Powerful venom ✓ (1)  
(b) (Special) mucus layer on their skin ✓ (1)  
(c) Central single digestive opening ✓ (1)

3.4.4 - An increase in the population size of clownfish ✓ will cause  
- clownfish to compete amongst themselves ✓  
- for limited resources ✓/sea anemone/shelter  
- less breeding ~~reproduction~~ occurs among clownfish which are the weaker  
competitors  
- clownfish die ✓ due to predation/environmental resistance  
- population growth rate decreases ✓/logistic growth form occurs (5)  
[50]

**TOTAL SECTION B: 100**  
**GRAND TOTAL: 150**

