

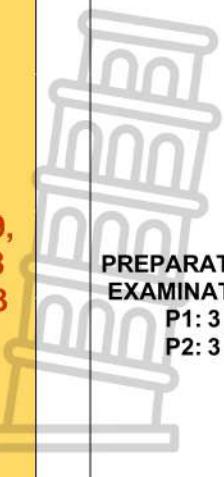
2026 CUSTOMISED KZN ATP: Grade 12 – Term 1: PHYSICAL SCIENCES

Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	% Curriculum Coverage	
						Per Term	Annual
Week 1 14 – 16 Jan (3 days)	MECHANICS: Momentum & Impulse (2 hrs)	<ul style="list-style-type: none"> Define & calculate the momentum of a moving object: $p = mv$ Describe the vector nature of momentum & draw vector diagrams. State Newton's second law in terms of momentum: $F_{\text{net}} = \frac{\Delta p}{\Delta t}$ Calculate the change in momentum when a resultant force acts on an object. Define impulse. Use the impulse momentum theorem ($F_{\text{net}}\Delta t = m\Delta v$) in calculations for a variety of situations (1-D). 	99			8,6	3,1
Week 2 19 – 23 Jan (5 days)	MECHANICS: Momentum & Impulse (4 hrs)	<ul style="list-style-type: none"> Impulse and safety considerations. State the principle of conservation of linear momentum. Explain what is meant by an isolated system, internal and external forces. Prescribed Experiment (Formal) Verify the conservation of linear momentum Apply conservation of momentum to collisions between two objects (one dimension). Distinguish between elastic and inelastic collisions by calculation. 	100 - 101			20	7,2
Week 3 26 – 30 Jan (5 days)	MECHANICS: Vertical projectile motion (4 hrs)	<ul style="list-style-type: none"> Explain what is meant by free-fall and a projectile. Use equations of motion to determine the position, velocity and displacement of a projectile at any given time. Sketch y vs t, v vs t and a vs t graphs for a free falling object, an object thrown vertically upwards, an object thrown vertically downwards and bouncing objects. 	102			31,4	11,3
Week 4 02 – 06 Feb (5 days)	MECHANICS: Vertical projectile Motion (4 hrs)	<ul style="list-style-type: none"> Do calculations using equations of motion for two objects simultaneously in free fall. For given y vs t, v vs t or a vs t graphs, determine position, displacement, velocity and/or acceleration at any time t. For given y vs t, v vs t or a vs t graphs, describe the motion of an object dropped, thrown vertically upwards, thrown vertically downward or bouncing. <p>Recommended Experiment: (Informal) Investigate the motion of a falling body. Draw a graph of position vs time and velocity vs time for a free falling object and use the data to determine the acceleration due to gravity</p>	102 - 103			42,9	15,5
Week 5 09 – 13 Feb (5 days)	MATTER & MATERIALS: Organic molecules (4 hrs)	<ul style="list-style-type: none"> Define organic molecules, functional group, hydrocarbon, homologous series, saturated and unsaturated compounds, and structural isomers. Write condensed, structural & molecular formulae (max 8 C atoms, 1 functional group per molecule) for alkanes (no rings), alkenes (no rings), alkynes, alcohols, haloalkanes (no rings), carboxylic acids, aldehydes, ketones and esters. Write IUPAC names for structural / condensed structural formulae for compounds from above series. 	104			54,3	19,6
Week 6 16 – 20 Feb (5 days)	MATTER & MATERIALS: Organic molecules (4 hrs)	<ul style="list-style-type: none"> Write IUPAC names from structural or condensed structural formulae for compounds listed (one functional group per molecule, max. two functional groups for haloalkanes). Identify alkyl substituents (methyl- and ethyl-); max. THREE alkyl substituents. Identify compounds that are saturated, unsaturated, structural isomers (chain, positional and functional). Identify the type of intermolecular forces in different organic molecules Physical properties: boiling point, melting point, vapour pressure 	104 - 108			65,7	23,7

2026 CUSTOMISED KZN: Grade 12 – Term 1: PHYSICAL SCIENCES

Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	% Curriculum Coverage	
						Per Term	Annual
Week 7 23 – 27 Feb (5 days)	MATTER & MATERIALS: Organic molecules (4 hrs)	<ul style="list-style-type: none"> Relationship between physical properties and strength of IMF, type of functional group, chain length and branching Combustion of alkanes in excess O₂ and use as fuels. Equation & reaction conditions for the formation of an ester and IUPAC names for reactant and products. Classify reactions as elimination, addition or substitution. Equations and reaction conditions for addition reactions of alkenes. 	106			77	27,8
Week 8 02 – 06 March (5 days)	MATTER & MATERIALS: Organic molecules (4 hrs)	<ul style="list-style-type: none"> Equations and reaction conditions for elimination reactions: dehydrohalogenation of haloalkanes, cracking of alkanes, dehydration of alcohols Equations and reaction conditions for substitution reactions: hydrolysis of haloalkanes, halogenation of alkanes 	107 – 117			88,6	32
Week 9 09 – 13 March (5 days)	(4 hrs)	<ul style="list-style-type: none"> Revision: Newton's Laws (Grade 11) Revision: Momentum & Impulse. Revision: Vertical Projectile Motion. Revision: Organic Molecules. 	117 - 118			100	36
Week 10 16 – 20 March (5 days)	CONTROLLED TEST (2 Hours)	ONE PAPER (100 Marks) <ul style="list-style-type: none"> Newton's laws of motion Momentum and impulse Vertical projectile motion Organic molecules 					
Week 11 23 – 26 March (4 days)							

2026 CUSTOMISED KZN ATP: Grade 12 – Term 2: PHYSICAL SCIENCES							
							% Curriculum Coverage
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	Per Term	Annual
Week 1 08 – 10 April (3 days)	MECHANICS: Newton's Laws Work Done by a Force (2 hrs)	<ul style="list-style-type: none"> Discussion and review of March Controlled Test Define the work done on an object. Draw force diagrams & free body diagrams. Calculate the net work done on an object. Distinguish between positive work and negative net work done on a system. 	117 - 118			100	36
Week 2 13 – 17 April (5 days)	MECHANICS: Work, energy and power (4 hrs)	<ul style="list-style-type: none"> State the work-energy theorem. Apply the work-energy theorem on horizontal, vertical and inclined planes. Define conservative and non-conservative forces and give examples. State the principle of conservation of mechanical energy. Solve problems using the equation $W_{nc} = \Delta E_k + \Delta E_p$ Show that E_{mech} is conserved in the absence of non-conservative forces. 	118			8,6	39
Week 3 20 – 24 April (5 days)	MECHANICS: Work, energy and power (4 hrs)	<ul style="list-style-type: none"> Define power and calculate the power involved when work is done. Perform calculations using $P_{ave} = Fv_{ave}$ when an object moves at a constant speed along a rough horizontal surface or a rough inclined plane Calculate the minimum power required of an electric motor to pump water from a borehole of a particular depth at a particular rate using $W_{nc} = \Delta E_k + \Delta E_p$ State the Doppler Effect and explain (using illustrations) the change in pitch observed when a source moves toward or away from a listener (sound and ultra sound). State applications of the Doppler Effect. 	117- 120			20	43,3
Week 4 28 – 30 April (3 days)	WAVES, SOUND & LIGHT: Doppler Effect (2 hrs)	<ul style="list-style-type: none"> Solve problems using the Doppler formula. Solve problems using the Doppler formula. $f_L = \frac{V \pm V_L}{V \pm V_s} f_s$ when EITHER source or listener moves. <ul style="list-style-type: none"> Calculations involving Doppler formula. With light, explain 'red shifts' & use the Doppler Effect to explain why we conclude that the universe is expanding. 	117 - 120			31,4	47,4
Week 5 04 – 08 May (5 days)	CHEMICAL CHANGE: Rate and extent of reaction (4 hrs)	<ul style="list-style-type: none"> Rates of reaction and factors affecting rate [nature of reacting substances, concentration, pressure (for gases), temperature and presence of a catalyst]. Explain in terms of the collision theory, how various factors affect the rate of chemical reactions. Answer questions, and interpret data (graphs or tables) on different experimental techniques for measuring the rate of reaction. 	121 - 122			42,9	51,5
Week 6 11 – 15 May (5 days)	CHEMICAL CHANGE: Rate and extent of reaction (4 hrs)	<ul style="list-style-type: none"> Define the term <i>catalyst</i> Explain that a catalyst increases the rate of a reaction by providing an alternative path of lower activation energy. It therefore decreases the net activation energy. Interpret graphs of distribution of molecular energiesto explain how a catalyst, temperature and concentration affect the reaction rate. Recommended experiment (Informal) Rate of chemical reactions with sodium thiosulfate and hydrochloric acid. 	123- 124			54,3	55,7


2026 CUSTOMISED KZN ATP: Grade 12 – Term 2: PHYSICAL SCIENCES

Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	% Curriculum Coverage	
						Per Term	Annual
Week 7 18 – 22 May (5 days)	Chemical Change: Chemical Equilibrium (4 hrs)	<ul style="list-style-type: none"> Explain: open & closed systems; reversible reactions; dynamic equilibrium List the factors that influence the position of an equilibrium. State Le Chatelier's principle and use it to explain changes in equilibria Interpret simple graphs illustrating equilibrium. 	123 - 124			65,7	59,8
Week 8 25 - 29 May (5 days)	CHEMICAL CHANGE: Chemical equilibrium (4 hrs)	<ul style="list-style-type: none"> State the factor that influence the value of the equilibrium constant K_c. Write an expression for the equilibrium constant from a given equation. Perform calculations based on K_c values.. Explain the significance of high and low values of the equilibrium constant. Recommended experiment (informal): Investigate equilibrium and the factors affecting equilibrium in the equilibrium of CoCl_2 and H_2O. 	124			77	63,9
Week 9 01 - 05 June (5 days)	CHEMICAL CHANGE: Acids & bases (4 hrs)	<ul style="list-style-type: none"> Define acids and bases according to the Arrhenius and Lowry-Brønsted models. Distinguish between strong and weak acids/bases with examples. Distinguish between concentrated and dilute acids/bases. Explain the pH scale and calculate pH values of strong acids and strong bases. Identify conjugate acid-base pairs for given compounds. Write neutralisation reactions of common laboratory acids and bases. 	125			88,6	68
Week 10 08 - 12 June (5 days)	CHEMICAL CHANGE: Acids & bases (4 hrs)	<ul style="list-style-type: none"> Prescribed experiment (formal) How do you use the titration of oxalic acid against sodium hydroxide to determine the concentration of sodium hydroxide? Perform calculations based on titration reactions & motivate the choice of an Indicator. Determine the approximate pH of salts in salt hydrolysis. Define the concept of K_w and explain the auto ionization of water. Compare the K_a and K_b values of strong and weak acids and bases. Compare strong and weak acids by looking at pH, conductivity & reaction rate. 	126 - 128			100	72,2
Week 11 17 - 19 June (3 days)	JUNE EXAMINATION 3 hour duration for each of papers 1 and 2	Paper 1 (150 Marks) <ul style="list-style-type: none"> Newton's laws of motion Momentum and impulse Vertical projectile motion Work, energy and power Doppler effect Electrostatics (Grade 11) Electric Circuits (Grade 11) 					
Week 12 22 - 26 June (5 days)		Paper 2 (150 Marks) <ul style="list-style-type: none"> Stoichiometry Organic Molecules Rate and Extent of Chemical Reactions Chemical Equilibrium Acids & Bases 					

2026 CUSTOMISED KZN ATP: Grade 12 – Term 3: PHYSICAL SCIENCES

Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	% Curriculum Coverage	
						Per Term	Annual
Week 1 21 – 24 July (4 days)	ELECTRICITY & MAGNETISM: Electrostatics & Electric Circuits (3 hrs)	<ul style="list-style-type: none"> Review and corrections of June Exams Electrostatics: <ul style="list-style-type: none"> Coulomb's Law Electric fields Electric circuits Solve problems involving current, voltage and resistance for circuits containing arrangements of resistors (maximum four) in series and in parallel. 				11	75,3
Week 2 27 – 31 July (5 days)	ELECTRICITY & MAGNETISM: Electric Circuits (4 hrs)	<ul style="list-style-type: none"> Explain the term internal resistance. Solve circuit problems using $\epsilon = IR_{\text{ext}} + Ir$ or $\epsilon = V_{\text{load}} + V_{\text{int resistance}}$. Solve problems, with internal resistance, for circuits containing arrangements of resistors in series and in parallel (maximum four resistors). Recommended experiment (informal): Determine the internal resistance of a battery. 	84 – 85			25,9	79,4
Week 3 03 -07 Aug (5 days)	ELECTRICITY & MAGNETISM: Electrodynamics (4 hrs)	<ul style="list-style-type: none"> State the energy conversion in generators & use principle of electro-magnetic induction to explain how generators work. Give examples of uses of AC & DC generators & functions of components in both. State the energy conversion in motors & use the motoreffect to explain how motors work. Explain the functions of components of motors and give examples of uses of motors. State the advantages of alternating current over direct current. Draw and interpret sketch graphs of voltage vs time and current vs time for AC and DC generators. 				40,7	83,5
Week 4 11 – 14 Aug (4 days)	ELECTRICITY & MAGNETISM: Electrodynamics (2 hours)	<ul style="list-style-type: none"> Define the term <i>rms</i> for an alternating voltage or an alternating current. Solve problems using $I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}}$; $V_{\text{rms}} = \frac{V_{\text{max}}}{\sqrt{2}}$; $P_{\text{ave}} = I_{\text{rms}}^2 R$; $P_{\text{ave}} = \frac{V_{\text{rms}}^2}{R}$ and $P_{\text{ave}} = I_{\text{rms}} V_{\text{rms}}$ 	130			55,5	87,6
	M & M: Optical phenomena and properties of materials (1 hour)	Optical phenomena and properties of materials <ul style="list-style-type: none"> Describe the photoelectric effect and state its significance. Define threshold frequency, f_0. Define work function, W_0. 	130				
Week 5 17 - 21 Aug (5 days)	MATTER & MATERIALS: Optical phenomena and properties of materials (4 hrs)	<ul style="list-style-type: none"> Perform calculations using the photoelectric equation: $E = W_0 + K_{\text{max}}$, where $E = hf$, $W_0 = hf_0$ and $K_{\text{max}} = \frac{1}{2} mv_{\text{max}}^2$ Explain the effect of intensity and frequency on the photoelectric effect. Explain the formation of atomic spectra by referring to energy transitions. Explain the difference between atomic absorption spectra and atomic emission spectra 	132			70,4	91,7

2026 CUSTOMISED KZN ATP: Grade 12 – Term 3: PHYSICAL SCIENCES						
						% Curriculum Coverage
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	Per Term
Week 6 24 - 28 Aug (5 days)	CHEMICAL CHANGE: Electrochemical reactions (4 hrs)	<ul style="list-style-type: none"> Define oxidation & reduction in terms of electron transfer & oxidation numbers. Define oxidising & reducing agents in terms of oxidation and reduction. Define an anode and cathode in terms of oxidation and reduction. Define an <i>electrolyte</i> <p>Galvanic cells</p> <ul style="list-style-type: none"> Define a galvanic cell. State the function of a salt bridge. Predict the movement of ions and the direction of electron flow in external circuit. Write half-reactions at each electrode & the overall cell reaction. Predict in which half-cell oxidation / reduction takes place. Use cell notation or diagrams to represent a galvanic cell. Calculate emf for a galvanic cell. Explain that V_{cell} decreases as [product ions] increases and [reactant ions] decreases and $V_{cell} = 0$ when equilibrium is reached, (the cell is 'flat'). State the standard conditions under which standard electrode potentials are determined. 	134 - 138			85.2
Week 7 31 Aug – 04 Sept (5 days)	CHEMICAL CHANGE: Electrochemical reactions (4 hrs)	<ul style="list-style-type: none"> Describe the standard hydrogen electrode and explain its role as the reference electrode. Explain how standard electrode potentials can be determined using the reference electrode; state the convention regarding positive and negative values. <p>Electrolytic cells</p> <ul style="list-style-type: none"> Define an electrolytic cell. Describe the movement of ions in the solution. State the direction of electron flow in the external circuit. Write equations for the half-reactions at the anode and cathode. Write down the overall cell reaction. Describe, using half-reactions and the equation for the overall cell reaction as well as the layout of the particular cell using a schematic diagram, the following electrolytic processes: <ul style="list-style-type: none"> The decomposition of copper (II) chloride Electroplating, e.g. the electroplating of an iron spoon with silver/nickel Refining of copper The electrolysis of a concentrated solution of sodium chloride. 	134			100
Week 8 07 - 11 Sept (5 days)	Paper 2 Revision (2 hrs)	<p>Paper 2</p> <ul style="list-style-type: none"> Representing chemical change (Gr 10) Intermolecular forces Energy and chemical change (Gr 11) Stoichiometry (application only) (Gr 11) Chemical Change Organic Chemistry <p>Paper 1</p> <ul style="list-style-type: none"> Newton's laws (Gr 11) Electrostatics (Gr 11) Electric circuits (Gr 11) Mechanics Waves, Sound and light Electricity and magnetism Optical properties of Matter 				

<p>Week 9, 14 - 18 21 - 23 Sept</p>	<p>PREPARATORY EXAMINATION P1: 3 hrs P2: 3 hrs</p>	<p>PAPER 1: 150 marks</p> <ul style="list-style-type: none">• Mechanics (65)• Waves, Sound and light (15)• Electricity and magnetism (55)• Matter & Materials (15) <p>PAPER 2: 150 marks</p> <ul style="list-style-type: none">• Chemical Change (92)• Matter & Materials (58) <p>The following gr 10 and 11 topics will form part of the two papers::</p> <p>Paper 1</p> <ul style="list-style-type: none">• Newton's laws (Gr 11)• Electrostatics (Gr 11)• Electric circuits (Gr 11) <p>Paper 2</p> <ul style="list-style-type: none">• Representing chemical change (Gr 10)• Intermolecular forces• Energy and chemical change (Gr 11)• Stoichiometry (Gr 11)
---	--	---

2026 CUSTOMISED KZN ATP: Grade 12 – Term 4: PHYSICAL SCIENCES						
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	% Curriculum Coverage
Week 1 06 – 09 Oct (4 days)	REVIEW: PREPARATORY EXAMINATIONS (3 hrs)	Discussion and correction of errors in Preparatory Exams (P1 & P2)				Per Term
Week 2 12 - 16 Oct (5 days)	REVIEW: PREPARATORY EXAMINATIONS (4 hrs)	Discussion and correction of errors in Preparatory Exams (P1 & P2)				Annual
Week 3 19 – 23 Oct (5 days)	CONSOLIDATION AND REVISION (4 hrs)	Preparation for final Exams				
FINAL EXAMS Week 4 - 7 26 Oct – 27 Nov		PAPER 1: 150 marks • Mechanics (65) Momentum and impulse; Vertical projectile motion, Work, energy and power, Newton's laws (Gr 11) • Waves, Sound and light (15) Doppler effect • Electricity and magnetism (55) Electric circuits, Electrodynamics, Electrostatics (Gr11), Electric circuits (Gr 11) • Matter & Materials (15) Optical phenomena and properties of materials PAPER 2: 150 marks • Chemical Change (92) Rate and extent of reaction, Chemical equilibrium, Acids and bases, Representing chemical change (Gr 10), Energy and chemical change (Gr 11), Stoichiometry (application only) (Gr 11), Electrochemical reactions • Matter & Materials (58) Organic molecules, Intermolecular forces (Gr 11)				

NAME OF SCHOOL: _____

YEAR: 2026

PROGRAMME OF FORMAL ASSESSMENT FOR GRADE 12						
ASSESSMENT TASKS:SBA (25%)						END-OF-YEAR ASSESSMENT (75%)
TERM 1		TERM 2		TERM 3		TERM 4
Type	Weighting and duration	Type	Weighting and duration	Type	Weighting and duration	Type
Experiment (Conservation of linear momentum) (Term weight : 25%)	15% (Minimum 50 marks and minimum 2 hours duration)	June Exam (Term weight : 100%)	20% Two papers of 150 marks each Paper 1: Physics 150 marks 3 hours duration Paper 2: Chemistry 150 marks 3 hours duration	Experiment (Determine the unknown concentration of an acid or base by titration against a standard solution) (Term weight: 25%)	15% (Minimum 50 marks and minimum 2 hours duration)	Final Examination Two papers of 150 marks each Paper 1: Physics (150 marks) 3 hours duration Paper 2: Chemistry (150 marks) 3 hours duration
Control Test (Term weight : 75%)	20% (1X100 Marks) 2 hours Physics: 50 marks Chemistry: 50 marks		 Paper 2: Chemistry 150 marks 3 hours duration	Preliminary Examination (Term weight: 75%)	30% Paper 1: Physics (150 marks) Paper 2: Chemistry (150 marks) 3 hours duration for each paper	
Total weighting: 35%		Total weighting: 20%		Total weighting: 45%		
FINAL MARK = 25% (SBA) + 75% (FINAL EXAM) = 100%						

Notes for the teacher:

- TWO formal & TWO informal practical activities must be done
- Before each formal task, there must be evidence of at least 2 informal tasks conducted.
- All tasks must be pre-moderated before they are administered.